Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T16:31:28.716Z Has data issue: false hasContentIssue false

Significance of phyllosilicate mineralogy and mineral chemistry in an epithermal environment. Insights from the palai-islica Au-Cu deposit (Almería, SE Spain)

Published online by Cambridge University Press:  01 January 2024

Javier Carrillo-Rosúa*
Affiliation:
Departamento de Didáctica de las Ciencias Experimentales, Universidad de Granada, Facultad de Ciencias de la Educación, Campus de Cartuja, 18071, Granada, Spain
Salvador Morales-Ruano
Affiliation:
Departamento de Mineralogía y Petrología, Universidad de Granada, Facultad de Ciencias, Avd. Fuentenueva s.n., 18002, Granada, Spain Instituto Andaluz de Ciencias de la Tierra, CSIC Universidad de Granada, Facultad de Ciencias, Avd. Fuentenueva s.n., 18002, Granada, Spain
Iñaki Esteban-Arispe
Affiliation:
Departamento de Mineralogía y Petrología, Universidad de Granada, Facultad de Ciencias, Avd. Fuentenueva s.n., 18002, Granada, Spain
Purificación Fenoll Hach-Alí
Affiliation:
Departamento de Mineralogía y Petrología, Universidad de Granada, Facultad de Ciencias, Avd. Fuentenueva s.n., 18002, Granada, Spain Instituto Andaluz de Ciencias de la Tierra, CSIC Universidad de Granada, Facultad de Ciencias, Avd. Fuentenueva s.n., 18002, Granada, Spain
*
* E-mail address of corresponding author: fjcarril@ugr.es

Abstract

Phyllosilicate mineralogy is key to understanding hydrothermal processes within accepted epithermal deposit models but little information has been published about the mineral chemistry of epithermal deposits. X-ray diffraction, optical and electronic microscopy (scanning and transmitted), electron microprobe, and Fourier transform infrared spectroscopy were used in this work to study phyllosilicates in the Palai-Islica Au-Cu epithermal, volcanic-hosted deposit, in order to link phyllosilicate mineralogy and mineral chemistry to ore genesis. Different phyllosilicate assemblages are characteristic of two types of mineralization, and related hydrothermal alteration. Chlorite and mica appear in polymetallic quartz veins with sulfides, and in the related chloritic and sericitic hydrothermal alteration. These minerals have notable textural and chemical differences (i.e. Fe/(Fe+Mg), Si and Al in chlorite and illitic and phengitic components in mica) amongst veins and altered rocks, revealing different genetic conditions. These chemical features also distinguish propylitic and regional, non ore-related, low-temperature alteration. Hot hydrothermal fluids of near-neutral pH are responsible for vein mineralization and alteration. Illite, interstratified illite-smectite, kaolinite, and pyrophyllite are characteristic, with a distribution pattern by zones, of the intermediate argillic and advanced argillic alteration around areas of silicification. In the latter, native gold appears associated with interstratified illite-smectite, suggesting a relatively low-temperature formation. Hot, low-pH fluids are responsible for this mineralization and alteration assemblage. The present study contributes to epithermal models showing the co-existence of two different alteration styles in the same hydrothermal system.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abad Martinez, M.I., 2002 Procesos diagenéticos y metamórficos de grado muy bajo en rocas clásticas: evolución textural y química de los filosilicatos Spain University of Granada.Google Scholar
Abad, I. Mata, P. Nieto, F. and Velilla, N., 2001 The phyllosilicates in diagenetic-metamorphic rocks of the South Portughese Zone, southwestern Portugal The Canadian Mineralogist 39 15711589 10.2113/gscanmin.39.6.1571.CrossRefGoogle Scholar
Abad, I. Nieto, F. and Gutiérrez-Alonso, G., 2003 Textural and chemical changes in slate-forming phyllosilicates across the external-internal zones transition in the in the low-grade metamorphic belt of the NW Iberian Variscan Chain Schweizerische Mineralogische und Petrographische Mitteilungen 83 6380.Google Scholar
Abad, I. Gutiérrez-Alonso, G. Nieto, F. Gertner, I. Becker, A. and Cabero, A., 2003 The structure and the phyllosilicates (chemistry, crystallinity and texture) of Talas ala-Tau (Tien Shan, Kyrgyz Republic): comparison with more recent subduction complexes Tectonophysics 365 103127 10.1016/S0040-1951(03)00018-0.CrossRefGoogle Scholar
Ahn, J.H. and Peacor, D.R., 1985 Transmission electron microscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments Clays and Clay Minerals 33 228236 10.1346/CCMN.1985.0330309.CrossRefGoogle Scholar
Albee, A.L., 1962 Relationships between the mineral association, chemical composition and physical properties of the chlorite series American Mineralogist 47 851870.Google Scholar
Altaner, S.P. and Ylagan, R., 1997 Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization Clays and Clay Minerals 45 517533 10.1346/CCMN.1997.0450404.CrossRefGoogle Scholar
Arribas, A. Jr. and Tosdal, R., 1994 Isotopic composition of Pb in ore-deposits of the Betic Cordillera, Spain. Origin and relationship to other European deposits Economic Geology 89 10741093 10.2113/gsecongeo.89.5.1074.CrossRefGoogle Scholar
Arribas, A. Cunningham, C.G. Rytuba, J.J. Rye, R.O. Kelly, W.C. Podwysocki, M.H. McKee, E.H. and Tosdal, R.M., 1995 Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain Economic Geology 90 795822 10.2113/gsecongeo.90.4.795.CrossRefGoogle Scholar
Bailey, S.W. (1980) Structure of layer silicates. Pp. 1123 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. and Brown, G., editors). Mineralogical Society, Monograph 5, London.Google Scholar
Bellon, H. Bordet, P. and Montenat, C., 1983 Chronologie du magmatisme Néogène des Cordillères Bètiques (Espagne mèridionale) Bulletin de la Société Géologique de France 25 205217 10.2113/gssgfbull.S7-XXV.2.205.CrossRefGoogle Scholar
Berman, R.G., 1988 Internally consistent thermodynamic data for stoichiometric minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 Journal of Petrology 29 445522.CrossRefGoogle Scholar
Bjorkum, P.A. and Walderhaugh, O., 1993 A model for the effect of illitization on porosity and quartz cementation sandstones Journal of Sedimentary Petrology 63 10891091 10.2110/jsr.63.1089.CrossRefGoogle Scholar
Black, P.M., 1975 Mineralogy of New Caledonia metamorphic rocks: IV. Sheet silicates from the Ouegoa District Contributions to Mineralogy and Petrology 49 269284 10.1007/BF00376180.CrossRefGoogle Scholar
Boles, J.R. and Franks, S.G., 1979 Clay diagenesis in Wilcox sandstones of southwest Texas: implications of smectite diagenesis on sandstones cementation Journal of Sedimentary Petrology 49 269284.Google Scholar
Bove, D.J. Eberl, D.D. McCarty, D.K. and Meeker, G.P., 2002 Characterization and modelling of illite crystal particles and growth mechanism in a zoned hydrothermal deposit, Lake City, Colorado American Mineralogist 87 15461556 10.2138/am-2002-11-1204.CrossRefGoogle Scholar
Browne, P.R.L., 1978 Hydrothermal alteration in active geothermal fields Annual Review of Earth and Planetary Sciences 6 229250 10.1146/annurev.ea.06.050178.001305.CrossRefGoogle Scholar
Caballero, E. Reyes, E. Linares, J. and Huertas, F., 1985 Hydrothermal solutions related to bentonite genesis, Cabo de Gata Region, Almería, SE Spain Mineralogica et Petrographica Acta 29 187196.Google Scholar
Caballero, E. de Cisneros, C.J. Huertas, F.J. Huertas, F. Pozzuoli, A. and Linares, J., 2005 Bentonites from Cabo de Gata, Almeri’a Spain: A mineralogical and geochemical overview Clay Minerals 40 463480 10.1180/0009855054040184.CrossRefGoogle Scholar
Carrillo-Rosúa, F.J., 2005 El depósito epitermal de oro-cobre Palai-Islica (Carboneras, Almería) Mineralogía, geoquímica y metalogenia Spain Univ. Granada..Google Scholar
Carrillo-Rosúa, F.J. Morales-Ruano, S. and Fenoll-Hach-Alí, P., 2002 The three generations of gold in the Palai-Islica epithermal deposit, southeastern Spain The Canadian Mineralogist 40 14651481 10.2113/gscanmin.40.5.1465.CrossRefGoogle Scholar
Carrillo-Rosúa, F.J. Morales-Ruano, S. Boyce, A.J. Fallick, A.E., and Eliopoulos, D.G. et al. 2003, High and intermediate sulphidation environment in the same hydrothermal deposit: the example of Au-Cu Palai-Islica deposit, Carboneras (Almería) Mineral Exploration and Sustainable Development Rotterdam, The Netherlands Millpress 445448.Google Scholar
Carrillo-Rosúa, F.J. Morales Ruano, S. and Fenoll Hach-Alí, P., 2003 Iron sulphides at the epithermal gold-copper deposit of Palai-Islica (Almería, SE Spain) Mineralogical Magazine 67 10591080 10.1180/0026461036750143.CrossRefGoogle Scholar
Carrillo-Rosúa, F.J. Morales Ruano, S. Fenoll Hach-Alí, P. Boyce, A.J. and Fallick, A.E., 2003 Génesis de la barita de Las Herrerías y Sierra Almagrera Boletín de la Sociedad Española de Mineralogía 26-A 159160.Google Scholar
Carrillo-Rosúa, F.J. Morales Ruano, S. Fenoll Hach-Alí, P. Morata Céspedes, D. Belmar, M. Boyce, A.J. Fallick, A.E., and Chen, Y. et al. 2005, Mineralogical and chemical features of gangue phases in relation to hydrothermal mineralization and their host rocks Mineral Deposit Research: Meeting the Global Challenge Rotterdam, The Netherlands Millpress 10571060 10.1007/3-540-27946-6_270.CrossRefGoogle Scholar
Carrillo-Rosúa, F.J. Morales Ruano, S. and Fenoll Hach-Alí, P., 2008 Textural and chemical features of sphalerite from the Palai-Islica deposit (SE Spain): implications for ore genesis and color Neues Jahrbuch für Mineralogie — Abhandlungen 185 1 4964.CrossRefGoogle Scholar
Carrillo-Rosúa, F.J. Morales-Ruano, S. Morata, D. Boyce, A.J. Fallick, A.E. Belmar, M. and Fenoll Hach-Alí, P., 2008 Mineralogy and geochemistry of El Dorado epithermal gold deposit, El Sauce district, central-northern Chile Mineralogy and Petrology 92 341360 10.1007/s00710-007-0203-7.CrossRefGoogle Scholar
Cathelineau, M., 1988 Cation site occupancy in chlorites and illites a function of temperature Clay Minerals 23 471485 10.1180/claymin.1988.023.4.13.CrossRefGoogle Scholar
Cathelineau, M. and Nieva, D., 1985 A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system Contributions to Mineralogy and Petrology 91 235244 10.1007/BF00413350.CrossRefGoogle Scholar
Cliff, G. and Lorimer, G.W., 1975 The quantitative analysis of thin specimens Journal of Microscopy 103 203207 10.1111/j.1365-2818.1975.tb03895.x.CrossRefGoogle Scholar
Cooper, A.F., 1972 Progressive metamorphism of metabasic rocks form the Haast schist group of southern New Zeland Journal of Petrology 13 457492 10.1093/petrology/13.3.457.CrossRefGoogle Scholar
Dewey, J.F., 1988 Extensional collapse of orogens Tectonics 7 11231140 10.1029/TC007i006p01123.CrossRefGoogle Scholar
Eberl, D.D. Środoń, J. Kralik, M. Taylor, B.E. and Peterman, Z.E., 1990 Ostwald ripening of clays and metamorphic minerals Science 248 474477 10.1126/science.248.4954.474.CrossRefGoogle Scholar
Ehrenberg, S.N. Aagaard, P. Wilson, M.J. Fraser, A.R. and Duthie, M.L., 1993 Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf Clay Minerals 28 325352 10.1180/claymin.1993.028.3.01.CrossRefGoogle Scholar
Fernández Soler, J.M., 1996 El vulcanismo calc-alcalino en el Parque Natural de Cabo de Gata-Nijar (Almería) Estudio volcanológico y petrológico Spain Univ. Granada, Sociedad Almeriense Historia Natural.Google Scholar
Fialips, C.I. Petit, S. Decarreau, A. and Beaufort, D., 1998 Effects of temperature and pH on the kaolinite crystallinity Mineralogical Magazine 62A 452454 10.1180/minmag.1998.62A.1.239.CrossRefGoogle Scholar
Fulignati, P. Malfitano, G. and Sbrana, A., 1997 The Pantelleria caldera geothermal system: Data from the hydrothermal minerals Journal of Volcanology and Geothermal Research 75 251270 10.1016/S0377-0273(96)00066-2.CrossRefGoogle Scholar
García Dueñas, V. Balanya, J.C. and Martínez Martínez, J.M., 1992 Miocene extensional detachments in the outcropping basements of the northern Alboran Basin (Betics) Geomarine Letters 12 8895.Google Scholar
Hecht, L. Thuro, K. Plinninger, R. and Cuney, M., 1999 Mineralogical and geochemical characteristics of hydro-thermal alteration and episyenitization in the Königshain granites, northern Bohemian Massif, Germany Geologische Rundschau 88 236252.Google Scholar
Hedenquist, J.W., Arribas, M.A., and Gonzalez-Urien, E. (2000) Exploration for epithermal gold deposits. Pp. 245277 in: Gold in 2000 (Hagemann, S.G. and Brown, P.E., editors). Reviews in Economic Geology, 13. Society for Economic Geology.Google Scholar
Henley, R.W. and Ellis, A.J., 1983 Geothermal systems, ancient and modern Earth Science Reviews 19 150 10.1016/0012-8252(83)90075-2.CrossRefGoogle Scholar
Hernández, J. de Larouzière, F.D. Bolze, J. and Bordet, P., 1987 Le magmatisme néogène bético-rifain et couloir de décrochement trans-Alboran Bulletin de la Société Géologique de France 3 257–256.Google Scholar
Hibti, M. Marignac, C., and Piestrzyñski, A. et al. 2001, The Hajjar deposit of Guemessa (SW Mesta, Morocco): a metamorphosed synsedimentary massive sulphide ore body of the Iberian type of volcano-sedimentary massive sulphide deposits Mineral Deposits at the Beginning of the 21st Century Rotterdam, The Netherlands Balkema 281284.Google Scholar
Instituto Geológico y Minero de España (1974) Mapa Geológico de España. Escala 1:50,000. Hoja 1046 (24–42): Sorbas. Servicio de publicaciones Ministerio de Industria.Google Scholar
Jiang, W.T. Peacor, D.R. and Buseck, P.R., 1994 Chlorite geothermometry? Contamination and apparent octahedral vacancies Clays and Clay Minerals 42 593605 10.1346/CCMN.1994.0420512.CrossRefGoogle Scholar
Kranidiotis, P. and MacLean, W.H., 1987 Systematics of chlorite alteration at the Phelps Dodge massive sulphide deposit, Matagami, Quebec Economic Geology 82 18981911 10.2113/gsecongeo.82.7.1898.CrossRefGoogle Scholar
Laird, J. and Bailey, S.W., 1988 Chlorites: metamorphic petrology Hydrous Phyllosilicates Exclusive of Micas Washington, D.C., USA Mineralogical Society of America 405447 10.1515/9781501508998-016.CrossRefGoogle Scholar
Lázaro, C. Ruiz Cruz, M.D. and de Sanz Galdeano, C., 2003 Características metamórficas del Triásico Maláguide en las unidades intermedias del sector de Diezma (Sierra Arana, Cordillera Bética) Boletín de la Sociedad Española de Mineralogía 26 123136.Google Scholar
Lee, J.H. Peacor, D.R. Lewis, D.D. and Wintsch, R.P., 1986 Evidence for syntectonic crystallization for the mudstone to slate transition at Lehigh Gap, Pennsylvania, USA Journal of Structural Geology 8 767780 10.1016/0191-8141(86)90024-6.CrossRefGoogle Scholar
Leone, G. Reyes, E. Cortecci, G. Pochini, A. and Linares, J., 1983 Genesis of bentonites from Cabo de Gata, Almería, Spain: A stable isotope study Clay Minerals 18 227238 10.1180/claymin.1983.018.3.01.CrossRefGoogle Scholar
López Munguira, A. and Nieto, F., 2000 Transmission electron microscopy study of very low-grade metamorphic rocks in Cambrian sandstones and shales, Ossa-Morena Zone, southwest Spain Clays and Clay Minerals 48 213223 10.1346/CCMN.2000.0480207.CrossRefGoogle Scholar
López Ruiz, J. and Rodriguez Badiola, E., 1980 La región volcánica del sureste de España Estudios Geológicos 36 563.Google Scholar
Maxwell, D.T. and Hower, J., 1967 High grade diagenesis and low-grade metamorphism of illite in the Precambrian belt series American Mineralogist 52 843857.Google Scholar
McDowell, S.D. and Elders, W.A., 1980 Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA Contributions to Mineralogy and Petrology 74 293310 10.1007/BF00371699.CrossRefGoogle Scholar
Merriman, R.J. Peacor, D.R., Frey, M. and Robinson, D., 1991 Very low-grade metapelites: mineralogy, microfrabrics and measuring reaction progress Low-grade Metamorphism Oxford, UK Blackwell Science 1060.Google Scholar
Moore, D.M. and Reynolds, R.C. Jr., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals 2 Oxford, UK Oxford University Press.Google Scholar
Morales-Ruano, S., 1994 Mineralogía, geoquímica y metalogenia de los yacimientos hidrotermales del SE de España Spain University of Granada.Google Scholar
Morales-Ruano, S. Carrillo-Rosúa, F.J. Fenoll Hach-Alí, P. de la Fuente Chacón, F. and Contreras López, E., 2000 Epithermal Cu-Au mineralisation in the Palai-Islica deposit, Almeria, southeastern Spain, fluid inclusion evidence of mixing of fluids as guide to gold mineralisation The Canadian Mineralogist 38 553566 10.2113/gscanmin.38.3.553.CrossRefGoogle Scholar
Nieto, F. Ortega-Huertas, M. Peacor, D.R. and Aróstegui, J., 1996 Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin Clays and Clay Minerals 44 304323 10.1346/CCMN.1996.0440302.CrossRefGoogle Scholar
Newman, A.C.D. Brown, G. and Newman, A.C.D., 1987 The chemical constitutions of clays Chemistry of Clays and Clay Minerals London Mineralogical Society 1128.Google Scholar
Pineda Velasco, A., 1984 Las mineralizaciones metálicas y su contexto geológico en el área volcánica Neógena del Cabo de Gata (Almería, SE de España) Boletín Geológico Minero 95 569592.Google Scholar
Pouchou, J.L. and Pichoir, F., 1984 Un nouveau modèle de calcul pour la microanalyse quantitative per spectrométrie de rayons X La Recherche Aèrospatiale 3 167192.Google Scholar
Reyes, A.G., 1990 Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment Journal of Volcanology and Geothermal Research 43 273309 10.1016/0377-0273(90)90057-M.CrossRefGoogle Scholar
Reynolds, R.C. Jr., Brindley, G.W. and Brown, G., 1980 Interstratified clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 249303.CrossRefGoogle Scholar
Saccocia, P.J. and Gillis, K.M., 1995 Hydrothermal upflow zones in the oceanic crust Earth and Planetary Science Letters 136 116 10.1016/0012-821X(95)00155-5.CrossRefGoogle Scholar
Saccocia, P.J. and Seyfried, W.E., 1994 The solubility of chlorite solid solutions in 3.2 wt.% NaCl fluids from 300–400°C, 500 bars Geochimica et Cosmochimica Acta 58 567585 10.1016/0016-7037(94)90489-8.CrossRefGoogle Scholar
Sánchez España, J. Velasco, F. and Yusta, I., 2000 Hydrothermal alteration of felsic volcanic rocks associated with massive sulphide deposition in the northern Iberian Pyrite Belt (SW Spain) Applied Geochemistry 15 12651290 10.1016/S0883-2927(99)00119-5.CrossRefGoogle Scholar
Schmidt, D. and Livi, K.J.T., 1999 HRTEM and SAED investigations of polytypism, stacking disorder, crystal growth, and vacancies in chlorites from subgreenschist facies outcrops American Mineralogist 84 160170 10.2138/am-1999-1-218.CrossRefGoogle Scholar
Shau, Y.H. Peacor, D.R. and Essene, E.J., 1990 Corrensite and mixed-layer chlorite/corrensite in metabasalts from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies Contributions to Mineralogy and Petrology 105 123142 10.1007/BF00678980.CrossRefGoogle Scholar
Simmons, S.F. White, N.C. John, D., and Hedenquist, J.W. et al. 2005, Geological characteristics of epithermal precious and base metal deposits Economic Geology 100th Anniversary Volume 1905–2005 Littleton, Colorado, USA Society of Economic Geologist Inc. 485522.Google Scholar
Turner, S.P. Platt, J.P. George, R.M.M. Kelley, S.P. Pearson, D.G. and Nowell, G.M., 1999 Magmatism associated with orogenic collapse of the Betic-Alboran domain, SE Spain Journal of Petrology 40 10111036 10.1093/petroj/40.6.1011.CrossRefGoogle Scholar
Vidal, O. Parra, T. and Vieillard, P., 2005 Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: Application to natural examples and possible role of oxidation American Mineralogist 90 347358 10.2138/am.2005.1554.CrossRefGoogle Scholar
Walshe, J.L., 1986 A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems Economic Geology 81 681703 10.2113/gsecongeo.81.3.681.CrossRefGoogle Scholar
Zaccarini, F. Garuti, G. Rossi, A. Carrillo Rosúa, F.J. Morales Ruano, S. and Fenoll Hach-Alí, P., 2003 Application of chlorite and fluid-inclusion geothermometry to vein and stratiform Fe-Cu-Zn sulphide deposits of the northern appennine ophiolites (Emilia Romagna and Liguria, Italy) Atti Ticinensi di Scienze della Terra 9 109111.Google Scholar