Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T08:07:21.971Z Has data issue: false hasContentIssue false

Sedimentological and Mineralogical Investigation of the Late Miocene Successions of Aktoprak Basin (Central Turkey): Implications for Sediment Source and Paleoclimates

Published online by Cambridge University Press:  01 January 2024

Ali Gürel*
Affiliation:
Department of Geology Engineering, Niğde University, 51200 Niğde, Turkey
*
* E-mail address of corresponding author: agurel_1999@yahoo.com

Abstract

Late Miocene (Messinian) alluvial and lacustrine deposits characterize the so-called Kızılbayır Formation of the Aktoprak Basin (central Turkey) and consist of conglomerate, sandstone, mudstone, limestone, marl, and dolomite units. These sediments are composed mainly of feldspar, quartz, hornblende, diopside, olivine, serpentine, calcite, and dolomite with subordinate palygorskite, chlorite, smectite, and illite. Studies by scanning electron microscopy indicate that calcite and dolomite show both meniscus and micrite-sparite-type cements, characteristic of both vadose and phreatic zones. Chlorite, smectite, and illite are products of the alteration of the underlying Güney Formation with subsequent transportation by local streams into the Kızılbayır Formation, and therefore these are considered to be reworked materials. Authigenic palygorskite and dolomite formed as a result of the calcretion of mudstone-carbonate units under alkaline conditions, with high Si, Ca, and Mg activity, and low Al, originated from ophiolitic and carbonate units based on the increase in Ni and Co. The paragenesis and textural features of the minerals of the alluvial fan and lacustrine sediments determined in the study area indicate that precipitation probably occurred due to climate fluctuations ranging from arid and semi-arid to wet conditions.

Type
Article
Copyright
Copyright © 2008, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akgün, F. Olgun, E. Kuşcu, I. Toprak, V. and Göncüoğlu, M.C., 1995 New data on the stratigraphy, depositional environment, and real age of the Oligo-Miocene cover of the central Anatolian crystalline complex Bulletin of Turkish Association of Petroleum Geology 6 5168 (in Turkish with English abstract).Google Scholar
Aydin, F., 2008 Contrasting complexities in the evolution of calc-alkaline and alkaline melts of the Nigde volcanic rocks, Turkey: textural, mineral chemical and geochemical evidence European Journal of Mineralogy 20 101118 10.1127/0935-1221/2008/0020-1784.CrossRefGoogle Scholar
Brindley, G.W., Brindley, G.W. Brown, G., 1980 Quantitative X-ray mineral analysis of clays Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 411438.10.1180/mono-5.7CrossRefGoogle Scholar
Chamley, H., 1989 Clay Sedimentology New York Springer Verlag 10.1007/978-3-642-85916-8 623 pp.10.1007/978-3-642-85916-8CrossRefGoogle Scholar
Clark, M., 2002 The latest Cretaceous—Early Tertiary Ulukişla Basin, S. Turkey: Sedimentation and tectonics of an evolving Tethyan suture zone UK University of Edinburgh 375 pp.Google Scholar
Clark, M. and Robertson, A.H.F., 2002 The role of the Early Tertiary Uhikışla Basin, southern Turkey, in suturing of the Mesozoic Tethys Ocean Journal of Geological Society 159 673690 10.1144/0016-764902-015.10.1144/0016-764902-015CrossRefGoogle Scholar
Clark, M. and Robertson, A.H.F., 2005 Uppermost Cretaceous—Lower Tertiary Ulukişla Basin, south-central Turkey: sedimentary evolution of part of a unified basin complex within an evolving Neotethyan suture zone Sedimentary Geology 173 1551 10.1016/j.sedgeo.2003.12.010.10.1016/j.sedgeo.2003.12.010CrossRefGoogle Scholar
Cock, B.J. Williams, M.A.J. and Adamson, D.A., 1999 Pleistocene Lake Brachina: a preliminary stratigraphy and chronology of lacustrine sediments from the central Flinders Ranges, South Australia Australian Journal of Earth Sciences 46 6169 10.1046/j.1440-0952.1999.00686.x.10.1046/j.1440-0952.1999.00686.xCrossRefGoogle Scholar
Çağatay, M.N., 1990 Palygorskite in the Eocene rocks of the dammam dome, Saudi Arabia Clays and Clay Minerals 38 299307 10.1346/CCMN.1990.0380309.CrossRefGoogle Scholar
Çevikbaş, A. and Öztunalı, , 1991 Ore deposits in the Ulukişla-Çamardı (Nigde) Basin Jeoloji Mühendisliği Dergisi 39 2240 (in Turkish with English abstract).Google Scholar
Demirtaşlı, E., Turhan, N., Bilgin, A.Z., and Selim, M. (1984) Geology of the Bolkar Mountains. Pp. 125141 in: Geology of the Taurus Belt (Tekeli, O. and Göncüoğlu, M.C., editors). Proceedings of the International Symposium. Maden Tetkik ve Arama Dergisi.Google Scholar
Dirik, K. and Göncüoğlu, M.C., 1996 Neotectonic characteristics of central Anatolia International Geology Review 38 807817 10.1080/00206819709465363.CrossRefGoogle Scholar
Enzel, Y. Ely, L.L. Mishra, S. Ramesh, R. Amit, R. Lazar, B. Rajaguru, S.N. Baker, V R and Sandler, A., 1999 High-Resolution Holocene environmental changes in the Thar Desert, northwestern India Science 284 125128 10.1126/science.284.5411.125.CrossRefGoogle ScholarPubMed
Erol, O., 1999 A geomorphological study of the Sultansazlığı lake, central Anatolia Quaternary Science Reviews 18 647657 10.1016/S0277-3791(98)00102-4.10.1016/S0277-3791(98)00102-4CrossRefGoogle Scholar
Galán, E. Mesa, J.M. and Sanchez, C., 1994 Properties and applications of palygorskite clays from Ciudad Real, Central Spain Applied Clay Science 9 293302 10.1016/0169-1317(94)90006-X.CrossRefGoogle Scholar
Gile, L.H. Peterson, F.F. and Grossman, R.B., 1966 Morphological and genetic sequences of carbonate accumulation in desert soils Soil Science 101 347360 10.1097/00010694-196605000-00001.CrossRefGoogle Scholar
Görür, N. Sakınç, M. Barka, A. Akkök, R. and Ersoy, S., 1995 Miocene to Pliocene palaeogeographic evolution of Turkey and its surroundings Journal of Human Evolution 28 309324 10.1006/jhev.1995.1025.10.1006/jhev.1995.1025CrossRefGoogle Scholar
Görür, N. Tüysüz, O. and Şengör, A.M.C., 1998 Tectonic evolution of the central Anatolian basins International Geology Review 40 831850 10.1080/00206819809465241.10.1080/00206819809465241CrossRefGoogle Scholar
Gürel, A. and Yıldız, A., 2007 Diatom communities, lithofacies characteristics and palaeoenvironmental interpretation of Pliocene diatomite deposits in the Ihlara-Selime plain (Aksaray, Central Anatolia, Turkey) Journal of Asian Earth Sciences 30 170180 10.1016/j.jseaes.2006.07.015.10.1016/j.jseaes.2006.07.015CrossRefGoogle Scholar
Gürel, A. and Kerey, E.I., 2007 Palaeoenvironmental reconstruction of Upper Miocene alluvial fan to cyclic shallow lacustrine depositional system in the Aktoprak Basin (central Anatolia, Turkey) The 4th International Association of Limnogeology (IAL) Conference, Barcelona 1 62.Google Scholar
Gürel, A. Çiftçi, E. and Kerey, I.E., 2007 Sedimentological characteristics of the Çukurbağ Formation deposited along the Ecemiş Fault Zone (Central Anatolia, Turkey) Geological Society of India 70 5972.Google Scholar
Hardie, L.H. and Lowenstein, T.K., 2004 Did the Mediterranean Sea dry out during the Miocene? A reassessment of the evaporite evidence from DSDP Legs 13 and 42A Cores Journal of Sedimentary Research 74 453461 10.1306/112003740453.10.1306/112003740453CrossRefGoogle Scholar
Ingles, M. and Anadón, P., 1997 Relationship of clay minerals to depositional environment in the non-marine Eocene Pontils Group, SE Ebro Basin (Spain) Journal of Sedimentary Petrology 61 926939.Google Scholar
Jaffey, N., 2001 The Cenozoic evolution of the strike-slip Ecemis Fault Zone and its implications for the mechanism of tectonic escape in Anatolia UK University of Edinburgh 393 pp.Google Scholar
Jaffey, N. and Robertson, A., 2005 Non-marine sedimentation associated with Oligocene—Recent exhumation and uplift of the Central Taurus, Mountains, S. Turkey Sedimentary Geology 173 5389 10.1016/j.sedgeo.2003.11.025.CrossRefGoogle Scholar
Kaçmaz, H. and Köktürk, U., 2004 Geochemistry and mineralogy of zeolitic tuffs from the Alaçatı (Çeşme) area, Turkey Clays and Clay Minerals 52 705713 10.1346/CCMN.2004.0520605.10.1346/CCMN.2004.0520605CrossRefGoogle Scholar
Karakaş, Z. and Kadir, S., 1998 Mineralogical and genetic relationships between carbonate and sepiolite-palygorskite formations in the Neogene lacustrine Konya Basin, Turkey Carbonates and Evaporites 13 198206 10.1007/BF03176593.10.1007/BF03176593CrossRefGoogle Scholar
Khademi, H. and Mermut, A.R., 1998 Source of palygorskite in gypsiferous Aridisols and associated sediments from central Iran Clay Minerals 33 561578 10.1180/claymin.1998.033.4.04.CrossRefGoogle Scholar
Lang, J. Mahdoudi, M.L. and Pascal, A., 1990 Sedimentation-calcrete cycles in the Mesozoic Red formations from the central High atlas (Telouet area), Morocco Palaeogeography, Palaeoclimatology, Palaeoecology 81 993 10.1016/0031-0182(90)90041-5.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., 1989 X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford, UK Oxford University Press 332 pp.Google Scholar
Nazik, A. and Gökçen, N., 1989 Stratigraphical interpretation of the Ulukışla Tertiary sequences by ostracodes and foraminifers Geological Bulletin of Turkey 32 8999 (in Turkish with English abstract).Google Scholar
Oktay, F.Y., 1982 Stratigraphy and geological history of Ulukisla and its surroundings Geological Bulletin of Turkey 25 1523 (in Turkish with English abstract).Google Scholar
Rodas, M. Luque, F.J. Mas, R. and Garzon, M.G., 1994 Calcretes, palycretes and silcretes in the paleogene detrital sediments of the Dueo and Tajo Basins, central Spain Clay Minerals 29 273285 10.1180/claymin.1994.029.2.13.CrossRefGoogle Scholar
Rouchy, J.M. and Caruso, A., 2006 The Messinian salinity crisis in the Mediterranean basin: A reassessment of the data and an integrated scenario Sedimentary Geology 188 3567 10.1016/j.sedgeo.2006.02.005.10.1016/j.sedgeo.2006.02.005CrossRefGoogle Scholar
Shadfan, H. Mashhady, A.S. Dixon, J.B. and Hussen, A.A., 1985 Palygorskite from Tertiary Formations of eastern Saudi Arabia Clays and Clay Minerals 33 451457 10.1346/CCMN.1985.0330512.10.1346/CCMN.1985.0330512CrossRefGoogle Scholar
Singer, A., 1979 Palygorskite in sediments: Detrital, diagenetic or neoformed — A critical review International Journal of Earth Sciences 68 9961008.Google Scholar
Singer, A., 1984 The palaeoclimatic interpretation of clay minerals in sediments — a review Earth-Science Reviews 21 251293 10.1016/0012-8252(84)90055-2.10.1016/0012-8252(84)90055-2CrossRefGoogle Scholar
Torgersen, T. De Decker, P. Chivas, A.R. and Bowler, J.M., 1986 Salt lakes; a discussion of processes influencing palaeoenvironmental interpretation and recommendation for future study Palaeogeography, Palaeoclimatology, Palaeoecology 54 719 10.1016/0031-0182(86)90115-X.10.1016/0031-0182(86)90115-XCrossRefGoogle Scholar
Verrecchia, E.P. and Le Coustumer, M.N., 1996 Occurrence and genesis of palygorskite and associated clay minerals in a pleistocene calcrete complex, Sde Boqer, Negev Desert, Israel Clay Minerals 31 183202 10.1180/claymin.1996.031.2.04.10.1180/claymin.1996.031.2.04CrossRefGoogle Scholar
Weaver, C.E., 1989 Clays, Muds, and Shales Amsterdam Elsevier 819 pp.Google Scholar
Weaver, C.E. and Beck, K.C., 1977 Miocene of the S.E. United States: a model for chemical sedimentation in a perimarine environment Sedimentary Geology 17 1234 10.1016/0037-0738(77)90062-8.10.1016/0037-0738(77)90062-8CrossRefGoogle Scholar
Wedepohl, K.H. and Merian, E., 1984 Die Zusammenzetzung der oberen Erdkruste und natürlicher Kreislauf ausgewalter Metalle Metalle in der Unwelt Weinheim, Germany Verlag Chemie 856 pp.Google Scholar
Yalçın, H. and Bozkaya, , 2004 Ultramafic-rock-hosted veinsepiolite occurrences in the Ankara Ophiolitic Melange, Central Anatolia, Turkey Clays and Clay Minerals 52 227239 10.1346/CCMN.2004.0520209.CrossRefGoogle Scholar