Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T08:12:23.478Z Has data issue: false hasContentIssue false

Novel method for transmission infrared analysis of clay minerals using silicon wafer substrates

Published online by Cambridge University Press:  01 January 2024

Jeffrey A. Caulfield
Affiliation:
Department of Chemistry and Biochemistry, University of Denver, 2190 East Iliff Ave., Denver, Colorado 80208, USA
Todd A. Wells
Affiliation:
Department of Chemistry and Biochemistry, University of Denver, 2190 East Iliff Ave., Denver, Colorado 80208, USA
Keith E. Miller*
Affiliation:
Department of Chemistry and Biochemistry, University of Denver, 2190 East Iliff Ave., Denver, Colorado 80208, USA
*
*E-mail address of corresponding author: kmiller3@du.edu

Abstract

A novel method for the analysis of clay minerals using Fourier transform infrared spectroscopy is presented. Clay mineral suspensions are dried on a Si wafer substrate for transmission infrared (IR) analysis. Four natural Source Clays from the Source Clays Repository of The Clay Minerals Society, SWy-2, SAz-1, SHCa-1 and KGa-1b, as well as the synthetic hectorite, Laponite RD, were analyzed using the described method with signal to noise (s/n) ratios in excess of 100,000 for the strongly absorbing Si-O stretching frequency. Scanning electron microscopy (SEM) images show that the mineral films possess suitable uniformity and low surface roughness for transmission IR measurements that is confirmed by minimal deviations in the baseline of collected IR spectra. The IR spectra are generated and peak locations are compared to previously reported values, generated from KBr pellet and attenuated total reflectance methods.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burgos, W.D. Pisutpaisal, N. Mazzarese, M.C. and Chorover, J., (2002) Adsorption of quinoline to kaolinite and montmorillonite Environmental Engineering Science 19 5968 10.1089/10928750252953697.CrossRefGoogle Scholar
de Oliveira, M. Johnston, C.T. Premachandra, G.S. Teppen, B.J. Li, H. Laird, D.A. Zhu, D. and Boyd, S.A., (2005) Spectroscopic study of carbaryl sorptiononsmectite from aqueous suspension Environmental Science & Technology 39 91239129 10.1021/es048108s.CrossRefGoogle ScholarPubMed
Dudek, T. Środoń, J. Eberl, D.D. Elsass, F. and Uhlik, P., (2002) Thickness distributionof illite crystals inshales. I: X-ray diffraction vs. high-resolution transmission electron microscopy measurements Clays and Clay Minerals 50 562577 10.1346/000986002320679305.CrossRefGoogle Scholar
Eberl, D.D. Nuesch, R. Šucha, V. and Tsipursky, S., (1998) Measurement of fundamental illite particles thickness by X-ray diffraction using PVP-10 intercalation Clays and Clay Minerals 46 8997 10.1346/CCMN.1998.0460110.CrossRefGoogle Scholar
Farmer, V.C., (1974) The Infrared Spectra of Minerals London Mineralogical Society 1 11–25, 306–309, 352–353.CrossRefGoogle Scholar
Graf, R.T. Koenig, J.L. Ishida, H. and Ishida, H., (1987) Comparison of FT-IR transmission, specular reflectance, and attenuated total reflectance spectra of polymers Fourier Transform Infrared Characterization of Polymers New York Plenum Press 385395 10.1007/978-1-4684-7776-4_20.CrossRefGoogle Scholar
Hunt, J.M. Wifherd, M.P. and Bonham, L.C., (1950) Infrared absorption spectra of mineral and other inorganic compounds Analytical Chemistry 22 14781497 10.1021/ac60048a006.CrossRefGoogle Scholar
Johnston, C.T. Sheng, G. Teppen, B.J. Boyd, S.A. and de Oliveira, M.F., (2002) Spectroscopic study of dinitrophenol herbicide sorptiononsmectite Environmental Science & Technology 36 50675074 10.1021/es025760j.CrossRefGoogle Scholar
Karakassides, M.A. Gournis, D. and Petridis, D., (1999) An infrared reflectance study of Si-O vibrations in thermally treated alkali-saturated montmorillonites Clay Minerals 34 429438 10.1180/000985599546334.CrossRefGoogle Scholar
Karakassides, M.A. Madejová, J. Arvaiová, B. Bourlinos, A. Petridis, D. and Komadel, P., (1999) Location of Li(I), Cu(II), and Cd (II) in heated montmorillonite: evidence from specular reflectance infrared and electron spin resonance spectroscopies Journal of Materials Chemistry 9 15531558 10.1039/a900819e.CrossRefGoogle Scholar
Kubicki, J.D. Itoh, M.J. Schroeter, L.M. and Apitz, S.E., (1997) Bonding mechanism of salicylic acid adsorbed onto illite clay: AnATR-FTIR and molecular orbital study Environmental Science & Technology 31 11511156 10.1021/es960663+.CrossRefGoogle Scholar
Lau, K.K.S. Caulfield, J.A. and Gleason, K.K., (2000) Structure and morphology of fluorocarbonfilms grownby hot filament chemical vapor deposition Chemistry of Materials 12 30323037 10.1021/cm000499w.CrossRefGoogle Scholar
Lau, K.K.S. Caulfield, J.A. and Gleason, K.K., (2000) Variable angle spectroscopic ellipsometry of fluorocarbon films from hot filament chemical vapor deposition Journal of Vacuum Science & Technology A 18 24042411 10.1116/1.1288191.CrossRefGoogle Scholar
Madejova, J., (2003) FTIR techniques in clay mineral studies Vibrational Spectroscopy 31 110 10.1016/S0924-2031(02)00065-6.CrossRefGoogle Scholar
Madejova, J. and Komadel, P., (2001) Baseline studies of The Clay Minerals Society Source Clays: Infrared methods Clays and Clay Minerals 49 410432 10.1346/CCMN.2001.0490508.CrossRefGoogle Scholar
Neumann, B.S. and Sansom, K.G., (1970) The study of gel formationand flocculationinaqueous clay dispersions by optical and rheological methods Israel Journal of Chemistry 8 315322 10.1002/ijch.197000038.CrossRefGoogle Scholar
Petit, S. Decarreau, A. and Righi, D., (2003) The use of glass slide clay-deposit for IR spectroscopy Comptes Rendu Geoscience 335 737741 10.1016/S1631-0713(03)00124-X.CrossRefGoogle Scholar
Queralt, I. Sanfeliu, T. Gomez, E. and Alvarez, C., (2001) X-ray diffraction analysis of atmospheric dust using low-background supports Aerosol Science 32 453459 10.1016/S0021-8502(00)00090-2.CrossRefGoogle Scholar
Rintoul, L. Panayiotou, S.K. George, G. Cash, G. Frost, R. Bui, T. and Fredricks, P., (1998) Fourier transform infrared spectrometry: a versatile technique for real world samples Analyst 123 571577 10.1039/a707111f.CrossRefGoogle ScholarPubMed
Urban, M.W., (1996) Attenuated Total Reflectance Spectrometry of Polymers: Theory and Practice Washington, D.C American Chemical Society 4970.Google Scholar
Weissmahr, K.W. Haderlein, S.B. and Schwarzenback, R.P., (1997) In situ spectroscopic investigations of adsorption mechanism of nitroaromatic compounds at clay minerals Environmental Science & Technology 31 240247 10.1021/es960381+.CrossRefGoogle Scholar