Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-03T01:13:55.830Z Has data issue: false hasContentIssue false

Muscovite Dissolution at 25°C: Implications for Illite/Smectite-Kaolinite Stability Relations

Published online by Cambridge University Press:  02 April 2024

Philip E. Rosenberg
Affiliation:
Department of Geology, Department of Agronomy and Soils, Washington State University, Pullman, Washington 99164
James A. Kittrick
Affiliation:
Department of Geology, Department of Agronomy and Soils, Washington State University, Pullman, Washington 99164

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © 1990, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aja, S. U., 1989 A hydrothermal study of illite stability relationships between 25° and 250°C Pullman, Washington Washington State University.Google Scholar
Bailey, S. W., Brindley, G. W., Fanning, D. S., Kodama, H. and Martin, R. T., 1984 Report of The Clay Mineral Society, Nomenclature Committee for 1982 and 1983 Clays & Clay Minerals 32 239240.CrossRefGoogle Scholar
Berman, R. G., 1988 Internally-consistentthermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 J. Petr. 29 445522.CrossRefGoogle Scholar
Eberl, D. D. and Środoń, J., 1988 Ostwald ripening and interparticle diffraction effects for illite crystals Amer. Mineral. 72 13351345.Google Scholar
Hemingway, B. S., Haas, J. L. and Robinson, G. R. (1982) Thermodynamic properties of selected minerals in the system Al2O3-CaO-SiO2-H2O at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures: U.S. Geol. Surv. Bull. 1544, 70 pp.Google Scholar
Hemley, J. J., Montoya, J. W., Marineko, J. W. and Luce, R. W., 1980 Equilibria in the system Al2O3-SiO2-H2O and some general implications for alteration/mineralization processes Econ. Geol. 25 210228.CrossRefGoogle Scholar
Inoue, A., Kohyama, N., Kitagawa, R. and Watanabe, T., 1987 Chemical and morphological evidence for the conversion of smectite to illite Clays & Clay Minerals 35 111120.CrossRefGoogle Scholar
Inoue, A., Velde, B., Meunier, A. and Touchard, G., 1988 Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system Amer. Mineral. 73 13251334.Google Scholar
Mattigod, S. V. and Kittrick, J. A., 1979 Aqueous solubility studies of muscovites: Apparent nonstoichiometric solute activies at equilbrium Soil Sci. Soc. Amer. J. 43 180187.CrossRefGoogle Scholar
McDowell, D. and Elders, W. A., 1980 Authigenic layer silicates in borehole Elmore 1, Salton Sea Geothermal Field, California, U.S.A. Contrib. Mineral. Petrol. 74 293310.CrossRefGoogle Scholar
Pabalan, R. T. and Pitzer, K. S., 1987 Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO4-OH-H2O Geochim. Cosmochim. Ada 54 24292441.CrossRefGoogle Scholar
Perry, E. A. and Hower, J., 1970 Burial diagenesis of Gulf Coast pelitic sediments Clays & Clay Minerals 18 165177.CrossRefGoogle Scholar
Peryea, F. J. and Kittrick, J. A., 1986 Experimental evaluation of two operational standard states for montmorillonite in metastable hydrolysis reactions Soil. Sci. Soc. Amer. J. 50 16131617.CrossRefGoogle Scholar
Robie, R. A., Hemingway, B. S. and Fisher, J. R. (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures: U.S. Geol. Surv. Bull. 1452, 456 pp.Google Scholar
Rosenberg, P. E., 1987 Synthetic muscovite solid solutions in the system K2O-Al2O3-SiO2-H2O Amer. Mineral. 72 716723.Google Scholar
Rosenberg, P. E., Kittrick, J. A. and Alldredge, J. R., 1984 Composition of the controlling phase in muscovite equilibrium solubility Clays & Clay Minerals 32 480482.CrossRefGoogle Scholar
Sass, B. M., Rosenberg, P. E. and Kittrick, J. A., 1987 The stability of illite/smectite during diagenesis: An experimental study Geochim. Cosmochim. Acta 51 21032115.CrossRefGoogle Scholar
Srodon, J., Eberl, D. D. and Bailey, S. W., 1984 Illite Micas, Reviews in Mineralogy, Vol. 13 Washington, D.C. Mineralogical Society of America 495544.Google Scholar
Tardy, Y. and Garrels, R. M., 1974 A method of estimating the Gibbs energies of formation of layer silicates Geochim. Cosmochim. Acta 38 11011116.CrossRefGoogle Scholar
Velde, B., Weir, A. H., Mortland, M. M. and Farmer, V. C., 1979 Synthetic illite in the chemical system K2O-Al2O3-SiO2-H2O at 300°C and 2 kb. Proc. Int. Clay Conf., Oxford, 1978 Amsterdam Elsevier 395403.Google Scholar
Weaver, C. E., 1965 Potassium-content of illite Science 147 603605.CrossRefGoogle ScholarPubMed
Yates, D. M. and Rosenberg, P. E., 1987 Muscovite stability in solutions between 100° and 250°C Geol. Soc. Amer., Abstr. with Prog. 19 901902.Google Scholar