Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-14T12:03:43.443Z Has data issue: false hasContentIssue false

Clay-Modified Electrodes: A Review

Published online by Cambridge University Press:  02 April 2024

Alanah Fitch*
Affiliation:
Department of Chemistry, Loyola University of Chicago, Chicago, Illinois 60626

Abstract

Clay-modified electrode research indicates that adsorbed complexes are electroactive if the adsorption sites are clay edges. Interlayer adsorbed complexes may be electroactive if a charge shuttle is added or if interlayer swelling is large. Conductivity of the film towards anionic species depends upon the swelling of the clay, which depends on the electrolyte concentration and speciation. The diffusion coefficients measured by electrochemical experiments agree well with alternative measurements.

Type
Research Article
Copyright
Copyright © 1990, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdo, S., Canesson, P., Cruz, M., Fripiat, J. J. and Van Damme, H., 1981 Photochemical and photocatalytic properties of adsorbed organometallic compounds. 2. Structure and photoreactivity of tris(2,2′-bipyridine)ruthenium(II) and -chromium(III) at the solid-gas interface on hectorite J. Phys. Chem. 85 797809.CrossRefGoogle Scholar
Amatore, C., Saveant, J. M. and Tessier, D., 1983 Kinetics of electron transfer to organic molecules at solid electrodes in organic media J. Electroanal. Chem. 146 3745.CrossRefGoogle Scholar
Amatore, C., Saveant, J. M. and Tessier, D., 1983 Charge transfer at partially blocked surfaces. A model for the case of microscopic active and inactive sites J. Electroanal. Chem. 147 3951.CrossRefGoogle Scholar
Aoki, K. and Osteryoung, J., 1984 Formulation of the diffusion-controlled current at very small stationary disk electrodes J. Electroanal. Chem. 160 335339.CrossRefGoogle Scholar
Bard, A. J. and Faulkner, L. R., 1980 Electrochemical Methods New York Wiley.Google Scholar
Berkheiser, V. E. and Mortland, M. M., 1977 Hectorite complexes with Cu(II)- and Fe(II)-1, 10-phenanthroline chelates Clays & Clay Minerals 25 105112.CrossRefGoogle Scholar
Brahimi, B., Labbe, P. and Reverdy, G., 1989 Electrochemical behavior of clay modified electrodes in the presence of cationic surfactant J. Electroanal. Chem. 267 343349.CrossRefGoogle Scholar
Castro-Acuna, C. M., Fan, F-R F and Bard, A. J., 1987 Clay-modified electrodes. Part VIII. Electrochemical behavior at montmorillonite and polypyrrole-montmorillonite films on platinum and glassy carbon electrodes J. Electroanal. Chem. 234 347353.Google Scholar
Carter, M. T. and Bard, A. J., 1987 Clay-modified electrodes. Part VII. The electrochemical behavior of tetrathiafulvalenium-montmorillonite modified electrodes J. Electroanal. Chem. 229 191214.CrossRefGoogle Scholar
DellaGuardia, R. A. and Thomas, J. K., 1983 Photoprocesses on colloidal clay systems. Tris(2,2′-bipyridine)ruthenium(II) bound to colloidal kaolin and montmorillonite J. Phys. Chem. 87 990998.CrossRefGoogle Scholar
Ege, D., Ghosh, P. K., White, J. R., Equey, J.-F. and Bard, A.J., 1985 Clay-modified electrodes. 3. Electrochemical and electron spin resonance studies of montmorillonite layers J. Amer. Chem. Soc. 107 56445652.CrossRefGoogle Scholar
Farmer, V. C. and Mortland, M. M., 1965 An infrared study of complexes of ethylamine with ethylammonium and copper ions in montmorillonite J. Phys. Chem. 69 683686.CrossRefGoogle Scholar
Farmer, V. C. and Mortland, M. M., 1966 An infrared study of the co-ordination of pyridine and water to exchangeable cations in montmorillonite and saponite J. Chem. Soc. (A) 344351.CrossRefGoogle Scholar
Fitch, A., 1990 Preliminary note: Apparent formal potential shifts in ion exchange voltammetry J. Electroanal. Chem. .CrossRefGoogle Scholar
Fitch, A. and Fausto, C. L., 1988 Insulating properties of clay films towards Fe(CN)6 3− as affected by electrolyte concentration J. Electroanal. Chem. 257 299303.CrossRefGoogle Scholar
Fitch, A., Lavy-Feder, A., Lee, S. A. and Kirsh, M. T., 1988 Montmorillonite face surface associated Cr(bpy)3 3+ monitored electrochemically J. Phys. Chem. 92 66656670.CrossRefGoogle Scholar
Ghosh, P. K. and Bard, A. J., 1983 Clay-modified electrodes J. Amer. Chem. Soc. 105 56915693.CrossRefGoogle Scholar
Ghosh, P. K. and Bard, A. J., 1984 Photochemistry of tris(2,2′-bipyridyl)ruthenium(II) in colloidal clay suspensions J. Phys. Chem. 88 55195526.CrossRefGoogle Scholar
Ghosh, P. K., Mau, A W-H and Bard, A. J., 1984 Clay-modified electrodes. Part II. Electrocatalysis at bis(2,2′-bipyridyl)Ru(II)-dispersed ruthenium dioxide-hectorite layers J. Electroanal. Chem. 169 315317.CrossRefGoogle Scholar
Habti, A., Keravis, D., Levitz, P. and Van Damme, H., 1984 Influence of surface heterogeneity on the luminescence decay of probe molecules in heterogeneous systems. Ru(bpy)3 2+ on clays J. Chem. Soc. Farad. Trans. 2 80 6783.CrossRefGoogle Scholar
Hang, P. T. and Brindley, G. W., 1970 Methylene blue absorption by clay minerals. Determination of surface areas and cation-exchange capacities (Clay-organic studies XVIII) Clays & Clay Minerals 18 203212.CrossRefGoogle Scholar
Heinze, J., 1980 Determination of diffusion coefficients by electrochemical current-time measurements Ber. Bunsenges. Phys. Chem. 84 785789.CrossRefGoogle Scholar
Inoue, H. and Yoneyama, H., 1987 Electropolymerization of aniline intercalated in montmorillonite J. Electroanal. Chem. 233 291294.CrossRefGoogle Scholar
Inoue, H., Haga, S., Iwakura, C. and Yoneyama, H., 1988 Effects of the solution pH on the electrochemical behaviour of Ru(bpy)3 2+ and Fe(CN)6 3− ions at a clay-modified electrode J. Electroanal. Chem. 249 133141.CrossRefGoogle Scholar
Itaya, K. and Bard, A. J., 1985 Clay-modified electrodes. 5. Preparation and characterization of pillared clay-modified electrodes and membranes J. Phys. Chem. 89 55655568.CrossRefGoogle Scholar
Itaya, K., Chang, H.-C. and Uchida, I., 1987 Anion-exchanged hydrotalcite-like-clay-modified electrodes Inorg. Chem. 26 624626.CrossRefGoogle Scholar
Jost, W., 1952 Diffusion in Solids, Liquids, Gases New York Academic Press.CrossRefGoogle Scholar
Kamat, P. V., 1984 Electrochemistry and photoelectro-chemistry of dye-incorporated clay-modified electrode J. Electroanal. Chem. 163 389394.CrossRefGoogle Scholar
King, R. D., Nocera, D. G. and Pinnavaia, T. J., 1987 On the nature of electroactive sites in clay-modified electrodes J. Electroanal. Chem. 236 4353.CrossRefGoogle Scholar
Krenske, D., Abdo, S., Van Damme, H., Cruz, M. and Fripiat, J. J., 1980 Photochemical and photocatalytic properties of adsorbed organometallic compounds. 1. Luminescence quenching of tris(2,2′-bipyridine)ruthenium(H) and -chromium(III) in clay membranes J. Phys. Chem. 84 24472457.CrossRefGoogle Scholar
Lee, S. A. and Fitch, A., 1990 Conductivity of clay-modified electrodes: Alkali cation hydration and film preparation effects J. Phys. Chem. .CrossRefGoogle Scholar
Liu, H.-Y. and Anson, F. C., 1985 Electrochemical behavior of cationic complexes incorporated in clay coatings on graphite electrodes J. Electroanal. Chem. 184 411417.CrossRefGoogle Scholar
Méring, J., 1946 On the hydration of montmorillonite Trans. Farad. Soc. 42b 205219.CrossRefGoogle Scholar
Naegeli, R., Redepenning, J. and Anson, F. C., 1986 Influence of supporting electrolyte concentration and composition on formal potentials and entropies of redox couples incorporated in nafion coatings on electrodes J. Phys. Chem. 90 62276232.CrossRefGoogle Scholar
Norrish, K., 1954 The swelling of montmorillonite Trans. Farad. Soc. 18 120134.CrossRefGoogle Scholar
Oyama, N. and Anson, F. C., 1986 Catalysis of the electroreduction of hydrogen peroxide by montmorillonite clay coatings on graphite electrodes J. Electroanal. Chem. 199 467470.CrossRefGoogle Scholar
Raupach, M., Emerson, W. W. and Slade, P. G., 1979 The arrangement of paraquat bound by vermicullite and montmorillonite J. Colloid Interface Sci. 69 398408.CrossRefGoogle Scholar
Rudzinski, W. and Bard, A. J., 1986 Clay-modified electrodes. 6. Aluminum and silica pillared clay-modified electrodes J. Electroanal. Chem. 199 323331.CrossRefGoogle Scholar
Rusling, J. F., Shi, C.-N. and Suib, S. L., 1988 Electro-catalytic reactions in organized assemblies. Part V. Dehalogenation of r,r′-dibromobiphenyl in cationic micelles at bare and clay-modified carbon electrodes J. Electroanal. Chem. 245 331337.CrossRefGoogle Scholar
Sabatani, E. and Rubenstein, I., 1987 Organized self-assembling monolayers on electrodes. 2. Monolayer-based ultramicroelectrodes for the study of very rapid electrode kinetics J. Phys. Chem. 91 66636669.CrossRefGoogle Scholar
Schoonheydt, R. A., Pelgrims, J. H. Y. and Uytterhoeven, J. B., 1978 Characterization of tris(2,2′-bipyridyl)ruthenium(II) on hectorite Clay Miner. 13 435438.CrossRefGoogle Scholar
Sposito, G. and Prost, R., 1982 Structure of water adsorbed on smectites Chem. Rev. 82 553573.CrossRefGoogle Scholar
Suquet, H., de la Calle, C. and Pezerat, H., 1975 Swelling and structural organization of saponite Clays & Clay Minerals 23 19.CrossRefGoogle Scholar
Traynor, M. F., Mortland, M. M. and Pinnavaia, T. J., 1978 Ion-exchange and intercalation reactions of hectorite with tris-bipyridyl metal complexes Clays & Clay Minerals 26 318326.CrossRefGoogle Scholar
Van Damme, H., Obrecht, F. and Letellier, M., 1984 Intercalation of tetrathiafulvalene in smectite clays: Evidence for charge-transfer interactions Nouv. J. Chim. 8 681683.Google Scholar
Velghe, F., Schoonheydt, R. A., Uytterhoeven, J. B., Peigneur, P. and Lunsford, J. H., 1977 Spectroscopic and characterization and thermal stability of copper(II) ethylene-diamine complexes on solid surfaces. 2. Montmorillonite J. Phys. Chem. 81 11871194.CrossRefGoogle Scholar
White, J. R. and Bard, A. J., 1986 Clay-modified electrodes. Part IV. The electrochemistry and electron spin resonance of methyl viologen incorporated into montmorillonite films J. Electroanal. Chem. 197 233244.CrossRefGoogle Scholar
Wielgos, T. and Fitch, A., 1990 Ion-exchange voltametry at clay-modified electrodes: Ru(NH3)6 3+ Electroanalysis .Google Scholar
Yap, W. T. and Doane, L. M., 1982 Determination of diffusion coefficients by chronoamperometry with unshielded planar stationary electrodes Anal. Chem. 54 14391441.Google Scholar
Yamagishi, A. and Aramata, A., 1984 A clay-modified electrode with stereoselectivity J. Chem. Soc. Chem. Commun. 452453.CrossRefGoogle Scholar