Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-10T10:50:55.369Z Has data issue: false hasContentIssue false

Parameters Influencing Layer Stacking Types in Saponite and Vermiculite: A Review

Published online by Cambridge University Press:  02 April 2024

Hélène Suquet
Affiliation:
Laboratoire de Réactivité de Surface et Structure, C.N.R.S. U.A. 1106, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 France
Henri Pezerat
Affiliation:
Laboratoire de Réactivité de Surface et Structure, C.N.R.S. U.A. 1106, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 France

Abstract

Saponites and vermiculites may assume at least 11 ordered or semi-ordered layer stacking sequences. For a given relative humidity, the layer stacking type assumed is a function of the nature of the interlayer cation, the layer charge density, the mean size of the particles, and the di- or trioctahedral character of the sheets. For each interlayer cation, a succession of layer stacking types can be observed as relative humidity increases. For high relative humidity, some particular layer stacking types exist, but only for low-charge minerals. No other differences have been found for saponites and vermiculites in each successive layer stacking type. The degree of order that these layer stacking types imply is probably due to the existence of electrostatic bonds between hydrated interlayer cations and surface oxygens of the substituted tetrahedra. For octahedrally substituted 2:1 phyllosilicates, however, the disorder of the layer stacking sequences is related to a highly delocalized distribution of negative charges on the surface oxygens of the layers.

A study of the superstructures detected in saponites and vermiculites indicates that the interlayer cations tend to be located as far as possible from one another. The superstructures exist only with some cations and some layer stacking types and if the layer charge density is compatible with the charge produced by the cation distribution in this kind of superstructure.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcover, J. F., Gatineau, L. and Bailey, S. W., 1975 Relations d’ordre désordre dans les phyllosilicates Proc. Int. Clay Conf., Mexico City, 1975 Illinois Applied Publishing, Wilmette 131137.Google Scholar
Alcover, J. F. and Gatineau, L., 1980 Structure de l’espace interlamellaire des vermiculites-Ba monocouches Clay Miner. 15 193203.CrossRefGoogle Scholar
Alcover, J. F. and Gatineau, L., 1980 Structure de l’espace interlamellaire de la vermiculite-Mg bicouche Clay Miner. 15 2536.CrossRefGoogle Scholar
Alcover, J. F. and Gatineau, L., 1980 Facteurs déterminant la structure de la couche intermellaire des vermiculites saturées par des cations divalents Clay Miner. 15 239248.CrossRefGoogle Scholar
Alcover, J. F., Gatineau, L. and Mering, J., 1973 Exchangeable cation distribution in nickel and magnesium vermiculites Clays & Clay Minerals 21 131136.CrossRefGoogle Scholar
Andre, L., 1972 Contribution à l’étude des mécanismes d’échange de cations dans les vermiculites trioctaédriques .Google Scholar
Besson, G., Bookin, A. S., Dainyak, L. G., Rautureau, M T S L Tchoubar, C. and Drits, V. A., 1983 Use of diffraction and Mossbauer methods for the structural and crystallochemical characterization of nontronites J. Appl. Cryst. 16 374383.CrossRefGoogle Scholar
Besson, G., Misfud, A., Tchoubar, C. and Méring, J., 1974 Order and disorder relation in the distribution of the substitutions in smectites, illites and vermiculites Clays & Clay Minerals 22 379384.CrossRefGoogle Scholar
Besson, G., Tchoubar, C. and Méring, J., 1973 Relations d’ordre-désordre dans la répartition des substitutions des phyllosilicates 2/1 du groupe des smectites Bull. Gr. Franc. Argiles 25 155160.Google Scholar
Besson, G., Tchoubar, C. and Méring, J., 1974 Phénomènes de diffraction produits par les systèmes stratifiés à distribution d’atomes partiellement différente de couche à couche J. Appl. Crystallogr. 7 345350.CrossRefGoogle Scholar
Bonnin, D., 1981 Propriétés magnétiques liées aux désordres bidimensionnels dans un silicate lamellaire fer-rique: La montronite. Etude par spectroscopie Mösbauer, résonances magnétiques, magnétisme et EXAFS .Google Scholar
de la Calle, C., Dubernat, J., Suquet, H., Pezerat, H., Gaultier, J., Mamy, J. and Bailey, S. W., 1975 Crystal structure of two-layer Mg-vermiculites and Na-, Ca-vermiculites Proc. Int. Clay Conf., Mexico City, 1975 Illinois Applied Publishing, Wilmette 201209.Google Scholar
de la Calle, C., Glaeser, R., Pezerat, H., Mortland, M. M. and Farmer, V. C., 1978 Effect of texture on vermiculite structure: Lithium minerals Proc. Int. Clay Conf., Oxford, 1979 Amsterdam Elsevier 3744.Google Scholar
de la Calle, C., Pezerat, H. and Gasperin, M., 1977 Problèmes d’ordre-désordre dans les vermiculites. Structure du minéral calcique à deux couches J. Phys. C7 38 129133.Google Scholar
de la Calle, C., Plançon, A., Pons, C. H., Dubernat, J., Suquet, H. and Pezerat, H., 1984 Mode d’empilement des feuillets dans la vermiculite sodique hydratée à une couche (phase à 11.85 Å) Clay Miner. 19 563578.CrossRefGoogle Scholar
de la Calle, C., Suquet, H., Dubernat, J. and Pezerat, H., 1978 Mode d’empilement des feuillets dans les vermiculites hydratées à deux couches Clay Miner. 13 275297.CrossRefGoogle Scholar
de la Calle, C., Suquet, H. and Pezerat, H., 1985 Vermiculites hydratées à une couche Clay Miner. 20 221230.CrossRefGoogle Scholar
Fernandez Gonzalez, M., 1977 Estudio de los grupos OH en silicatos laminares .Google Scholar
Gatineau, L., 1964 Structure réelle de la muscovite; répartition des substitutions isomorphes Bull. Gr. Franç. Argiles 16 321355.Google Scholar
Glaeser, R., Mantine, L. and Mering, J., 1967 Observations sur la beidellite Bull. Gr. Franç. Argiles 19 126130.Google Scholar
Giiven, N., Pease, R. W. and Murr, L. E., 1977 Fine structure in selected area diffraction patterns of beidellite and its dark-field images Clay Miner. 12 6774.CrossRefGoogle Scholar
Kodama, H., 1975 Diffuse scattering by X-rays and electrons in mica and mica-like minerals Contributions to Clay Minerals 713.Google Scholar
Kodama, H., 1977 An electron-diffraction study of a mi-crocrystalline muscovite and its vermiculitized products Mineral. Mag. 41 461468.CrossRefGoogle Scholar
Le Renard, J. and Mamy, J., 1971 Etude de la structure des phases hydratées des phlogopites altérées par des projections de Fourier monodimensionnelles Bull. Gr. Franç. Argiles 23 119127.CrossRefGoogle Scholar
Norrish, K. and Serratosa, J. M., 1973 Factors in the weathering of mica to vermiculite Proc. Int. Clay Conf., Madrid, 1972 Madrid Div. Ciencias, C.S.I.C 417432.Google Scholar
Pedro, G., 1976 Sols argileux et argiles. Elements en vue d’une introduction à leur étude Sci. Sol 2 185.Google Scholar
Pedro, G., Tessier, D. and Konta, J., 1984 Importance de la prise en compte des paramètres texturaux dans la caractérisation des argiles Proc. 5th Meeting of the European Clay Groups, Prague, 1985 Praha Univerzita Karlova 417428.Google Scholar
Raussel-Colom, J. A., Fernandez, M., Serratosa, J. M., Alcover, J. F. and Gatineau, L., 1980 Organisation de l’espace intermellaire dans les vermiculites monocouches et anhydres Clay Miner. 15 3757.CrossRefGoogle Scholar
Shirozu, H. and Bailey, S. W., 1966 Crystal structure of a two-layer Mg vermiculite Amer. Miner. 51 11241143.Google Scholar
Slade, P. G., Stone, P. A. and Radoslovitch, E. W., 1985 Interlayer structure of the two-layer hydrates of Na- and Ca-vermiculites Clays & Clay Minerals 33 5161.CrossRefGoogle Scholar
Suquet, H., 1978 Propriétés de gonflement et structure de la saponite. Comparaison avec la vermiculite .Google Scholar
Suquet, H., Iiyama, J. T., Kodama, H. and Pezerat, H., 1977 Synthesis and swelling properties of saponites with increasing layer charge Clays & Clay Minerals 25 231242.CrossRefGoogle Scholar
Suquet, H., Malard, C. and Pezerat, H., 1980 Etude du contenu en eau des saponites et vermiculites sodiques et calciques Bull. Miner. 103 230239.CrossRefGoogle Scholar
Suquet, H., Malard, C. and Pezerat, H., 1987 Structure et propriétés des nontronites Clay Miner .CrossRefGoogle Scholar
Suquet, H., Prost, R. and Pezerat, H., 1982 Etude par spectroscopie infrarouge et diffraction-X des interactions eau-cation-feuillet dans les phases à 14.6, 12.2 et 10.1 Å d’une saponite-Li de synthèse Clay Miner. 17 231241.CrossRefGoogle Scholar
Tessier, D., 1984 Etude expérimentale de l’organisation des matériaux argileux .Google Scholar
Tessier, D. and Pedro, G., 1976 Les modalités de l’organisation des particules dans les matériaux argileux. Evolution des principales argiles Ca au cours du phénomène de retrait Sci. Sol 2 85100.Google Scholar