Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-04-30T23:29:28.428Z Has data issue: false hasContentIssue false

Comparisons Between the Diagenesis of Dioctahedral and Trioctahedral Smectite, Brazilian Offshore Basins

Published online by Cambridge University Press:  02 April 2024

Hung K. Chang*
Affiliation:
Department of Geological Sciences, Northwestern University, Evanston, Illinois 60201
Fred T. Mackenzie
Affiliation:
Department of Oceanography and Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii 96822
Jane Schoonmaker
Affiliation:
Department of Oceanography and Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii 96822
*
1Present address: Petrobras-Cenpes, Ilha do Fundao, Rio de Janeiro, Brazil.

Abstract

Burial diagenetic reactions of di- and trioctahedral clay minerals were compared in Brazilian offshore, basinal sediment sequences of Cretaceous age. Originally dioctahedral smectite-rich shales of three basins—Potiguar,Ceara, and Ilha de Santana—exhibited the classical smectite-to-illite burial pattern. Trioctahedral clay-rich shales and trioctahedral clay-mineral cements in sandstones, however, showed a burial sequence of saponite to mixed-layer chlorite/saponite with progressive increase in the percentage of chlorite layers with increasing burial depth.

The change from disordered to ordered interstratifications of chlorite/saponite occurred in the temperature range 60°-70°C at a vitrinite reflectance value of about 0.65. These values are lower than those found for the ordering of illite/smectite clays. Increasing substitution of Al for Si in tetrahedral sites, followed by fixation of interlayer hydroxide sheets was found to be the major chemical change promoting transformation of saponite to chlorite via corrensite.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, F. F. M. (1976) Origem e evolucao da Plataforma Brasileira: Div. Min. Geol. Dep. Nac. Prod. Min. Bol. 263, 65 pp.Google Scholar
Almeida, F. F. M., Hasui, Y. and Neves, B. B. B., 1976 The Upper Precambrian of South America Bull. Inst. Geoscien. USP 7 4580.Google Scholar
Andrews, A. J., 1977 Low-temperature fluid alteration of oceanic layer 2 basalts, DSDP leg 37 Canadian J. Earth Sci. 14 911926.CrossRefGoogle Scholar
April, R. H., 1980 Regularly interstratified chlorite/vermiculite in contact metamorphosed red beds, Newark Group, Connecticut Valley Clays & Clay Minerals 28 111.CrossRefGoogle Scholar
Bailey, S. W., Brindley, G. W., Kodama, H. and Martin, R. T., 1982 Report of the Clay Minerals Society Nomenclature Committee for 1980-1981 Clays & Clay Minerals 30 7678.CrossRefGoogle Scholar
Blatter, C. L., Robertson, H. E. and Thompson, G. R., 1973 Regularly interstratified chlorite/dioctahedral smectite in dyke-intruded shales, Montana Clays & Clay Minerals 21 207212.CrossRefGoogle Scholar
Boles, J. R. and Franks, S. G., 1979 Clay diagenesis in Wilcox sandstones of southwest Texas: implications of smectite diagenesis on sandstone cementation J. Sed. Petrology 49 5570.Google Scholar
Bradley, W. F. and Weaver, C. E., 1956 A regularly interstratified chlorite-vermiculite clay mineral Amer. Mineral. 41 497504.Google Scholar
Burst, J. F. Jr. and Swineford, A., 1959 Postdiagenetic clay mineral environment relationship in the Gulf Coast Eocene Clays and Clay Minerals, Proc. 6th Natl. Conf., Berkeley, California, 1957 New York Pergamon Press 327341.Google Scholar
Burst, J. F. Jr., 1969 Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum migration Amer. Assoc. Petrol. Geol. Bull. 53 7993.Google Scholar
Chang, H. K., 1983 Diagenesis and mass transfer in Cretaceous sandstone-shales sequences, offshore Brazil .Google Scholar
CPR., 1979 Projecto mapa Geologico do Brazil na escala 1:2.500.000.Google Scholar
Dunoyer de Segonzac, G. (1969) Les minéraux argileux dans la diagenèse passage au metamorphisme: Mem. Ser. Carte Geol. Als. Lorr. 29, 320 pp.Google Scholar
de Dunoyer Segonzac, G., 1970 The transformation of clay minerals during diagenesis and low-grade metamorphism: a review Sedimentology 15 281346.CrossRefGoogle Scholar
Eardley, J. W., Brindley, G. W., McVeagh, W. J. and Vanden Heuvel, R. C., 1956 A regularly interstratified mont-morillonite-chlorite Amer. Mineral. 41 258267.Google Scholar
Eberl, D. D., 1980 Alkali cation selectivity and fixation by clay minerals Clays & Clay Minerals 28 161172.CrossRefGoogle Scholar
Esquevin, J. and Kulbicki, G., 1963 Les minéraux argileux de l’Aptien Supérieur du Bassin d’Arzacq (Aquitaine) Bull. Serv. Carte Geol. Als. Lorr. 16 197203.Google Scholar
Foscolos, A. E. and Kodama, H., 1974 Diagenesis of clay minerals from Lower Cretaceous shales of northeastern British Columbia Clays & Clay Minerals 22 319335.CrossRefGoogle Scholar
Fournier, R. O., 1961 Regularly interlayered chlorite-vermiculite in evaporite of the Salado Formation, New Mexico U.S. Geol. Surv. Prof. Pap. 424D 323327.Google Scholar
Freed, R. L., 1979 Shale mineralogy of the No. 1 Pleasant Bayou geothermal test well: a progress report Proc. 4th Geopressured-Geothermal Energy Conf. 1 153165.Google Scholar
Furbish, W. J., 1975 Corrensite of deuteric origin Amer. Mineral. 60 928930.Google Scholar
Garrels, R. M. and Mackenzie, F. T., 1974 Chemical history of the oceans deduced from post depositional changes in sedimentary rocks Studies in Paleo-Oceanography 20 193204.CrossRefGoogle Scholar
Gibbs, R. J., 1965 Error due to segregation in quantitative clay mineral X-ray diffraction mounting techniques Amer. Mineral. 50 741751.Google Scholar
Grim, R. E., Droste, J. B., Bradley, W. F. and Swineford, A., 1960 A mixed-layer clay mineral associated with an evaporite Clays and Clay Mienrals New York Pergamon Press 228236.CrossRefGoogle Scholar
Harvey, R. D., Beck, C. W. and Swineford, A., 1962 Hydrothermal, regularly interstratified chlorite-vermiculite and tobermorite in alteration zones at Goldfield, Nevada Clays and Clay Minerals, Proc. 9th Natl. Conf, 1960, Lafayette, Indiana New York Pergamon Press 343354.Google Scholar
Heling, D., 1974 Diagenetic alteration of smectite in argillaceous sediments of Rhinegraben (SW Germany) Sedimentology 21 463472.CrossRefGoogle Scholar
Hoffman, J. and Hower, J., 1979 Clay mineral assemblages as low grade metamorphic geothermometers: application to the thrust faulted disturbed belt of Montana, USA Soc. Econ. Paleontol. Mineral. Spec. Publ. 26 5579.Google Scholar
Hower, J., 1981 X-ray diffraction identification of mixed-layer clay minerals Clays and the Resource Geologists 7 3959.Google Scholar
Hower, J., 1981 Shale diagenesis Clays and the Resource Geologist 7 6080.Google Scholar
Hower, J., Eslinger, M. V., Hower, M. and Perry, E. A., 1976 Mechanism of burial metamorphism of argillaceous sediments: I—mineralogical and chemical evidences Geol. Soc. America Bull. 87 725737.2.0.CO;2>CrossRefGoogle Scholar
Hower, J. and Hall, M. L., 1970 Clay petrology of the upper Cretaceous Two Medicine Formation, central Montana Prog. Abstracts, 19th Annual Clay Minerals Conf, Miami, Florida 24.Google Scholar
Hower, J. and Mowatt, T. C., 1966 The mineralogy of illites and mixed-layer illite-montmorillonites Amer. Mineral. 51 825854.Google Scholar
Hunt, J. M., 1979 Petroleum Geochemistry and Geology .Google Scholar
Iijima, A., Utada, M. and Gould, R. F., 1971 Present-day diagenesis of the Neogene geosynclinal deposits in the Niigata oilfield, Japan Molecular Sieve Zeolites—I Washington, D.C. American Chemical Society 342349.Google Scholar
Iijima, A. and Utada, M., 1972 A critical review on the occurrence of zeolites in sedimentary rocks in Japan Japanese J. Geol. Geogr. 42 8183.Google Scholar
Iiyama, J. T., Roy, R. and Bradley, W. F., 1963 Controlled synthesis of heteropolytypic (mixed-layer) clay minerals Clays and Clay Minerals, Proc. 11th Natl. Conf, Ottawa, Ontario, 1958 New York Pergamon Press 2946.Google Scholar
Kohyama, N., Shimoda, S. and Sudo, T., 1973 Iron-rich saponite (ferrous and ferric forms) Clays & Clay Minerals 21 229237.CrossRefGoogle Scholar
Kopp, O. C. and Fallis, S. M., 1974 Corrensite in the Wellington Formation, Lyons, Kansas Amer. Mineral. 59 623624.Google Scholar
Kubler, B., 1963 Untersuchungen über die Tonfraction der Trias der Sahara Fortschr. Geol. Rheinl. Westf. 10 319324.Google Scholar
Kubler, B., 1973 La corrensite, indicateur possible de milieux de sédimentation et du degré de transformation d’un sediment Bull. Centre Rech. Pau-SNPA 7 543556.Google Scholar
Kubier, B., Martini, J. and Vuagnat, M., 1974 Very low grade metamorphism in western Alps Schweizer. Miner. Petrog. Mitt. 54 461469.Google Scholar
Lawrence, J. R., Drever, J. I., Anderson, T. F. and Brueckner, H.K., 1979 Importance of alteration of volcanic material in the sediments of Deep Sea Drilling site 323: chemistry, l8O/16O and 87Sr/86Sr Geochim. Cosmochim. Acta 43 573588.CrossRefGoogle Scholar
Lippmann, F., 1954 Über einen Keuperton von Zaisers-weihe bei Maulbronn Heidelb. Beitr. Miner. Petrog. 4 130134.Google Scholar
Lippmann, F., 1956 Clay minerals from the Rot Member of the Triassic near Göttingen, Germany J. Sed. Petrol. 26 125139.CrossRefGoogle Scholar
MacEwan, D. M. C., Wilson, M. J., Brindley, G. W. and Brown, G., 1980 Interlayer and intercalation complexes of clay minerals Crystal Structures of Clay Minerals and Their X-Ray Identification London Mineralogical Society 197248.CrossRefGoogle Scholar
Martin-Vivaldi, J. L., MacEwan, D. M. C. and Milligan, W. O., 1957 Triassic chlorites from the Jura and the Catalan Coastal Range Clays and Clay Minerals, Proc. 3rd Natl. Conf, Houston, Texas, 1956 177183.CrossRefGoogle Scholar
Maurel, P., 1962 Etude minéralogique et géochimique des formations argileuses des environs de Saint-Affrique (Aveyron) Bull. Soc. Franc. Mineral. Cristallogr. 85 329374.Google Scholar
McCubbin, D. G. and Patton, J. W., 1981 Burial diagenesis of illite-smectite, a kinetic model Amer. Assoc. Petrol. Geol. Bull. 65 956.Google Scholar
Melson, W. G. and Thompson, G., 1973 Glassy abyssal basalts, Atlantic sea floor near St. Paul’s rocks: petrography and composition of secondary clay minerals Geol. Soc. America Bull. 84 703716.2.0.CO;2>CrossRefGoogle Scholar
Perry, E. and Hower, J., 1970 Burial diagenesis in Gulf Coast pelitic sediments Clays & Clay Minerals 18 165177.CrossRefGoogle Scholar
Peterson, M. N. A., 1961 Expandable chloritic clay minerals from Upper Mississippian carbonate rocks of the Cumberland Plateau in Tennessee Amer. Mineral. 46 12451269.Google Scholar
Pevear, D. R. and Whitney, C. G., 1982 Clay minerals in Coast Range basalts of the Pacific Northwest: Eocene sea-floor metamorphism? Prog. Abstracts, 19th Ann. Meeting, Clay Minerals Society, Hilo, Hawaii, August, 1982 6.Google Scholar
Ponte, F. C., Fonseca, J. R. and Carozzi, A. V., 1980 Petroleum habitats in the Mesozoic-Cenozoic of the continental margin of Brazil Facts and Principles of World Petroleum Occurrence 6 857885.Google Scholar
Reynolds, R. C., Brindley, G. W. and Brown, G., 1980 Interstratified clay minerals Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 249303.CrossRefGoogle Scholar
Reynolds, R. C. Jr. and Hower, J., 1970 The nature of interlayering in mixed-layer illite-montmorillonite Clays & Clay Minerals 18 2536.CrossRefGoogle Scholar
Scarfe, C. M. and Smith, D. G. W., 1977 Secondary minerals in some basaltic rocks from DSDP leg 37 Canadian J. Earth Sci. 14 903910.CrossRefGoogle Scholar
Schoonmaker, J. (1986) Clay mineralogy and diagenesis of sediments from deformation zones in the Barbados accretionary prism (DSDP leg 78A): in Synthesis of Structural Fabrics of Deep Sea Drilling Project Cores from Forearcs, Moore, J. D., ed., Geol. Soc. Amer., Boulder, Colorado, Memoir 166 (in press).Google Scholar
Seyfried, W. E. Jr. and Bischoff, J. L., 1979 Low-temperature basalt alteration by seawater: an experimental study at 70° and 150°C Geochim. Cosmochim. Acta 43 19371947.CrossRefGoogle Scholar
Seyfried, W. E. Jr., Shanks, W. C. and White, D. E., 1978 Clay mineral formation in DSDP leg 37 basalt Earth Planet. Sci. Letters 41 265276.CrossRefGoogle Scholar
Sigvaldason, G. and White, D. E., 1961 Hydrothermal alteration of rocks in two drill holes at Steamboat Springs, Washoe County, Nevada U.S. Geol. Surv. Prof. Pap. 424D 116122.Google Scholar
Stephen, I. and MacEwan, D. M. C., 1951 Chlorite minerals of an unusual type Clay Mineral. Bull. 1 157162.CrossRefGoogle Scholar
Sudo, T., 1954 Iron-rich saponite found from Tertiary iron sand beds in Japan J. Geol. Soc. Japan 59 1827.CrossRefGoogle Scholar
Sudo, T. and Shimoda, S., 1978 Clays and Clay Minerals of Japan .CrossRefGoogle Scholar
Suzsczynski, E., 1970 La géologie et la tectonique de la Plataform Amazonienne Geol. Rundschau 59 12321253.CrossRefGoogle Scholar
Tardy, Y. and Garrels, R., 1974 A method of estimating the Gibbs energies of formation of layer silicates Geochim. Cosmochim. Acta 38 11011116.CrossRefGoogle Scholar
Tomasson, J. and Kristmannsdottir, H., 1972 High temperature alteration minerals and thermal brines, Reykjanes, Iceland Contr. Mineral. Petrol. 36 123134.CrossRefGoogle Scholar
Velde, B., 1977 A proposed phase diagram for illite, expanding chlorite, corrensite and illite-montmorillonite mixed-layered minerals Clays & Clay Minerals 25 264270.CrossRefGoogle Scholar
Weaver, C.E. (1979) Geothermal alteration of clay minerals and shales: diagenesis: ONWI Technical Report 21, 176 pp.Google Scholar
Whitney, G., 1983 Hydrothermal reactivity of saponite Clays & Clay Minerals 31 17.CrossRefGoogle Scholar
Wilson, M.J., 1971 Clay mineralogy of the Old Red Sandstone (Devonian) of Scotland J. Sed. Petrol. 41 9951007.CrossRefGoogle Scholar
Wilson, M. J., Bain, D. C. and Mitchell, W. A., 1968 Saponite from the Dalradian meta-limestones of North-East Scotland Clays & Clay Minerals 7 343349.CrossRefGoogle Scholar
Wyart, J. and Sabatier, G., 1966 Synthèse hydrothermale de la corrensite Bull. Groupe Fr. Argiles 18 3340.CrossRefGoogle Scholar