Skip to main content
Log in

Morphological Effects on Illite as A Result of Potassium Depletion

  • Published:
Clays and Clay Minerals

Abstract

Several illites and a mixed-layer illite-montmorillonite developed fractures in some particles during progressive removal of interlayer potassium by solutions containing sodium tetraphenylboron. The appearance of the splinters in bundles, some connected to incompletely broken plates, suggests the process is related to the differential release of stresses known to exist as a consequence of octahedral-tetrahedral misfit. The formation of splinters produces additional surface area for ion removal and may influence the rate of vermiculite development.

Résumé

Plusieurs illites et un interstratifié illite-montmorillonite montrent le développement de fractures dans certaines particules au cours de l’élimination progressive du potassium interfeuillet par des solutions contenant du tétraphénylborate de sodium. L’apparition d’éclats en gerbes, certains d’entre eux étant attachés à des plaques incomplètement brisées, suggère que le phénomène est relié à la disparition différentielle des contraintes provenant des défauts de raccordement entre couches octaédriques et tétraédriques. La formation des éclats produit une surface supplémentaire pour l’élimination des ions et peut influencer la vitesse du développement de la vermiculite.

Kurzreferat

Mehrere Illite und ein gemischtschichtiger Illit-Montmorillonit entwickelten Risse in einigen Teilchen während der fortschreitenden Entfernung von Zwischenschichtkalium durch Lösungen, die Natrium-Tetraphenylbor enthielten. Das Auftreten von Splittern in Bündeln, manche mit unvollständig gebrochenen Platten verbunden, deutet daraufhin, dass der Vorgang mit der unterschiedlichen Freigabe von Spannungen in Beziehung steht, die bekanntlich als Folge oktaedrischem Nichtpassens bestehen. Die Bildung von Splittern führt zu zusätzlicher Oberfläche für die Entfernung von Ionen und kann die Geschwindigkeit einer Entwicklung von Vermiculit beeinflussen.

Резюме

Во время прогрессивного удаления межслоевого калия растворами содержащими тетра- финилборный натрий в частицах иллита и в частицах смешанных слоев монтмориллонита-иллита появились трещины. Появление осколков в срастаниях, приводит к предположению, что процесс относится к дифференциальному снятию напряжения, которое существует, как известно, вследствие октаэдрического-тетраздрического несовмещения. Образование осколков представляет добавочную поверхностную площадь для удаления ионов и может повлиять на скорость образования вермикулита.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bassett, W. A. (1959) The origin of the vermiculite deposit at Libby, Montana: Am. Mineralogist 44, 282–299.

    Google Scholar 

  2. Brown, J. and Rich, C. I. (1968) High resolution electron microscopy of muscovite: Science 161, 1135–1137.

    Article  Google Scholar 

  3. Huff, W. D. (1963) Mineralogy of Ordovician K-bentonites in Kentucky: Clays and Clay Minerals 11, 200–209.

    Article  Google Scholar 

  4. Kitagawa, Y. and Watanabe, Y. (1970) Preparation of dioctahedral vermiculite from muscovite: Clay Sci. 4, 31–36.

    Google Scholar 

  5. Lodding, W. (1970) On potassium release from micas: Clays and Clay Minerals 18, 67.

    Article  Google Scholar 

  6. Mamy, J. (1970) Extraction of interlayer K from phlogopite special effects of cations, role of Na and H concentrations in extracting solutions: Clays and Clay Minerals 18, 157–163.

    Article  Google Scholar 

  7. Mankin, C. J. and Dodd, C. G. (1963) proposed reference illite from the Ouachita Mountains of southeastern Oklahoma: Clays and Clay Minerals 11, 372–379.

    Google Scholar 

  8. Mortland, M. M. and Lawton, K. (1961) Relationships between particle size and potassium release from biotite and its analogues: Soil Sci. Soc. Am. Proc. 25, 473–476.

    Article  Google Scholar 

  9. Radoslovich, E. W. (1963) Cell dimension studies on layer lattice silicates, a summary: Clays and Clay Minerals 11, 225–228.

    Article  Google Scholar 

  10. Reed, M. G. and Scott, A. D. (1962) Kinetics of potassium release from biotite and muscovite in sodium tetraphenylboron solutions: Soil Sci. Soc. Am. Proc. 26, 437–440.

    Article  Google Scholar 

  11. Reichenbach, H. Graf von and Rich, C. I. (1969) Potassium release from muscovite as influenced by particle size: Clays and Clay Minerals 17, 23–29.

    Article  Google Scholar 

  12. Robert, M. (1971) Étude expérimentale de l’évolution des micas (biotites): A nn. Agron. 22, 155–181.

    Google Scholar 

  13. Ross, G. J. and Kodama, H. (1970) Differential release of potassium from interstratified mica clay minerals as related to probable differences in their mica layer components: Clays and Clay Minerals 18, 151–156.

    Article  Google Scholar 

  14. Ross, M. (1968) X-ray diffraction effects by non-ideal crystals of biotite, muscovite, montmorillonite, mixed-layer clays, graphite, and periclase: Z. Krist. 126, 80–97.

    Article  Google Scholar 

  15. Scott, A. D. (1968) Effect of particle size on interlayer potassium exchange in micas: Trans. 9th Int. Cong. Soil Sci. 2, 649–660.

    Google Scholar 

  16. Scott, A. D., Hunziker, R. R. and Hanway, J. J. (1960) Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron—I. Preliminary experiments: Soil Sci. Soc. Am. Proc. 24, 191–194.

    Article  Google Scholar 

  17. Scott, A. D. and Smith, S. J. (1966) Susceptibility of interlayer potassium in micas to exchange with sodium: Clays and Clay Minerals 14, 69–81.

    Article  Google Scholar 

  18. Smith, S. J. and Scott, A. D. (1966) Extractable potassium in grundite illite: I. Method of extraction: Soil Sci. 102, 115–122.

    Article  Google Scholar 

  19. Tomita, K. and Sudo, T. (1971) Transformation of sericite into an interstratified mineral: Clays and Clay Minerals 19, 263–270.

    Article  Google Scholar 

  20. Weaver, C. E. (1953) Mineralogy and Petrology of some Ordovician K-bentonites and related linestones: Bull. Geol. Soc. Am. 64, 921–943.

    Article  Google Scholar 

  21. White, J. L. (1951) Transformation of illite into montmorillonite: Soil Sci. Sco. Am. Proc. 15, 129–133.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huff, W.D. Morphological Effects on Illite as A Result of Potassium Depletion. Clays Clay Miner. 20, 295–301 (1972). https://doi.org/10.1346/CCMN.1972.0200506

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1972.0200506

Navigation