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Abstract 
Visual imagery has been an effective tool to communicate ideas connected with basic 

mathematics concepts since the dawn of mankind. The development of educational visualisation 
technology allows these ideas to be demonstrated with the help of some educational software. 
In this paper, we specifically consider the use of GeoGebra, a free, open-source educational 
application developed by an international consortium of mathematics and statistics educators, but 
other educational software could also be used for the same visualisation tasks.  

In this study, we present Torricelli’s method for measuring the area under arc of cycloid as an 
example of using GeoGebra to visualise he area of planar figures. This kind of introduction is 
suitable for secondary schools and for training pre-service teachers. 

We will also show how GeoGebra can be used to develop students’ understanding of 
representing data (i.e. the topic from statistics education). While students explore the visualisation 
of data, GeoGebra allows them to create and explore representations while building the 
understanding that is required for analysing data and drawing figural conclusions from graphical 
representations.  

Keywords: measuring, Cavalieri’s method of indivisibles, Evangelista Torricelli, the area 
under arc of cycloid, visualisation in statistics education. 

 
1. Introduction 
The theory of mathematics education developed by Hejný (see Hejný et al., 2006) identifies 

stages of gaining knowledge. Hejný described each of these stages of cognitive processes in 
mathematics. He defined the following stages: motivation, isolated models, generic model, abstract 
knowledge and crystallisation. An isolated model is a model used for explaining a concept. 
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For example, one car or one pen is an isolated model for the number one. A generic model can be one 
finger (mostly used by children). Isolated and generic models play important roles in this theory. 
In order to explain a mathematical concept, it is useful to use some explanations used in the history 
of mathematics. 

In the following section, we present an example of a visual and geometrical representation of 
the measurement of the area under the arc of cycloid. This representation was developed by 
Evangelista Torricelli (1608–1647) using the geometrical application of Cavalieri’s method of 
indivisibles. We present some modern possibilities of geometrical visual representations prepared in 
GeoGebra (see also Koreňová, 2016). These presentations have dynamic components in some cases. 

Torricelli lived in the beginning of the 17th century, when there was no established formal 
logic or style of mathematical argumentation, to say nothing of formal proof. For this reason, 
Torricelli used multiple kinds of argumentation to be certain about his final conclusions. Modern 
students can also develop better understandings of concepts when they are exposed to multiple 
explanations. 

 
2. Discussion 
Genesis of Torricelli’s Appendix on Measuring the Cycloid 
Torricelli’s measurement of the area under the arc of cycloid is appended to the end of his 

treaty entitled On measuring the parabola (see Figure 1).  
 

 
 
Fig. 1. Front page of Torricelli’s treaty about measuring a parabola 

 
The problem of the cycloid was well known at the time. In Italy, the first to consider the 

cycloid was Galileo Galilei (1564–1642), followed by his disciples Bonaventura Francesco Cavalieri 
(1598–1647), Evangelista Torricelli (1608-1647) and Vincenzo Viviani (1622–1703). In France the 
cycloid was the focus of the work of Marin Mersenne (1588–1648), Gilles Personne de Roberval 
(1602–1675), Pierre de Fermat (1607–1665), Blaise Pascal (1623–1662) and Rene Descartes (1596–
1650). In England, Sir Christopher Wren (1632–1723) found that the length of the cycloid is eight 
times longer than the radius of the rolling circle.  

Galilei had tried to estimate the area under the arc of cycloid. He assumed that this area was 
equal to “three times the area of the rolling circle”. Not being able to prove it, he hung physical 
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shapes on a balance to compare their weight. Due to problems with that method, he concluded that 
the area under the cycloid might be less than his original belief (that it was three times the area of 
the generating circle). Torricelli later proved that Galilei was correct by using the work of his 
colleague Cavalieri (see also Fulier, Tkačik, 2015).  

Torricelli used expressions like “a rectangle which is equal to two circles” to prove that if we 
assume that two regions in a plane are included between two parallel lines in that plane, then when 
these two lines intersect, both figures in the line segments of equal length have equal areas 
(see Howard, 1991). He compares the area of a complicated planar figure with the area of a simple 
planar figure. 

Torricelli’s text on the area under an arc of cycloid shows the emergence of a new language 
which gave mathematics new power in the 17th century. In the original text, Torricelli used 
abbreviated language – for example “AB and CD are the same”, meaning “the segments AB and CD 
have the same length”; and “The shapes AC and KM are the same”, meaning “The shapes ABCD 
and KLMN have the same area.” He used less precise argumentation because many arguments are 
made in the form of figures. 

We present in the next parts the original Latin text in the form of a close paraphrase of the 
original text from the Appendix (see Appendix 1 for Torricelli’s original Latin text).  

We use argumentation that is more readable than in the original. Figures prepared in 
GeoGebra provide visualisation of the arguments, but other software could have been used (see 
Vančová, Šulovská, 2016). 

 
Presentation of the Supplement (Appendix) on Measuring the Cycloid 
Let us suppose that on a certain fixed line AB, there is a circle AC touching the line AB at the 

point A. Let us assume that point A is fixed on the circumference of the circle AC. Now let us 
imagine the circle is moving on the fixed line towards point B and at the same time revolving so 
that some point of the line AB is always touching the circle, until the fixed point returns to touch 
the line at the point B. 

It is certain that point A, which is on the circumference of the moving circle, describes a line 
which at first rises from the line AB, culminates around D, and then bowing, descends towards 
point B. A line such as ADB is called a cycloid and the line AB was called the base of the cycloid, 
and the circle AC its generator. 

 

 
Fig. 2. Visualisation of the definition of cycloid (compare with Figure 16 in Appendix 1) 

 
The character and property of a cycloid is such that the length of its base AB is equal to the 

circumference of the generating circle AC. A question arises about the ratio of the area under the 



European Journal of Contemporary Education, 2019, 8(1) 

72 

 

arc of the cycloid ADB to the area of the generating circle AC. We shall show that it is triple. 

(In GeoGebra, we can move the slider  (see Figure 2), and the circle moves with the point C.) 
Torricelli included three proofs/arguments, each entirely different from the other. Torricelli 

argues as follows:  
“The first and the third proceed according the new method of indivisibles. The second is by 

false assumption, according to the ancient customs, so that advocates of both should be satisfied. 
We would remind you that almost all principles according to which something is proved by the 
method of indivisibles could be reduced to the indirect proof, which was customary for the 
Ancients: this was done by us in the first and in the third of following theorems as well as in many 
other cases. In order not to abuse the readers’ patience, most of them will be omitted, and we shall 
show only three.” 

 
Theorem I 

The entire area of the shape between the line of a cycloid and the straight line of its base is 
three times the area of the generating circle or one-and-half times the area of the triangle that 
has the same base and height.   

 

 
 
Fig. 3. Visual presentation of the picture in Figure 17 in Appendix 1 

 
Let ABC be a cycloidal line traced by point C of the circle CDEF when it is rolling on a fixed 

base AF (we consider half of the circle and half of the cycloid only to avoid complicating the 
drawing, see Figure 3). Figure 3 presents the picture from Figure 17 in Appendix 1. It is possible to 
move with point B and to show that the triangles SXR and UTQ are the same.  

We say that the area under half of the arc of the cycloid ABCF is equal to three times the area 
of the semicircle CDEF, or one-and-half times bigger than the area of the triangle ACF. Let us take 
two points H and I on the diameter CF at the same distance from the middle point G. Extending 
from these points are lines HB, IL and CM, which are parallel to the same line FA. HB passes 
through point B of the semicircle OBP, and IL passes through point L of the semicircles MLN. Both 
of these semicircles are equal to semicircle CDF and touch the base FA at points P and N. It is 
evident that segments HD, IE, XB and QL are equal and that using Proposition 14 of Book III 
(of Euclid’s Elements) results in the arcs OB, LN being equal as well. The segments GH and GI are 
the same; hence, segments CH and IF are equal. 

The whole circumference MLN before the cycloid (on the left) is equal to the segment AF. 
Furthermore, the arc LN is equal to the segment AN for the same reason, and because the length of 
the arc LN is the same than the length of the segment AN, the remaining arc LM will be equal to the 
remaining segment NF. For the same reason, the arc BP is equal to the segment AP, and the arc BO 
is equal to segment PF. 
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In addition, the segment AN is equal to the arc LN, to arc BO or to the segment PF. Triangles 
ANT and COS are the same, so the segment AT is equal to SC. Moreover, because the segment CR is 
then equal to AU, the remaining segments UT, SR are equal as well. Therefore the equiangular 
triangles UTQ, RSX have equal corresponding sides UQ, RX. It is therefore evident that the length 
of two segments LU, BR taken together are equal to the sum of the two segments LQ, BX, and for 
the same reason, they are equal to the length of the sum of the segments EI, DH – something that 
will always be true. When two points H and I are equally remote from the middle point G. 
Therefore, all segments of the geometric figure ALBCA are equal to all the segments of the 
semicircle CDEF.  

However, the triangle ACF is twice the semicircle CDEF because triangle ACF is reciprocal to 
the triangle described by Archimedes in On measuring of the circle, when the side AF is equal to 
the semicircle and when FC is the diameter. Therefore, triangle ACF is equal to the whole circle 
whose diameter is CF. 

In summary, the area under one half arc of cycloid is one-and-half times the area of the 
triangle ACF and therefore three times the area of the semicircle CDEF. Thus, the area under the 
arc of cycloid will be three times the area of the circle whose diameter is CF (i.e. the generating 
circle). 

Lemma I 
We suppose that on the opposite sides of an arbitrary rectangle AEFD we draw two 

semicircles EIF and AGD. The figure contained between their outlines and the remaining sides is 
equal to the initial rectangle AEFD (see Figure 4). 

 
Fig. 4. Visual presentation of the picture on the Figure 18 in Appendix 1 

 
Figure 4 presents a visualisation created by a GeoGebra applet, in which slider a1 can change 

the length of the segment AE and slider b1 can change the length of the segment AD. If we move 
point H, the segments LK and HJ remain the same. The shape ABCDFLE, which is marked in the 
Figure 4 with the colour, is called the arc shape.  

The proof of Lemma 1 is as follows: Since the semicircles AGD, EIF are equal, after 
subtracting their common part BGC and adding the two three-sided figures EBA and CFD, the 
proposed thesis is clear (a geometrical application of Cavalieri’s method of indivisibles). 

In case there is no common part, the proof is easier. By subtraction, the arc shape, which is 
cut through some line parallel to segment FD, can be shown to be equal to the rectangle of the same 
height and built on the same base. 

 
Lemma II. 

Let the cycloidal line ABC be drawn from point C of a semicircle CDE, which rolls on the 
fixed line AE. The rectangle AFCE is completed so that a semicircle AGF rises next to AF. We say 
that the cycloid ABC cuts the arc shape AGFCDE in halves (see Figure 5). 
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Fig. 5. Visual presentation of picture for Lemma II from Figure 19 in Appendix 1 

 
This proof will be absurdum proof, then one of the three-sided figures FGABC, ABCDE would 

certainly be greater than half of the area of the arc shape AGFCDE. If the area of one of the arc 
shapes namely ABCDE is greater than half of the arc shape AGFCDE. Let the excess part, by which 
the three-sided figure is greater than half of the area of the arc shape, be equal to the area of a 
certain shape K. This approach is geometrical application of the “ε-δ technique”. The area of a 

certain shape K is a geometrical representation of the number . 
Let AE be cut into halves by a point H, and then HE by point I. And let it continue in cutting of 

AE (points L, I, …)until some rectangle IECR is smaller than the area of the shape K. The whole AE is 
then divided into parts that are equal to the segment IE. Let semicircles be drawn through points L, 
H, I – equal to the semicircle CDE, touching the base AE at points L, H, I and cutting the cycloid at 
points O, B, M, through which straight lines GO, PB, QM are drawn parallel to the base AE. 

Therefore, the areas of the arc shapes OLHJ, GALO are equal; the areas of the arc shapes 
BHIN and PLHB are equal; and the areas of the arc shapes MIED, QHIM are equal. Therefore, 
the area of the whole figure consisting of arc shapes OLHJ, BHIN, MIED, which are contained in 
the three-sided arc figure ABCDE, is equal to the area of the figure just circumscribed on the same 
three-sided figure, excluding the arc shape IMRCDE (which consists of the arc shapes GALO, PLHB, 
QHIM). And if the arc shape IMRCDE is added to this circumscribed figure, then its area becomes 
greater than the area of the one inscribed by the mentioned arc shape or by rectangle RIEC, which is 
of course less than the shape K. Therefore, the area of the figure contained in the three-sided arc 
figure ABCDE is greater by that amount (the area of the rectangle RIEC) than half of the area of the 
arc shape AGFCDE, and thus it is greater than a three-sided arc figure FGABC. However, it is equal to 
another figure composed of arc shapes in the three-sided arc figure FGABC. And this figure would be 
bigger than the figure FGABC, a part greater than its whole, which is impossible.  

It is clear that the areas of the inscribed figures (arc shapes) are equal. Specifically, the arc OL 
is equal to the segments LA or IE or to the arc RM (above the cycloid). Therefore, the area of the 
arc shape OLHJ is equal to the area of the arc shape QMRS – and so on with each of them (pairs of 
the arc shapes PBST, BHIN and GOTF, MIED). If we suppose, in fact, that the area of the three-
sided arc figure FGADC is greater than half of the area of the arc shape AGFCDE, the construction 
of figures and the proof are entirely the same. Thus, the conclusion is that the cycloidal line ABC 
divides the arc shape AGFCDE into two shapes with the same area.  
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Theorem II 
The area under the arc of cycloid is three times bigger than the area of the generating circle. 

 
Let a cycloid ABC be traced from point C of the circle CFD. We say that the area under half of 

the arc of cycloid (the shape ABCD) is three times bigger than the area of the semicircle CFD. In a 
rectangle ADCE, the side AE is completed by a semicircle AGE (see Fig. 6), and the segment AC is 
drawn.  

 

 
Fig. 6. Visual presentation of picture from Figure 20 in Appendix 1 

 
The area of the triangle ADC is two times the area of the semicircle CFD, because the base AD 

is equal to the circumference CFD (this follows from the construction of the cycloid, and the height 
is equal to the diameter). Therefore, the area of the rectangle ADCE is four times the area of the 
semicircle CFD. Thus, the area of the arc shape AGECFD is four times the semicircle; the three-
sided arc figure ABCFD (from the preceding lemma) is two times the semicircle; and the area of the 
shape under half of the arc of the cycloid ABCD is three times the area of the semicircle CFD. 
For this reason, the area of the shape under the whole arc of the cycloid is three times the area of 
the circle that generates the cycloid. 

 
Theorem III. 

The entire area of the shape under the arc of cycloid is three times bigger than the area of 
the circle that generates the cycloid. 
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Fig. 7. Visual presentation of Figure 21 in Appendix 1 with analogy 
between arc shape and rectangle 

 
Let the cycloidal line ABC (see Figure 7) be drawn from the point C of the semicircle CED. 

We say that the area of the arc figure ABCD is three times bigger than the area of the semicircle 
CED. Let us draw the rectangle AFCD and fix two points H and I on the diameter CD of the 
semicircle CED at the same distance from the middle G1 of CD. Then, let lines HL, IG be drawn 
parallel to AD, cutting the cycloid at points B and O. Finally, let us draw through point B and 
through point O two semicircles PBQ as MON as done previously (with the same diameter as 
diameter CD). 

Now the segment GO is equal to the segment RU (since segments GR, OU are equal and since 
RO is a common part), equal to the segment AN as well as to the length of arc ON, arc PB, segment 
PC, segment TH and segment BS. 

Similarly, as it was shown that the segment GO is equal to the segment BS, we also show that 
all the segments together of the three-sided arc figure FGABC and each of them separately are 
equal to all segments of the three-sided arc figure ABCED. Therefore, the three-sided arc figures 
FGABC, ABCED are equal. Hence, as in the previous theorem (Theorem II), the area of the shape 
under half of the arc of the cycloid ABCD is three times bigger than the area of the semicircle CED, 
and the area of the shape under the arc of the cycloid is three times bigger than the area of the 
circle that generates the cycloid (see Figure 7). 

The result is also that cycloid arc ABC cuts the arc shape FGADC into two arc shapes with 
the same area. Analogically, a diagonal cut of some rectangle also results in two triangles with the 
same area. 

The following figure is a visual presentation of Cavalieri’s method of indivisibles in this 
theorem (see Figure 8). 
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Fig. 8. Visual presentation of Theorem III (the orange planar shapes have the same area) 

 
If we move with point B (see Figure 8), we obtain orange planar figures (the GeoGebra 

function “Trace on” used for the segments GO, BS). The segments GO and BS are always the same, 
and according Cavalieri’s method of indivisibles, these shapes have the same area. 

 
Remarks on the Torricelli Approach of Using Cavalieri’s Method of Indivisibles 
Gilles Personne de Roberval (1602–1675) also studied the cycloid and introduced the term 

“socia”. If we have half of the arc of cycloid AGB (see Figure 9) in the rectangle ADBE, we can make 
a picture of this arc in the central symmetry with the centre S. The point S is a centre of the 
rectangle ADBE. We obtain an arc AHB. We can move with the segment GH, which is parallel to 
segment AD, and the points G, H are points of these central symmetry cycloid arcs. The centre S of 
the segment GH (see Figure 9) describes a part of the curve that is practically sinusoidal. Points I, 
J, G, H are on the same line, and the lengths of the segments IJ and GH are the same. 

 

 
Fig. 9. Visual presentation of Roberval’s “socia” (blue colour) via GeoGebra 
(the plane figures with the same colour have the same area) 

 
The area between these two cycloid curves has a “spindle” shape. It is an interesting property 

that points of both cycloid curves are on the same rolling circle (the orange circle in Figure 9). 
The segments IJ and GH are the same, and according to Cavalieri’s method of indivisibles, that 
“spindle” shape has the same area as the rolling circle. If the area of the shape under half of the arc 
of a cycloid is equal to one and a half of the area of the rolling circle, then the area of the shape 
under the second (down) cycloid curve is equal to one half of the area of the rolling circle. This is 
visualised by GeoGebra in Figure 9. 
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Visualisation in Statistics Education  
We also can use GeoGebra as a tool to help students appropriately visualise data in order to 

analyse and interpret that data because visualisation is critical for teaching and learning data. 
As Prodromou (2014) discusses, GeoGebra can be implemented into the curriculum and learning 
process of introductory statistics to engage college students (and secondary students) in cycles of 
statistical investigations, including (a) managing data, (b) developing students’ understanding of 
specific statistical concepts, (c) conducting data analysis and inference and (d) exploring 
probability models. 

GeoGebra is used in two distinct ways when teaching introductory statistics (Prodromou, 
2014):  

(1) Applets created with GeoGebra are implemented into teaching practices to demonstrate 
specific concepts.  

(2) Students use GeoGebra as a software tool to perform data analysis and inference and to 
develop probability models.  

GeoGebra applets can be used during teaching practices to visually represent particular 
fundamental concepts that are commonly difficult to conceptualise. Furthermore, most of the 
applets make it possible to interact with parameters and variables by altering sliders, using 
dynamic representations as tools for analysis, formulating personal models, calculating 
probabilities, communicating dynamic changes of data visualisations and storing and processing 
real data.  

For example, when students begin to learn how the normal distribution approximates 
binomial probabilities, we use the following GeoGebra applet (see Figure 10) to visualise statistical 
distributions when the parameters and variables are altered using sliders.  

More specifically, this applet allows students to manipulate n, which indicates the random 
sample of a number of people who participated in a research study, and p, which indicates the 
probability of an event occurring. 

 

 
 
Fig. 10. Applet of binomial approximation 

 
In particular, the mathematics shown by the applet in Figure 10 are as follows: 
The central limit theorem is the tool that enables us to use the normal distribution 

to approximate binomial probabilities: 
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 let Xi = 1, if a person agrees that a particular event is occurring with probability  , 

 let Xi = 0, if a person does not agree that a particular event is occurring with probability 1- . 
Let Xi is a Bernoulli random variable with mean 

   ( )  ( )(   )  ( )( )    
and variance 

      ( )    (   )   (   ) (   )  (   ) ( )   (   ). 
 
We conducted a research study with a random sample on   people, and let 
𝑌= 1+ 2+…+  . 
𝑌 is a binomial (   ) random variable, y = 0, 1, 2, …,  , with mean  

     
and variance  

     (   ) 
 
In a teaching context, a teacher using GeoGebra might ask students to play with the green 

sliders first and explain what they noticed. After doing so, students may articulate that when n 
decreases, the number of columns decreases as well and that each column becomes wider (see 
Figure 11). Moreover, when n increases, the number of columns increases, and the columns move 
to the right (see Figure 12).  

 

 
 
Fig. 11. When n decreases, the number of columns decreases, and the width 
of each column increases 
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Fig. 12. When n increases, the number of columns increases 

 
Students also may notice that when   decreases, the distribution of data moves to the left in 

the visualisation (see Figure 13) and that when   increases, the distribution of data moves to the 
right (see Figure 14). 
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Fig. 13. When   decreases, the distribution of data moves to the left 
 

 
 
Fig. 14. When   increases, the distribution of data moves to the right 

 
A teacher might ask students to assume that n = 10 and p = ½ (so that Y is binomial (10, ½) 

in order to calculate the probability that five people approve of a particular event occurring.  
Students can adjust the sliders of the applet so that n would indicate 10 and p would indicate 

0.5 The applet provides a visualisation of the probability that five people approve of a particular 
event occurring (Figure 15) – when x is equal to 5, the other coordinate on the continuous 
distribution is equal to 0.2460, representing a probability of 24.6 %.  
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Fig. 15. When       and p = ½ 

 
In particular, when we look at the graph of the binomial distribution with the vertical column 

corresponding to 𝑌   , we make an adjustment that is called a “continuity correction” by using the 
continuous distribution (i.e. the normal distribution*) to approximate the discrete distribution. 
Specifically, the column that includes 𝑌    also includes any 𝑌 greater than 4.5 and less than 5.5, 
as follows: 

 (𝑌   )   (    𝑌     )   (         ) 

               (
       

√   
   

     

√   
)   

               (            )   
               (      )   (       )   
                                                                                (      )   (      )    
                                                                                                   
 
The visualisation of the probability that five people approve of a particular event occurring 

can be also determined by calculating the exact probability using the binomial table with n = 10 
and p = ½. Doing so, we get 

(𝑌=5)=(𝑌≤5)− (𝑌≤4)=0.6230−0.3770=0.2460. 
Hence, there is a 24.6 % chance that five randomly selected people approve of a particular 

event occurring.  
Visualising the above example makes it accessible to younger students, helping them 

understand, interpret and use the data to calculate probabilities. Moreover, the use of applets 
caters to the needs of diverse learners and could help younger students construct the meaning of 
the co-ordination of the two epistemological perspectives on distribution (Prodromou, 2012a; 

                                                 
* Y is defined as a sum of independent random variables. When n is large, the Central Limit Theorem can be 
used to calculate probabilities for Y. Specifically, the Central Limit Theorem establishes that when 
independent random variables are added, their sum tends towards a normal distribution although the 

original variables themselves are not normally distributed:  =
    

√  (   )
→𝑁(0,1). 
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Prodromou, Pratt, 2006) while connecting concepts of experimental probability and theoretical 
probability (Prodromou, 2012b).  

 
3. Conclusion 
Visualisation has many applications in the educational process, and this article presents 

practical examples from historical and modern mathematical contexts. Torricelli’s approach to the 
area under a cycloid arc with software GeoGebra brings possibility to present mathematics 
concepts from historical materials developed by mathematicians in the past for future mathematics 
teachers (see Zahorec et al., 2018).  

According to the theory developed by David Tall (see Tall, 2006 and Tall, Mejia-Ramos, 
2009), two kinds of students exist in the classroom: one group with fast, gestalt thinking (i.e. 
thinking with figural characters, students see an object as a whole) and a second group that uses 
“step-by-step,” successive thinking. Presentation of the area under the cycloid arc by Torricelli and 
visualisation through software makes it possible to present this topic in an appropriate way for 
both groups of students and to allow collaboration between them (see also the examples in Bayerl, 
Žilková, 2016). 

Torricelli’s approach has educational application in that it promotes an understanding of the 
area of shapes which are bordered not by a line segment but by the arc of a curve (see Moru, 2007). 

Torricelli’s original text uses abbreviated language, and it is difficult to translate and make a 
close paraphrase of some of the original text.   

Many students have problems understanding, for example, the “ε-δ technique” in a purely 
formal way. Such students may benefit from an approach like the geometrical “ε-δ technique” 
presented by Archimedes and Torricelli (see Lemma II). 

According to Prodromou and Lavicza (2015), GeoGebra allows for the presentation of many 
mathematical concepts in instrumental, relational and formal modes, with the support of 
visualisation and simulation. 

Archimedes’ approach to the area under the arc of parabolas was not only an inspiration for 
Torricelli but also for Slovak-Australian mathematician Igor Kluvanek, who developed his own 
integration theory on the exhaustion method from Eudoxos (see Nillsen, 2011).  

The examples provided in this article show that the possibilities of using visualisations to 
display selected mathematics concepts are extensive and that such visualisations can motivate 
teachers to embrace the necessary technology and improve the experience of mathematics and 
statistics, both for themselves and their students. 

The importance of technology like GeoGebra, which enables students to build their own 
representations and explore different aspects of those representations, must be emphasised.  

Pratt, Davies, Connor (2011) discuss some general impediments to the use of technology for 
teaching statistics: 

1. teachers not prioritising technological tools,  
2. the curriculum not supporting the use of technology,  
3. assessment not encouraging the use of technological tools, 
4. teachers’ unwillingness to attend professional development programs or up-skill on the 

latest technology developments, and 
5. the use of technology reinforcing other skills (e.g. computation) rather than the 

development of concepts.  
Digital technology is being introduced into many school curricula, and “visualisation has 

blossomed into a multidisciplinary research area, and a wide range of visualisation tools have been 
developed at an accelerated pace” (Prodromou, Dunne, 2017a: 1). In such an environment, it is 
hoped that the barriers noted by Pratt, Davies and Connor (2011) can be overcome.  

In particular, research on data visualisation and statistical literacy (Prodromou, Dunne, 
2017b) has discussed the role of visualisation and the need for teachers “to marshal many facets of 
visualisation, from elicitation of pattern to salient pictorial representation of a particular specified 
context” (Prodromou, Dunne, 2017b: 3). They found that visualisation assists with the basic 
production of contextual meaning and interpretation compared to other familiar cognitive 
strategies, including the following: describing and comparing observed conditions or states in a 
context; describing and assessing relationships amongst categories; counts and measures (often 
with time factors ignored); describing and comparing current changes or processes in a context 
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(over a period, sometimes with equal inter-observation intervals); and describing and assessing 
associations amongst changes in observed variables (over some implicit or specified time 
intervals). 

Prodromou and Dunne suggested (see (Prodromou and Dunne, 2017a) that fluency with 
visualisation is central to statistics. We would expect the same to be true in mathematics, but 
unfortunately, no research about the process of understanding through visualisations of 
mathematical concepts has been done.  

This paper’s demonstration of the role of GeoGebra in presenting Torricelli’s proofs suggests 
ways in which current technologies and visualisation can be integrated into learning. Future 
research should experiment with GeoGebra visualisations as an aid to teaching integration 
(i.e. calculating the area under a curve). 
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Appendix 1. Original Latin text of Torricelli’s Appendix 

 
Fig. 16. Page 85 of Torricelli’s manuscript 
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Fig. 17. Page 86 of Torricelli’s manuscript 
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Fig. 18. Page 87 of Torricelli’s manuscript 
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Fig. 19. Page 88 of Torricelli’s manuscript 
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Fig. 20. Page 89 of Torricelli’s manuscript 
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Fig. 21. Page 90 of Torricelli’s manuscript 

 
 
  


