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Abstract. The paper suggests a generalization of the 
classic Euler-Lagrange equation for circuits compounded 
of arbitrary elements from Chua’s periodic table. Newly 
defined potential functions for general (,) elements are 
used for the construction of generalized Lagrangians and 
generalized dissipative functions. Also procedures of 
drawing the Euler-Lagrange equations are demonstrated. 

Keywords 
Periodic table of fundamental elements, higher-order 
elements, content, energy, action, evolution, 
Lagrangian, dissipation function, FDNR, inerter 

1. Introduction 
Euler-Lagrange equations of motion are a well-estab-

lished part of physics with its potential application in me-
chanics, electrical engineering, and various multi-discipli-
nary branches. They express the equilibrium of generalized 
forces or fluxes, which provides the energy-balance be-
tween energy dissipation and storage. In each of the fields 
of science, we can find adequate forms of the resistor as 
a dissipative element, and the capacitor and inductor that 
represent the accumulation and inertial elements for energy 
storing [1]. The transition from the energetic description to 
the equation of motion is implemented by a systematic 
differentiation of dissipative function of the system and its 
Lagrangian with respect to system coordinates and time. 
The classic form of these equations for balancing general-
ized vector forces v (whose electrical analogy can be volt-
ages v) in a system given by generalized coordinates q 
(often acting as electrical charges q) is 
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where the Lagrangian L = T* – V, formed as the difference 
between kinetic co-energy and potential energy, describes 
the state of reactive elements, i.e. inductors and capacitors, 
and the dissipative function C called content illustrates 

a dissipation of energy on lossy elements, i.e. resistors; vext 
is the vector of external excitation. Equation (1) can be 
read from left to right as follows: voltages at inductors as 
derivatives of magnetic fluxes with respect to time, plus 
voltages at capacitors, plus voltages at resistors within the 
loop are equal to the voltages of voltage sources in the 
loop.  

The current form of the Euler-Lagrange equations is 
no longer sufficient for describing systems that contain, in 
addition to resistors, capacitors, and inductors, also other 
fundamental elements.  

The theoretical foundations of these elements were 
laid by L. Chua in several successive steps in the seventies 
and eighties of the 20th century. In [2], he introduced the 
memristor into the circuit theory, and in [3] he pointed out 
the existing regularities among fundamental electrical ele-
ments organized in the so-called periodic table of Higher-
Order Elements (HOEs) shown in Fig. 1.  

 
Fig. 1. Chua’s table of fundamental elements [3].  =  – , 

 =  + . 
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Chua’s table of elements, analogous to Mendeleev’s 
periodic table of chemical elements, shows that the exist-
ence of all currently known fundamental electrical ele-
ments (resistor R, capacitor C, inductor L, memristor MR, 
meminductor ML, and memcapacitor MC) is a logical 
consequence of a symmetry that exists between v() and i() 
variables, where positive integers  and  stand for the 
respective orders of derivatives of terminal voltage v and 
current i with respect to time, negative integers mean the 
orders of time-domain integrals, and zeros refer to the 
voltage v and current i itself. By using these symbols, we 
can denote the charge as q = i(–1), flux  = v(–1), and their 
time-domain integrals as  = i(–2) and  = v(–2). This means 
that the resistor with the v-i constitutive relation (CR) oc-
cupies the position (0,0); similarly, the capacitor, inductor, 
and memristor coordinates are (0,–1), (–1,0), and (–1, –1), 
and the indices of the unconventional elements such as the 
memcapacitor and meminductor are (–1,–2) and (–2,–1). 
The position of the above six elements is designated in 
Fig. 1. 

The classic paper [3] from 1980 reveals a specific 
attribute of the elements occupying the -diagonals of 
Chua’s table1. The small-signal models of the elements of 
each -diagonal have always the same character, either of 
the resistive, capacitive, or inductive type. From the small-
signal point of view, there are only frequency-dependent 
positive and negative resistors +R and –R, capacitors C, and 
inductors L of the order . In Fig. 1, the corresponding 
types of the -diagonals are colored (in red, violet, yellow, 
and green) and labeled by the symbol of the element. 

Since the elements placed together on one of the  
-diagonals have a fixed sum of indices  =  + , their 
potential functions will be of the same character and physi-
cal dimension. For example, the capacitor and inductor are 
located on the same -diagonal ( = –1), and their poten-
tial functions have the character of energy with the dimen-
sion of Joule [J]. The memcapacitor and meminductor on 
a different -diagonal ( = –3) have the potential functions 
called the evolution, with the physical dimension of [Js2]. 

The first references on how to construct Euler-La-
grange equations for circuits with memristors, memcapac-
itors and meminductors are in [4] (Cohen) and [5] (Jeltse-
ma). The paper [5] is based on the crucial idea that the 
potential functions, the Euler-Lagrange equations being 
compounded of them, need to be assembled from the con-
stitutive relations (CRs) of the elements, exactly as it was 
for the R, C, and L elements. The importance of this idea 
will be demonstrated on the examples of the resistor and 
memristor. The CRs of all six hitherto identified funda-
mental elements together with their symbols are presented 
in Fig. 2. 

                                                           
 

1 The diagonals of Chua’s table with fixed difference  =  –  (sum 
 =  + ) will be denoted hereafter as -diagonals (-diagonals). 

 
Fig. 2. Potential (co)functions of six fundamental elements 

(co-functions are marked with an asterisk) as filling 
areas of the CRs: content C, kinetic and potential 
energy T and V, action A, kinetic and potential 
evolution X and Y [6]. 

The dissipative function C (content) corresponds to 
the area under the v-i constitutive relation of the resistor. 
The content is therefore obtained via integrating the CR 
with respect to the current, while the resistor voltage can be 
obtained via differentiating the content with respect to 
current (see the last left-hand term in (1)). However, this 
procedure will fail for the memristor: the integral of the v-i 
characteristic with respect to current depends not only on 
the instantaneous current, but also on the value of the 
charge passed through, i.e. on the course of the path of 
integration. The content is no longer a potential function, 
thus the memristor voltage is not given by the gradient of 
content, and the recipe (1) for finding the voltage does not 
work anymore. This is the reason why in [5] Jeltsema pro-
poses to start from the -q CR of the memristor, and from 
the area under this characteristic that corresponds to the 
potential function of the memristor called action (see 
Fig. 2). The gradient of the action with respect to charge is 
then equal to the flux . An analogous procedure is also 
applied to memcapacitor and meminductor. The original 
Equation (1) of the equilibrium of the loop voltages is 
replaced by the flux balance 
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where the Lagrangian LM = X* – Y is formed from the areas 
under the CRs of meminductors and memcapacitors, A is 
the memristive potential called action, and ext is the time-
domain integral of the external driving voltage. Equation 
(2) can be read from left to right as follows: The memin-
ductor magnetic fluxes, plus the memcapacitor fluxes, plus 
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memristor fluxes within closed loop are equal to the flux 
supplied by the sources in the loop. 

The rule (2) enables constructing the equations of 
motion just on the knowledge of the CRs of the circuit 
elements. As a limitation, the circuit cannot include a com-
bination of the mem-elements and non-linear elements 
without memory. We have resolved this issue in [6]. The 
Euler-Lagrange equations of circuits consisting of any 
combinations of non-linear resistors, capacitors, inductors, 
and their memory variants, have the form of 
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Equation (3) represents a generalization of classic 
Euler-Lagrange equation (1) for circuits containing not 
only the non-linear R, C, and L elements, but also the 
mem-elements.  

The main focus of the paper is on generalizing (1) for 
circuits with arbitrary combinations of arbitrary elements 
from Chua’s table. The paper structure is as follows. The 
general form of the equation of motion for circuits made up 
of arbitrary elements from Chua’s table is derived in 
Sec. 2, starting from the potential functions of the respec-
tive elements. In Sec. 3, this equation is identified in a form 
that is compatible with the classic form (1), i.e. it is ex-
pressed via the generalized Lagrangians and the general-
ized dissipative potentials. In Sec. 4, the mathematical 
apparatus obtained is applied to a specific frequency filter 
containing FDNRs (Frequency-Dependent Negative Re-
sistors), which can be considered as small-signal versions 
of the (1,–1) element. The last section deals with the con-
struction of equations for a vibration absorber employing 
the mechanical element (1,0), also known as the inerter. 

2. Equation of Motion for Circuits 
with Higher-Order Elements 
Consider a general two-terminal element  = (,) 

with the terminal voltage v(t) and current i(t). According to 
the convention introduced in [3], consider the directions of 
voltage and current as shown in Fig. 3(a).  

 
               (a)                                                                      (b) 

Fig. 3. (a) Symbol of the element  = (,) and the orientation 
of its voltage and current, (b) an example of CR of the 
element and the geometrical meaning of the corre-
sponding potential functions. 

The two-terminal element preserves, under any cir-
cumstances, an unambiguous constitutive relation between 
v(α) and i(β). Then the integrals 
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correspond to the relevant filling areas between the CR 
curve and the axes (the areas are related to the current 
operating point P in Fig. 3(b)) and they behave as potential 
functions: their gradients are again the quantities v(α) and 
i(β): 
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From comparing Fig. 2 and Fig. 3(b) it follows that 
the potential functions of six hitherto identified fundamen-
tal elements are special cases of general potential functions 
(4), e.g. content C = S0,0, kinetic energy T = Ŝ–1,0, and po-
tential co-evolution Y = Ŝ–1,–2. 

Equation (5) will be used for constructing the equa-
tions of motion; the elements used therein being represen-
ted by their potential functions. For the loop in Fig. 4(a) or 
for the node in Fig. 4(b), it holds for any integers a and b 
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For a = 0 and b = 0, we get the classic form of both 
Kirchhoff’s laws, i.e. Kirchhoff’s Voltage Law (KVL) and 
Kirchhoff’s Current Law (KCL). The case a = –1 and  
b =–1 leads to Kirchhoff’s Flux Law (KFL) and Kirch-
hoff’s Charge Law (KCHL) [6]. Equation (6) generally 
expresses the validity of Kirchhoff’s Voltage(a) Law and 
Kirchhoff’s Current(b) Law, i.e. KV(a)L and KC(b)L. 

For a = 0, b = 0, Equation (5) and elementary 
arrangements yield the following forms of KVL and KCL 
for the loop and the node in Fig. 4 
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Consider generally non-linear CRs of all elements 
within a loop or connected to a node. Equations (7) are 
differential  equations  with  respect  to the variable i(min) or 

 
                   (a)                                                           (b) 

Fig. 4. (a) KV(a)L for a loop and (b) KC(b)L for a node. 
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v(min), where min = min{j} or min = min{k}, but only 
for elements with non-positive indices j or k. In other 
cases, Equations (7) are integral-differential or purely inte-
gral equations. If the equations of motion are required in 
the form of differential equations, we construct equations 
for KV(a)L and KC(b)L, where a = max{j}, b = max{k}. 
The final equations are 

 
 

 ,

ext

dd

d d

j
j j

j j

a
a

a
j

S
v

t i


 

 





 
 

 
 , 

 
 ,
ext

ˆdd
.

d d

k
k k

k k

b
b

b
k

S
i

t v


 

 





 
  

 
  (8) 

Note that the zero derivative of the function is equal to this 
function. It is clear that if the loop contains only resistors, 
capacitors, and inductors, then a = 0, and the first equation 
in (8) transforms to (1). 

3. Generalization of Euler-Lagrange 
Equation 
General Equations (7) or (8) should be modified in 

order to resemble the form of (1). To do this, it is necessary 
to express the potential functions Sk,k

 and Ŝk,k
, and also 

(1) using the language of functions, co-functions, Lagran-
gians, and generalized dissipative functions. 

Today, three types of potential function and co-func-
tion are generally accepted: the energy and co-energy, 
introduced by Cherry [7] for capacitors and inductors; 
Millar’s content and co-content for resistive elements [8]; 
and action and co-action, utilized by Chua for memristors 
[2]. The evolution and co-evolution for memcapacitors and 
meminductors are suggested in [6]. For the remaining ele-
ments from Chua’s table, no potential functions and co-
functions have been hitherto established. 

 
Fig. 5. The arrangement of potential functions and co-func-

tions in Chua’s table. The functions correspond to the 
colored areas in the CRs, the co-functions to areas de-
noted by * symbols. 

The simplest possible rule for deciding which one 
from the pair S, and Ŝ, is a function and which a co-
function can be deduced from Figs. 1, 2 and 3: 
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The rule for Ŝ, is quite opposite. The arrangement of the 
potential functions and co-functions across the table is 
shown in Fig. 5.  

The elements of the same type, which share the -di-
agonal, have the same rule of distributing the potential 
functions and co-functions. This rule is always applied to 
two adjacent diagonals. The opposite rule holds for the 
subsequent or preceding two diagonals. For the -diago-
nals, the rule alternates depending on switching from one 
to the other element. 

Let us introduce a uniform notation for the potential 
functions and co-functions of a general (,) element as 
follows:  

 

,

,

,

,

for R,

for R,
potential function

for C,

for L.

D

D

V

T

 

 

 

 






 

 

 
   
 

 (10) 

The symbol * should be added for co-functions. According 
to this notation, the potential energy of a capacitor is 
V = V0,–1, and the potential evolution of a memcapacitor is 
Y = V–1,–2. 

For the potential functions (10), Equations (7) for the 
KVL or KCL are in the form 
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where l, c, r+, and r– are the indices of the elements of the 
type of L, C, +R and –R connected in a loop or to a node. 

According to Fig. 6, all three classical RCL elements, 
which constitute circuits complying with the Euler-La-
grange equations of type (1), are located in the highlighted 
stripe S0 (under the number n = 0), which is delimited by 
the -diagonals for  = –1 and  = 0. In this stripe, how-
ever,  also  other  dissipative  and  reactive  elements  occur. 
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Fig. 6. Elements from the periodical table, sorted on the basis 

of belonging to various orders n of the Lagrangian and 
dissipative function. In each stripe, the dissipative 
elements of positive (red) and negative (yellow) resis-
tor, and reactive elements of inductive (blue) and ca-
pacitive (green) type alternate periodically. 

From the small-signal point of view, there are the elements 
with positive and negative resistances +R and –R, capaci-
tances C and inductances L (in Fig. 6 they are marked with 
color circles). The potential functions of all dissipative 
elements on the diagonal  = 0 have the physical dimen-
sion of power [Js–1]. Analogously, the potential functions 
of the reactive elements on the diagonal  = –1 are ener-
gies [J]. Due to the identical physical dimensions of the 
potential functions and their possible additivity, the ques-
tion arises whether we could construct an extended version 
of (1) for arbitrary elements from the S0 stripe, in which 
the content C would be replaced by a generalized dissipa-
tive function D0 that would include all dissipative ele-
ments, and the Lagrangian L would be replaced by a gener-
alized Lagrangian L0, which would cover all the reactive 
elements in the S0 stripe. 

This consideration also refers to a general stripe Sn. 
Let us introduce a dissipative function +Dn for the elements 
of +R type and the dissipative function –Dn for the elements 
of –R from the Sn stripe: 
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Similarly, the potential function Vn for the elements of C 
type, and the potential function Tn for elements of the L 
type from the stripe Sn will be defined as 
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Definitions (12) and (13) for the co-functions will just be 

completed with * symbols. The total dissipative function Dn 
and co-function Dn

* for the elements from the Sn stripe 
will be given by the relations 
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All the definitions are conveniently arranged in Tab. 1. 

With regard to definitions of the Lagrangian Ln and 
the dissipative function Dn, it is obvious that the voltage at 
the specific element k from the Sn stripe is 
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Similarly, the current through the specific element k 
from the Sn stripe will be as follows: 
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    

       

 (16b) 

The generalized Euler-Lagrange equation for a loop 
and for a node will be in the form of (17a) and (17b), 
respectively: 
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 (17a) 
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 (17b) 
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Type of element S, Ŝ, 

+R ,D 
  

,D 
   

–R ,D 
   

,D 
  

C ,V   
,V 
  

L ,T 
  

,T   

Dissip. function , ,
R Rn n

nD D D   
 

  

 

  
S S

 

Dissip. cofunction , ,
R Rn n

nD D D   
 

   

 

  
S S

 

Lagrangian , ,
L Cn n

nL T V   


 

  
S S

 

Co-Lagrangian , ,
C Ln n

nL V T   
 

 

  
S S

 

Tab. 1. Notation of the potential functions and co-functions, 
their assignment to elements in Chua’s table, and the 
construction of nth-order (co)Lagrangian and dissipa-
tive (co)function. 

where l, c, r+ and r– are the indices of the elements of 
types L, C, +R and –R, connected in a loop or to a node. 
The subscripts of the Lagrangians L and the dissipative 
functions D are equal to the number n of the stripe Sn. 

Equation (17a) or (17b) expresses the KVL for a loop 
or the KCL for a node. This equation is differential only 
for non-positive coefficients k or k. Equation for KV(a)L 
and KC(b)L, where a = max{k}, b = max{k}, becomes 
differential equation with respect to the variable i(min) or 
v(min). The Euler-Lagrange differential equation for a loop 
and for a node will be in the form of (18a) and (18b), 
respectively: 
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 

 

(18a) 
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 

 (18b) 

Universal equations (18a) and (18b) take specific 
forms for specific situations. For example, if all the ele-
ments of a loop occur in the Sn stripe, then the Euler-La-
grange equation will be 

          
 
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extmin min
0

d d
1 .

d d

b j
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L D
v

t t i i




 




 


          
  (19a) 

 
Fig. 7. An example of the case when all the elements con-

nected in a loop or to a node lie exclusively in the Sn 
stripe. Summations along the quadruples of the ele-
ments in corners of the highlighted parallelograms lead 
to equation (19a) or (19b). 

For the elements from the Sn stripe, connected to 
a node, the following equation holds: 

         
 

min
min

extmin min
0

d d
1 .

d d

a k
k bn n

k k k
k

L D
i

t t v v




 

  


 


   
       

  (19b) 

The layout is illustrated in Fig. 7. The summation in 
(19a) or (19b) is done along the quadruples of the elements 
of the (L, +R, C, –R) type, which form vertices of the 

parallelogram  or . 

The classic form (1) of the Euler-Lagrange equation 
relates to the elements in the S0 stripe, which fill three 
from four vertices of the above parallelograms. It is appar-
ent that, under these conditions, Equation (19a) transforms 
to (1). 

4. Illustrative Example 1 
Bruton’s transformation [9] is frequently used for de-

signing active inductor-less filters from their passive RCL 
prototypes. It utilizes the fact that the transfer function of 
the filter does not change if the impedances of all elements 
are divided by the operator s = j. As a practical conse-
quence, the resistors are replaced by capacitors, the induc-
tors by resistors, and the capacitors by FDNRs (Frequency-
Dependent Negative Resistors) that can be synthetized 
using active elements. The FDNR can be modelled as 
an ideal (1,–1) element with the respective non-linearity, 
possibly supplemented with additional capacitor as a result 
of Bruton’s transformation of a resistor representing the 
power dissipation.  
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Fig. 8. Bandpass filter. Elements F1 and F2 are FDNRs. 

 
Fig. 9. Elements from the schematic diagram in Fig. 8: resistor 

R, capacitor C, and FDNR F. The dot above the 
voltage symbol means the differentiation with respect 
to time. 

Figure 8 represents a bandpass filter resulting from 
the transformation of a passive ladder filter with mutually 
coupled inductors. All elements except the FDNRs are 
considered as linear. 

As is obvious from Fig. 9, all the filter elements come 
from the S0 stripe of Chua’s table. 

Since the filter is inductor-less, the co-Lagrangian L0
* 

is equal to the potential co-energy of capacitors: 

 2 2
0 0 1 in 2 out

1 1
.

2 2
L V C v C v     (20) 

The dissipative co-function will be 
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       

 


   

 (21) 

Since min = 0, a = max = 1, and b = max =0, the 
Euler-Lagrange equations are in the form 

 0 0 0d d

d d

L D D

t t

       
          

ext
i

v v v
 (22) 

where v = [vin vout]
T is the vector of node voltages and 

iext = [iext 0]T is the vector of current excitation. By substi-
tuting (20) and (21) into (22) we get a system of non-linear 
differential equations 

         
1

1 1
1 in 1 in v in out F in ext

d
,

d
C v R v R v v q v i

t
        (23a) 

         
2

1 1
2 out 2 out v in out F out

d
0.

d
C v R v R v v q v

t
       (23b) 

The above equations can be used for evaluating the 
influence of FDNR non-linearities on the filter perfor-
mance.  

5. Illustrative Example 2 
The inerter, the recently discovered new mechanical 

element [10], is defined by unambiguous constitutive rela-
tion between force and the relative acceleration between its 
“free nodes”. Its best-known application is connected with 
the mechanical absorbers of vibration and with vehicle 
suspension, particularly for Formula One cars [11]. 

Depending on the type of the applied electro-me-
chanical analogy, the inerter can be considered as a (1,0) or 
(0,1) element from Chua’s table [12], [13]. In other words, 
it can be either of the C or L type but always from the 
stripe S2. 

The equivalent circuit in Fig. 10 starts from the 
absorber of vibration in [10] and transforms it to electrical 
form via the analogy with mass corresponding to capaci-
tance, compliance of springs to inductance, and mechanical 
resistance to electrical conductance. In this type of analogy, 
the forces are modelled by electric currents i and velocities 
by electric voltages v. The source of vibration speed is 
modelled by a voltage source vext. The inerter is expressed 
by the element (,) = (1,0) because it forms a clear bond 
between electric analogy of acceleration v(1) and electric 
analogy of force i(0). 

 
Fig. 10. Equivalent circuit of the absorber of mechanical 

vibration. The I element is the inerter. 
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Fig. 11. Elements of the schematic diagram in Fig. 10: resistor 

R, inductor L, capacitor C, and inerter I. The integral 
of voltage v with respect to time is the flux  = v(–1). 

As shown in Fig. 10, the method of the loops will be 
used for the circuit description. Since min = –1 (due to the 
capacitor C), differential equations for charges q = i(–1) will 
be constructed via the method of loop charges. 

The elements used in the schematic diagram in 
Fig. 10 are shown in Fig. 11. As the classical RCL ele-
ments are located in the S0 stripe, the inerter belongs to the 
S2 stripe. The corresponding Lagrangians L0 and L2 are 

    2 2 1 2
0 1 1 3 2 2 3 3

1 1 1
,

2 2 2
L L q q L q q C q         (24a) 

  
2

2

0

d .
q

IL v q q 


    (24b) 

The dissipation function D0 is 

 2
0 1

1
.

2
D Rq   (24c) 

The Euler-Lagrange equations can be constructed 
according to (18a) or sequentially for stripes S0 and S2 
according to (19a). The equation will be 

 
2

0 0 2 0
2

d d d

d d d

L L L D

t t t

        
                

ext  
v

q q q q
 (25) 

where q = [q1 q2 q3]
T is the vector of loop charges and 

vext = [0 0 vext]
T is the vector of voltage excitation. Substi-

tuting (24a)–(24c) in (25) yields a system of differential 
equations 

  1 1 3 1 0,L q q Rq      (26a) 

    2 2 3 2 0,IL q q v q       (26b) 

     1
1 1 3 2 2 3 3 ext .L q q L q q C q v           (26c) 

In the original paper [10], the inerter is considered as 
a mere linear element with the constitutive relation  
v(1) = b–1i, where b is a positive real number. A more gen-
eral non-linear CR of the inerter, potentially used in (26b), 
can enable the analysis of the influence of such non-linear-
ity on the operation of the vibration absorber [12]. 

6. Conclusions 
The aim of the paper is to build the formalism for 

constructing the Euler-Lagrange equations for circuits 
employing arbitrary elements from Chua’s table. The pro-
posed formalism can be characterized by a generalization 
of the definitions of potential functions and co-functions of 
classical RCL elements for any (,) element from Chua’s 
table, and subsequent construction of the Lagrangians and 
generalized dissipative functions. It should be emphasized 
that this procedure was selected according to the principle 
of Occam's razor, i.e. in the easiest possible way. The main 
goal was to maintain the backward compatibility with ex-
isting definitions and with the classical form of the Euler-
Lagrange equations. 

Elements whose potential functions are of the same 
physical dimensions naturally occur on the -diagonals in 
Chua’s table, i.e. diagonals with a constant sum  =  + . 
Typical examples are the contents of +R and –R for  = 0 or 
energies for elements of the L and C type for  = –1. This 
fact can be used for constructing the dissipative function 
Dn for every diagonal with  = n (n is an odd integer), and 
the Lagrange function Ln for the next diagonal with  
 = n – 1 (n – 1 is an even integer). All elements that lie in 
the stripe Sn, delimited by these two diagonals, can be de-
scribed by just two functions: Dn and Ln. Today’s classical 
form of the Euler-Lagrange equation relates to the stripe 
S0. The generalized Euler-Lagrange equations can serve as 
recipes for obtaining equations of motion via systematic 
differentiation of the Lagrange and dissipative functions 
with respect to circuit variables and time. 

The paper does not deal with the question of whether 
or not the extremal principle connected with the original 
idea of the Lagrangian is fulfilled. 
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