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Section 1 – Aerodynamics 

Abstract: In this paper, a vector form of the unsteady Kutta-Joukowski theorem is derived and then 
used in the formulation of a general Lifting-Line Model capable of analysing a wide range of 
engineering problems of interest. The model is applicable to investigating lifting surfaces having low 
to moderate sweep, dihedral, out-of-plane features such as winglets, in both steady-state and unsteady 
cases. It features corrections of the span-wise circulation distribution based on available two-
dimensional aerofoil experimental data, and stable wake relaxation through fictitious time marching. 
Potential applications include the conceptual and initial design of low-speed Unmanned Aerial 
Vehicles, the study of flapping flight or Wind Turbine blade design and analysis. Several verification 
and validation cases are presented, showing good agreement with experimental data and widely-used 
computational methods. 
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1. INTRODUCTION 
Since its original development almost a century ago [1], the Lifting-Line Theory (LLT) was 
extensively used to determine the aerodynamic performance of aircraft lifting surfaces, sails, 
propellers or wind turbines. The aerodynamic characteristics predicted by the theory were 
repeatedly proven to be in close agreement with experimental results, for straight wings with 
moderate to high aspect ratio. The solution of Prandtl's classical equation was in the form of 
an infinite sine series for the bound circulation distribution, truncated to a finite number of 
terms, whose coefficients were determined using a collocation method, as proposed by 
Glauert [2]. Other classical methods of determining the bound circulation distribution 
included those developed by Tani [3] and Multhopp [4]. Several authors have proposed 
modified versions of the original Lifting-Line Theory, to extend the applicability of the 
model to moderately-swept wing (Weissinger [5]) or make use of nonlinear aerofoil data to 
correct the circulation distribution (Sivells and Neely [6]). 

With the increasing development and accessibility of computers, authors have also 
proposed numerical methods for solving Prandtl's lifting-line equation (for example, 
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Anderson et al [7]). This has also led to a revisiting of some of the underlying hypothesis of 
the theory in an attempt to widen its applicability. Phillips and Snyder [8] presented a 
numerical Lifting-Line Model that used a three-dimensional vortex lifting law instead of the 
traditional two-dimensional form of the Kutta-Joukowski theorem, and successfully applied 
it to lifting surfaces with arbitrary sweep and dihedral angle. More recently, authors such as 
Gabor et al. [9]-[10] or Marten et al. [11] have replaced the two-dimensional theorem with 
its vector form, when performing quasi-steady-state calculations. 

The Lifting-Line Theory represents a very useful tool for aircraft conceptual design 
phases or optimization [12]. Piszkin and Levinsky [13] proposed a quasi-steady nonlinear 
lifting line model that included the effects of unsteady wake development. The model was 
intended to analyse wing rocking, wing drop, roll control loss and reversal under the 
influence of asymmetric stall. More recently, Gallay and Laurendeau [14] have presented a 
generalised nonlinear Lifting-Line Model suitable for the steady-state analysis of complex 
wing configurations. The method uses a database of high-fidelity two-dimensional CFD 
results for the aerofoil performance, and can analyse wings in both incompressible and 
compressible flows. In the field of wind turbine design and analysis, the use of the Lifting-
Line Theory coupled with unsteady wake models has become common practice in recent 
years [15]. This is due to superior accuracy compared to the Blade Element Momentum 
(BEM) theory, which relies heavily on empiric induction factors, and significantly lower 
computational costs compared to a three-dimensional Unsteady Reynolds-Averaged Navier-
Stokes (URANS) computation (see for example [16]). Not many attempts have been made to 
model flapping flight using the lifting-line approach. An unsteady Lifting-Line Theory to 
analyse the flapping of bird wing in forward flight was developed by Phlips et al. [17], but 
the effects of time-varying bound circulation was not accounted for. With its quasi-steady-
state assumption, the model gave good results for the low reduced frequency flapping motion 
that characterises the flight of many large bird species. True unsteady Lifting-Line Models 
have also been proposed by several authors ([18]-[21]), but most were derived for un-swept 
high aspect ratio wings based on the assumption of unsteady harmonic motion (with the 
exception of [18]) and thus were not applicable to geometries of a more complex shape, 
subjected to arbitrary unsteady motion. 

It is seen that previous work published on various Lifting-Line Models has generally 
focused on one of the three following directions: a) purely steady-state calculations including 
viscous corrections on lifting surfaces with sweep, dihedral, winglets, etc. b) unsteady 
problems with accurate wake modelling but applicable only to low frequency motion due to 
assumed quasi-steady bound vorticity; c) true unsteady models limited to simple wing 
geometries subjected to harmonic oscillations, due to complexities associated with 
mathematical modelling. This paper will present a general, unsteady, nonlinear lifting-line 
model applicable to all three of the above scenarios. 

2. VECTOR FORM OF THE UNSTEADY KUTTA-JOUKOWSKI THEOREM 
Consider a thin vortex sheet which at the limit can be identified with the three-dimensional 
surface 𝑆𝑆. At any point 𝑃𝑃 on the vortex sheet, let 𝐕𝐕+ and 𝐕𝐕− be the local flow velocity 
vectors on the two sides of 𝑆𝑆. The jump operator is defined as: 

⟦𝐕𝐕⟧ = 𝐕𝐕+ − 𝐕𝐕− (1) 

If 𝒏𝒏 is the local unit vector normal to 𝑆𝑆, then the strength of the vortex sheet is by 
definition [22] written as: 
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𝛄𝛄 = 𝐧𝐧 × ⟦𝐕𝐕⟧ (2) 

Let 𝐕𝐕γ be the velocity vector of the vortex sheet itself and 𝐕𝐕� = 1/2(𝐕𝐕+ + 𝐕𝐕−). If all vorticity 
is contained within the vortex sheet itself, then 𝐕𝐕γ = 𝐕𝐕� [22]. This condition is satisfied if the 
flow is everywhere incompressible and irrotational (potential flow), with the exception of 𝑆𝑆 
itself. Let 𝜙𝜙 be the velocity potential (thus 𝐕𝐕 = ∇𝜙𝜙) and 𝐶𝐶 be a curve that connects the two 
sides of the sheet (at points 𝑃𝑃+ and 𝑃𝑃−). The circulation around this curve is given by: 

Γ = � 𝐕𝐕
𝐶𝐶

∙ d𝐥𝐥 = � ∇𝜙𝜙
𝐶𝐶

∙ d𝐥𝐥 = � 𝑑𝑑𝜙𝜙
𝐶𝐶

= 𝜙𝜙+ − 𝜙𝜙− = ⟦𝜙𝜙⟧ (3) 

The vortex sheet strength (2) becomes: 

𝛄𝛄 = 𝐧𝐧 × ⟦𝐕𝐕⟧ = 𝐧𝐧 × ∇⟦𝜙𝜙⟧ = 𝐧𝐧 × 𝛻𝛻𝛻𝛻 (4) 
The unsteady form of the Bernoulli equation is [9]: 

𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

+
1
2
𝑉𝑉2 +

𝑝𝑝
𝜌𝜌

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜕𝜕. (5) 

Applying it to both upper and lower sides of 𝑆𝑆, and using (1) it can be deduced for any 
point 𝑃𝑃: 

𝜕𝜕⟦𝜙𝜙⟧
𝜕𝜕𝜕𝜕

+
1
2
⟦𝑉𝑉2⟧ = −

⟦𝑝𝑝⟧
𝜌𝜌

 (6) 

The dynamic pressure term can be written as: 
1
2

(𝑉𝑉+2 − 𝑉𝑉−2) =
1
2

(𝐕𝐕+ + 𝐕𝐕−) ∙ (𝐕𝐕+ − 𝐕𝐕−) = 𝐕𝐕� ∙ ⟦𝐕𝐕⟧ = 𝐕𝐕� ∙ 𝛻𝛻𝛻𝛻 = 𝐕𝐕� ∙ (𝛄𝛄 × 𝐧𝐧)

= 𝐧𝐧 ∙ (𝐕𝐕� × 𝛄𝛄) 
(7) 

Consider that the vortex sheet 𝑆𝑆 represents the system formed by the thin lifting surface 
(𝑆𝑆𝑏𝑏) together with its corresponding wake (𝑆𝑆𝑤𝑤), so that 𝑆𝑆 = 𝑆𝑆𝑏𝑏 ⋃𝑆𝑆𝑤𝑤 and 𝑆𝑆𝑏𝑏 ⋂𝑆𝑆𝑤𝑤 = 0. For 
the wake surface, the pressure on the two sides is equal, as the wake is force free ⟦𝑝𝑝⟧ = 0. 
Thus, writing only for 𝑆𝑆𝑏𝑏 and using (7): 

𝜕𝜕𝛻𝛻
𝜕𝜕𝜕𝜕

+ 𝐧𝐧 ∙ (𝐕𝐕� × 𝛄𝛄) =
𝑑𝑑𝛻𝛻
𝑑𝑑𝜕𝜕

= −
⟦𝑝𝑝⟧
𝜌𝜌

 (8) 

The vortical impulse of a vortex sheet is defined as [22]: 

𝐈𝐈 =
1
2
� 𝐱𝐱 × 𝛚𝛚
𝑉𝑉

𝑑𝑑𝑉𝑉 (9) 

where 𝛚𝛚 = ∇ × 𝐕𝐕 is the vorticity vector. Because the vorticity is only contained within the 
zero-thickness surface 𝑆𝑆, and using (4), it can be written: 

𝐈𝐈 =
1
2
� 𝐱𝐱 × 𝛄𝛄
𝑆𝑆

𝑑𝑑𝑆𝑆 =
1
2
� 𝒙𝒙 × (𝒏𝒏 × 𝛻𝛻𝛻𝛻)
𝑆𝑆

𝑑𝑑𝑆𝑆 (10) 

The following identity is considered [22]: 

� 𝑎𝑎𝐧𝐧
𝑆𝑆

𝑑𝑑𝑆𝑆 = −
1
2
� 𝐱𝐱 × (𝐧𝐧 × 𝛻𝛻𝑎𝑎)𝑑𝑑𝑆𝑆
𝑆𝑆

+
1
2
� 𝑎𝑎𝐱𝐱 × d𝐱𝐱
𝜕𝜕𝑆𝑆

 (11) 
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where 𝑎𝑎 represents a scalar quantity defined on the surface 𝑆𝑆 and 𝜕𝜕𝑆𝑆 is the surface boundary. 
Thus, if the circulation is non-zero, (10) becomes: 

1
2
� 𝐱𝐱 × (𝐧𝐧 × 𝛻𝛻𝛻𝛻)
𝑆𝑆

𝑑𝑑𝑆𝑆 =
1
2
� 𝛻𝛻𝐱𝐱 × d𝐱𝐱
𝜕𝜕𝑆𝑆

− � 𝛻𝛻𝐧𝐧
𝑆𝑆

𝑑𝑑𝑆𝑆 (12) 

Inserting (12) into (9) and knowing that the circulation over the lifting surface and wake 
vortex sheet must drop to zero at its boundaries, it is found: 

𝐈𝐈 = −� 𝛻𝛻𝐧𝐧
𝑆𝑆

𝑑𝑑𝑆𝑆 (13) 

Since only the lifting surface 𝑆𝑆𝑏𝑏 generates force, the unsteady inviscid force is obtained 
as: 

𝐅𝐅 = −𝜌𝜌
𝑑𝑑𝐈𝐈
𝑑𝑑𝜕𝜕

= 𝜌𝜌
𝑑𝑑
𝑑𝑑𝜕𝜕
� 𝛻𝛻𝐧𝐧
𝑆𝑆𝑏𝑏

𝑑𝑑𝑆𝑆 (14) 

If the lifting surface undergoes a prescribed kinematic motion such as flapping or 
pitching-plunging, then the orientation of the surface normal also varies in time, and we get: 

𝐅𝐅 = 𝜌𝜌�
𝑑𝑑𝛻𝛻
𝑑𝑑𝜕𝜕

𝐧𝐧
𝑆𝑆𝑏𝑏

𝑑𝑑𝑆𝑆 + 𝜌𝜌� 𝛻𝛻
𝑑𝑑
𝑑𝑑𝜕𝜕

(𝐧𝐧𝑑𝑑𝑆𝑆)
𝑆𝑆𝑏𝑏

 (15) 

The first integral simply represents the unsteady force due to pressure difference 
between the two sides of the bound vortex sheet, and using (8) it is written as: 

𝜌𝜌�
𝑑𝑑𝛻𝛻
𝑑𝑑𝜕𝜕

𝐧𝐧
𝑆𝑆𝑏𝑏

𝑑𝑑𝑆𝑆 = 𝜌𝜌�
𝜕𝜕𝛻𝛻
𝜕𝜕𝜕𝜕
𝐧𝐧 + (𝐕𝐕� × 𝛄𝛄)

𝑆𝑆𝑏𝑏
𝑑𝑑𝑆𝑆 = −� ⟦𝑝𝑝⟧𝐧𝐧

𝑆𝑆𝑏𝑏
𝑑𝑑𝑆𝑆 (16) 

The second integral depends on the particular kinematics of the wing motion, and thus 
no general form can be given. 

The force then becomes: 

𝐅𝐅 = 𝜌𝜌�
𝜕𝜕𝛻𝛻
𝜕𝜕𝜕𝜕

𝐧𝐧
𝑆𝑆𝑏𝑏

𝑑𝑑𝑆𝑆 + 𝜌𝜌� (𝐕𝐕� × 𝛄𝛄)
𝑆𝑆𝑏𝑏

𝑑𝑑𝑆𝑆 + 𝜌𝜌� 𝛻𝛻
𝑑𝑑
𝑑𝑑𝜕𝜕

(𝐧𝐧𝑑𝑑𝑆𝑆)
𝑆𝑆𝑏𝑏

 (17) 

In the context of the numerical lifting-line theory, all vorticity is further concentrated 
within the line vortex located at the wing quarter-chord line. The strength of the line vortex 
in this case can be approximated by: 

𝛄𝛄 =
1
𝑐𝑐
𝛻𝛻𝐝𝐝𝐥𝐥 (18) 

where 𝒅𝒅𝒅𝒅 is a local unit vector tangent to the line vortex (thus aligned with the direction of 
the quarter-chord line). 

If only a differential segment of the lifting line is considered, and the local average 
velocity is taken as the local flow velocity 𝑽𝑽, then (18) reduces to: 

𝐝𝐝𝐅𝐅 = 𝜌𝜌𝑐𝑐
𝜕𝜕𝛻𝛻
𝜕𝜕𝜕𝜕

𝐧𝐧 + 𝜌𝜌𝛻𝛻(𝐕𝐕 × 𝐝𝐝𝐥𝐥) + 𝜌𝜌𝑐𝑐𝛻𝛻
𝑑𝑑𝐧𝐧
𝑑𝑑𝜕𝜕

 (19) 
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3. UNSTEADY NONLINEAR LIFTING-LINE MODEL 
Let (𝑥𝑥,𝑦𝑦, 𝑧𝑧) denote the body-fixed coordinate system (with the x-axis oriented along the 
chord of the lifting surface root section, and the y-axis oriented along the span direction), 
while (𝑋𝑋,𝑌𝑌,𝑍𝑍) represents the inertial (ground-fixed) coordinate system. At any time 𝜕𝜕, let 
(𝑋𝑋0,𝑌𝑌0,𝑍𝑍0) denote the coordinates of the body-fixed frame origin point with respect to the 
inertial frame, and let (𝜙𝜙,𝜃𝜃,𝜓𝜓) be the Euler angles. The instantaneous coordinates and 
kinematic velocity of any point on the lifting surface, as determined in the body-fixed frame, 
are given by: 

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = 𝐑𝐑𝜙𝜙𝐑𝐑𝜃𝜃𝐑𝐑𝜓𝜓 �

𝑋𝑋 − 𝑋𝑋0
𝑌𝑌 − 𝑌𝑌0
𝑍𝑍 − 𝑍𝑍0

� (20) 

𝐯𝐯𝑘𝑘𝑘𝑘𝑘𝑘 = −(𝐕𝐕0 + 𝐯𝐯𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛀𝛀 × 𝐫𝐫) (21) 
Here, 𝐑𝐑𝜙𝜙,𝐑𝐑𝜃𝜃,𝐑𝐑𝜓𝜓 are the three rotation matrices corresponding to the Euler angles, 𝐕𝐕0 =

�𝑋𝑋0̇,𝑌𝑌0̇,𝑍𝑍0̇� is the velocity of the body-fixed frame origin point, 𝛀𝛀 = ��̇�𝜙, �̇�𝜃, �̇�𝜓� is the rate of 
rotation of the body-fixed frame, 𝐫𝐫 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) are the point coordinates, and 𝐯𝐯𝑟𝑟𝑟𝑟𝑟𝑟 = (�̇�𝑥, �̇�𝑦, �̇�𝑧) 
represents any additional velocity due to lifting surface motion relative to its body-fixed 
frame (oscillations, flapping, etc.). Note that 𝐕𝐕0 and 𝛀𝛀 are written with respect to the body-
fixed frame. 

In the context of the unsteady nonlinear lifting-line model, the continuous distribution of 
bound vorticity over the lifting surface and of trailing vorticity in the wake are approximated 
using a finite number of ring vortices. The lifting surface geometry is divided into 𝑁𝑁 span-
wise strips, each carrying a ring vortex. 

All four segments of this ring vortex are constructed using the local strip geometry 
features (and thus are bound with respect to the geometry), but only the leading segment 
(aligned with the lifting surface quarter-chord line) is aerodynamically bound to the 
geometry and thus generates forces. 

At each time step, a new row of 𝑁𝑁 vortex rings is shed into the wake, and the 
conservation of total circulation dictates that the strength of these rings must be equal to the 
strength of the surface-bound rings at the previous time step. Figure 1 presents a sketch of 
the discretised unsteady vortex system over an arbitrary lifting surface. 

The velocity induced by a straight vortex segment (such as any of the four segments of a 
ring vortex) at an arbitrary point in space is given by the Biot-Savart law. To make it more 
convenient from a numerical perspective, it has been re-written under the following form and 
includes the de-singularisation model proposed by Van Garrel [23]: 

𝐰𝐰 =
𝛻𝛻

4𝜋𝜋
(𝑟𝑟1 + 𝑟𝑟2)

𝑟𝑟1𝑟𝑟2(𝑟𝑟1𝑟𝑟2 + 𝐫𝐫1 ∙ 𝐫𝐫2) + (𝛿𝛿𝑟𝑟0)2
(𝐫𝐫1 × 𝐫𝐫2) (22) 

In equation (4) Γ is the circulation, 𝐫𝐫1 and 𝐫𝐫2 are the spatial vectors from the starting and 
ending points of the vortex segment to the arbitrary point in space, 𝑟𝑟1 and 𝑟𝑟2 are the moduli 
of the spatial vectors, 𝑟𝑟0 is the length of the vortex segment and 𝛿𝛿 is the cut-off radius. The 
aerodynamic force acting on each bound vortex segment of all vortex rings placed over the 
lifting surface is given by equation (19), which is repeated here for completeness: 

𝐝𝐝𝐅𝐅 = 𝜌𝜌𝛻𝛻(𝐕𝐕 × 𝐝𝐝𝐥𝐥) + 𝜌𝜌𝑐𝑐
𝜕𝜕𝛻𝛻
𝜕𝜕𝜕𝜕

𝐧𝐧 + 𝜌𝜌𝑐𝑐𝛻𝛻
𝑑𝑑𝐧𝐧
𝑑𝑑𝜕𝜕

 (23) 
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Figure 1. Sketch of the unsteady trailing vortex system 

In addition, from classical lifting surface theory, the magnitude of the aerodynamic force 
acting on a span-wise strip is given by: 

‖𝐝𝐝𝐅𝐅‖ = ��
1
2
𝜌𝜌‖𝐕𝐕‖2𝑑𝑑𝑑𝑑𝐶𝐶𝑟𝑟�

2
+ �

1
2
𝜌𝜌‖𝐕𝐕‖2𝑑𝑑𝑑𝑑𝐶𝐶𝑑𝑑�

2
 (24) 

Here, 𝑑𝑑𝑑𝑑 is the area of the span-wise strip, while 𝐶𝐶𝑟𝑟 and 𝐶𝐶𝑑𝑑 are the lift and drag 
coefficients of the strip aerofoil, assumed to behave as an ideal two-dimensional aerofoil 
placed at an angle of attack equal to the local effective angle. For a given lifting surface with 
known aerofoil, the two-dimensional aerodynamic characteristics can be obtained from 
datasheets of experimental results, or by using high-fidelity CFD solvers, thus accounting for 
the effects of viscosity, boundary layer separation, and stall. For any given span-wise strip, 
let 𝐧𝐧𝑘𝑘 be local unit vector normal to the aerofoil chord, 𝐜𝐜𝑘𝑘 be the unit vector in the direction 
of the chord and 𝑐𝑐𝑘𝑘 be the local chord. 

Provided that 𝐶𝐶𝑟𝑟 and 𝐶𝐶𝑑𝑑 are known, equations (23) and (24) can be written for the strip 
and the associated bound vortex segment, in the cross-section plane where the aerofoil is 
defined: 

𝜌𝜌𝛻𝛻𝑘𝑘�[(𝐕𝐕𝒊𝒊 × 𝐝𝐝𝐥𝐥𝒊𝒊) ∙ 𝐧𝐧𝑘𝑘]2 + [(𝐕𝐕𝒊𝒊 × 𝐝𝐝𝐥𝐥𝒊𝒊) ∙ 𝐜𝐜𝑘𝑘]2 + 𝜌𝜌𝑐𝑐𝑘𝑘 �
𝜕𝜕𝛻𝛻
𝜕𝜕𝜕𝜕
�
𝑘𝑘

+ 𝜌𝜌𝑐𝑐𝑘𝑘𝛻𝛻𝑘𝑘��
𝑑𝑑𝐧𝐧𝑘𝑘
𝑑𝑑𝜕𝜕

∙ 𝐧𝐧𝑘𝑘�
2

+ �
𝑑𝑑𝐧𝐧𝑘𝑘
𝑑𝑑𝜕𝜕

∙ 𝐜𝐜𝑘𝑘�
2

= 

= ��
1
2
𝜌𝜌[(𝐕𝐕𝒊𝒊 ∙ 𝐧𝐧𝑘𝑘)2 + (𝐕𝐕𝒊𝒊 ∙ 𝐜𝐜𝑘𝑘)2]𝑑𝑑𝑑𝑑𝑘𝑘𝐶𝐶𝑟𝑟𝑘𝑘�

2
+ �

1
2
𝜌𝜌[(𝐕𝐕𝒊𝒊 ∙ 𝐧𝐧𝑘𝑘)2 + (𝐕𝐕𝒊𝒊 ∙ 𝐜𝐜𝑘𝑘)2]𝑑𝑑𝑑𝑑𝑘𝑘𝐶𝐶𝑑𝑑𝑘𝑘�

2
,

𝑖𝑖 = 1, … ,𝑁𝑁 

(25) 

Γ𝑁𝑁𝑘𝑘 

Γ𝑁𝑁𝑘𝑘−1 

Γ𝑁𝑁𝑘𝑘−2 

Γ1𝑘𝑘−1 

Γ1𝑘𝑘−2 

Γ1𝑘𝑘 

Γ𝑘𝑘𝑘𝑘−2 

Γ𝑘𝑘𝑘𝑘−1 

Γ𝑘𝑘𝑘𝑘 
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The local airspeed vector calculated at the aerodynamically bound vortex segment (the 
lifting surface quarter chord) is equal to the sum of the local kinematic velocity given by 
equation (21) and the velocities induced by all the other vortex segments distributed in 
vortex rings over the lifting surface and wake. Let 𝑀𝑀 be the number of time steps performed 
(and thus giving the number of vortex rings rows that was shed into the wake over the time 
history of the unsteady analysis), and (for the purpose of simplifying the equations) let the 
velocities induced by the four segments of each ring vortex be added together and treated as 
one velocity vector. The local airspeed vector is determined as: 

𝐕𝐕𝑘𝑘 = −�𝐕𝐕0 + 𝐯𝐯𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘 + 𝛀𝛀 × 𝐫𝐫𝒊𝒊�+ �𝛻𝛻𝑗𝑗𝑘𝑘𝐰𝐰𝑘𝑘𝑗𝑗

𝑁𝑁

𝑗𝑗=1

+ ��𝛻𝛻𝑗𝑗𝑘𝑘−𝑘𝑘+1𝐰𝐰𝑘𝑘𝑘𝑘𝑗𝑗

𝑁𝑁

𝑗𝑗=1

𝑀𝑀

𝑘𝑘=2

 (26) 

where 𝐰𝐰𝑘𝑘𝑘𝑘𝑗𝑗 represents the velocity induced by the vortex ring 𝑘𝑘𝑘𝑘 at the quarter-chord 
segment of the wing-bound vortex ring 𝑖𝑖, and is calculated using equation (22) and assuming 
a vortex strength equal to unity. Note that the sum for the current time step 𝑐𝑐 is written 
separately (and the subscript 𝑘𝑘 is omitted from the induced velocity) because only these 
vortex strength values represent unknown variables (known values from previous time steps 
are found in the time history of the wake). 

By inserting equation (26) in (25) and estimating the time derivative using a first-order 
backwards difference (other time stepping schemes could also be used), the following 
nonlinear system of equations is determined: 

𝑅𝑅𝒊𝒊(Γ𝒏𝒏) = �𝐸𝐸𝒊𝒊(𝛻𝛻𝒏𝒏) +
𝐺𝐺𝒊𝒊
Δ𝜕𝜕
� 𝛻𝛻𝑘𝑘𝑘𝑘 −

𝑐𝑐𝒊𝒊
Δ𝜕𝜕
𝛻𝛻𝑘𝑘𝑘𝑘−1 − 𝐹𝐹𝒊𝒊(𝛻𝛻𝒏𝒏) = 0, 𝑖𝑖 = 1, … ,𝑁𝑁 (27) 

where Δ𝜕𝜕 represents the time step, and several notations were introduced in order to simplify 
writing the equation. 

The nonlinear system of equations presented in (27) is solved at each time step in order 
to obtain updated values of the vortex ring strengths over the lifting surface. Since the 
Jacobian matrix can be obtained analytically (although it is not presented here for reasons of 
equations length), the solution is obtained using Newton’s classical method for nonlinear 
systems: 

Once the vortex rings strengths at the new time step are determined, the updated values 
of the aerodynamic force and moment with respect to the body-fixed coordinate system are 
obtained using the following two equations: 

𝐅𝐅𝒏𝒏 = ��𝜌𝜌𝛻𝛻𝑘𝑘𝑘𝑘𝐕𝐕𝒊𝒊 × 𝐝𝐝𝐥𝐥𝒊𝒊 + 𝜌𝜌𝑐𝑐𝑘𝑘
𝛻𝛻𝑘𝑘𝑘𝑘 − 𝛻𝛻𝑘𝑘𝑘𝑘−1

Δ𝜕𝜕
𝐧𝐧𝒊𝒊 + 𝜌𝜌𝑐𝑐𝑘𝑘𝛻𝛻𝑘𝑘𝑘𝑘

𝑑𝑑𝐧𝐧𝒊𝒊
𝑑𝑑𝜕𝜕 �

𝑁𝑁

𝑘𝑘=1

 (28) 

𝐌𝐌𝒏𝒏 = ��𝐫𝐫𝑘𝑘 × �𝜌𝜌𝛻𝛻𝑘𝑘𝑘𝑘𝐕𝐕𝒊𝒊 × 𝐝𝐝𝐥𝐥𝒊𝒊 + 𝜌𝜌𝑐𝑐𝑘𝑘
𝛻𝛻𝑘𝑘𝑘𝑘 − 𝛻𝛻𝑘𝑘𝑘𝑘−1

Δ𝜕𝜕
𝐧𝐧𝒊𝒊 + 𝜌𝜌𝑐𝑐𝑘𝑘𝛻𝛻𝑘𝑘𝑘𝑘

𝑑𝑑𝐧𝐧𝒊𝒊
𝑑𝑑𝜕𝜕 �

𝑁𝑁

𝑘𝑘=1

−
1
2
𝜌𝜌‖𝐕𝐕𝒊𝒊‖2𝑑𝑑𝑑𝑑𝑘𝑘𝑐𝑐𝑘𝑘𝐶𝐶𝑚𝑚𝑘𝑘(𝐜𝐜𝑘𝑘 × 𝐧𝐧𝑘𝑘)� 

(29) 

Passing from one time step to the next, the vortex rings shed into the wake must always 
be re-aligned with the updated local flow velocity since the wake represents a force-free 
surface. 

Tracking the time history of the wake shape is natural to be done in the inertial frame of 
reference and is applied in two steps. 
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First, at the beginning of each new time step 𝑐𝑐, the position of the lifting surface 
geometry is updated according to the prescribed kinematic motion (translation, rotation, 
flapping, etc.). The new positions of the four corners defining the ring vortices bound to the 
surface are determined: 

𝐗𝐗𝒏𝒏 = 𝐗𝐗𝒏𝒏−𝟏𝟏 + 𝐑𝐑𝜓𝜓
−1𝐑𝐑𝜃𝜃−1𝐑𝐑𝜙𝜙−1𝐯𝐯𝑘𝑘𝑘𝑘𝑘𝑘Δ𝜕𝜕 (30) 

The wake rings that were shed at previous time steps remain on the same positions they 
were occupying at the end of time step 𝑐𝑐 − 1. 

Because the lifting surface changed its position, a new row of vortex rings must be shed 
from the surface, thus linking the new position of the trailing edge with the existing wake 
rings. 

From the perspective of the body-fixed reference frame, this step represents a 
downstream convection of the wake due to the flow velocity. 

Next, all updated coordinates are also transformed into the body-fixed frame using 
equation (20), and the nonlinear system of equations (27) is iteratively solved (assuming a 
frozen lifting surface position and wake shape) until the new vortex strength values Γ𝑘𝑘 are 
converged to a desired precision. 

In the final step, the positions of the four corners of all ring vortices in the wake are 
displaced by taking into consideration the velocity induced by all the rings present in the 
flow field: 

𝐗𝐗𝒏𝒏 = 𝐗𝐗𝒏𝒏−𝟏𝟏 + ��𝛻𝛻𝑗𝑗𝑘𝑘𝐖𝐖𝑗𝑗

𝑁𝑁

𝑗𝑗=1

+ ��𝛻𝛻𝑗𝑗𝑘𝑘−𝑘𝑘+1𝐖𝐖𝑘𝑘𝑗𝑗

𝑁𝑁

𝑗𝑗=1

𝑀𝑀

𝑘𝑘=2

�Δ𝜕𝜕 (31) 

Here, 𝐖𝐖𝑘𝑘𝑗𝑗 represents the velocity induced by the vortex ring 𝑘𝑘𝑘𝑘 at any of the four 
corners of any vortex ring in the wake, and is calculated using equation (4), and assuming a 
vortex strength equal to unity. 

This second step represents the relaxation of the wake, and it is necessary for obtaining a 
physically-representative force-free wake surface. 

Because the current position 𝐗𝐗𝒏𝒏 of each wake point depends on the current position of 
all other points, and the induced velocities 𝐖𝐖𝑘𝑘𝑗𝑗 depend on the current position of the vortex 
ring corners, the inherent nonlinearity of the wake relaxation process is handled using the 
following proposed fictitious time-marching scheme: 

𝐗𝐗0 = 𝐗𝐗𝑘𝑘−1 

𝐗𝐗𝒕𝒕+𝟏𝟏 = 𝐗𝐗𝒕𝒕 + �
𝐗𝐗𝒕𝒕 − 𝐗𝐗𝑘𝑘−1

Δ𝜕𝜕
− ��𝛻𝛻𝑗𝑗𝑘𝑘𝐖𝐖𝑗𝑗(𝐗𝐗𝒕𝒕)

𝑁𝑁

𝑗𝑗=1

+ ��𝛻𝛻𝑗𝑗𝑘𝑘−𝑘𝑘+1𝐖𝐖𝑘𝑘𝑗𝑗(𝐗𝐗𝒕𝒕)
𝑁𝑁

𝑗𝑗=1

𝑀𝑀

𝑘𝑘=2

��Δ𝜏𝜏 

𝑤𝑤ℎ𝑒𝑒𝑐𝑐 �𝐗𝐗𝒕𝒕+𝟏𝟏 − 𝐗𝐗𝒕𝒕� < 𝜀𝜀, 𝜕𝜕ℎ𝑒𝑒𝑐𝑐 𝐗𝐗𝒏𝒏 = 𝐗𝐗𝒕𝒕+𝟏𝟏 

(32) 

where Δ𝜏𝜏 represents the fictitious time step, while the time-marching in the fictitious time 
guarantees an implicit approximation (at the current physical time step) of the induced 
velocities. 

It must be noted that this procedure is very computationally expensive, and thus its 
proposed usage is restricted to situations where the wake development is not well-captured 
by a single coordinates update calculation at each new time step, or to apply it only to a 
small number of time steps throughout the duration of the unsteady solution process. 
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4. VERIFICATION AND DISCUSSIONS 
In this section of the paper, a series of comparisons is performed between the results 
obtained with the nonlinear lifting line model and experimental results and/or results 
obtained with other widely used models. 

The test cases chosen focus on unsteady problems, to provide an image of the model’s 
capability and accuracy. 

4.1 Verification of unsteady aerofoil pitching and plunging results using 
experimental data 

The first unsteady flow verification is performed for a wing undergoing harmonic pitching 
and plunging oscillations, a case that was experimentally tested and published by Halfman 
[24]. 

The experimental model consisted of a NACA 0012 symmetric aerofoil with a chord of 
0.3048 meters spanning the wind tunnel width in order to isolate two-dimensional behaviour.  

For the numerical simulations, this is achieved by constructing a wing model with an 
aspect ratio of 30. 

The test was conducted at an airspeed of approximately 40 m/s and a Reynolds number 
of 1 × 106. 

For the pitching cases, the wing oscillates according to 𝛼𝛼 = 𝛼𝛼0 sin(𝜔𝜔𝜕𝜕), where the 
amplitude tested is equal to 𝛼𝛼0 = 13.48°. 

The harmonic plunging is described by a similar law of motion, ℎ = ℎ0 sin(𝜔𝜔𝜕𝜕) with the 
plunging amplitude being equal to ℎ0 = 0.0508 m. 

Halfman tested a series of reduced frequency values between 0.05 up to 0.4, while for 
this comparison, two values equal to 𝑘𝑘 = 0.1 and 𝑘𝑘 = 0.3 were chosen. 

The corresponding angular frequencies 𝜔𝜔 required for the complete description of the 
harmonic motion are determined based on the reduced frequency, knowing that 𝑘𝑘 =
(𝜔𝜔𝑐𝑐) (2𝑉𝑉∞)⁄ , where 𝑐𝑐 is the chord and 𝑉𝑉∞ is the freestream airspeed. 

The NACA 0012 aerofoil section nonlinear viscous characteristics are again determined 
using the XFOIL solver. 

Figures 2 and 3 present the variation of the aerofoil lift coefficient as a function of time, 
for the two reduced frequency values, in the cases of the pitching and plunging motion. It 
can be seen that the results obtained with the unsteady lifting line model are overall in good 
agreement with the experimental data. 

For the pitching motion, there are some differences in the predicted amplitude of the lift 
coefficient 𝐶𝐶𝐿𝐿, the differences being of approximately 10% for 𝑘𝑘 = 0.1 and 5-7% for 𝑘𝑘 =
0.3. 

In the case of plunging motion at the lower frequency, there is some phase shift between 
the computed and measured lift coefficient variation, attributed to a time-lagged behaviour of 
the unsteady component in Equation (5). 

The higher frequency results are in very close agreement. 

4.2 Comparison with unsteady vortex lattice for flapping wing 

It has been repeatedly proven (see for example [25]) that the Unsteady Vortex Lattice 
Method (UVLM) is capable of providing unsteady lift and thrust predictions with relatively 
high accuracy and at low computational cost for this type of analysis. 

The results obtained using the unsteady lifting line model will be verified against those 
determined using the UVLM for both low and high frequency flapping motion [25], as well 
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as a comparison with a three-dimensional CFD solver for a more complex flapping-dynamic 
twisting scenario [26]. 

   
Figure 2. Lift coefficient variation as a function of time for the pitching aerofoil with a reduced frequency of 0.10 

(left hand image) and 0.30 (right hand image) 

   
Figure 3. Lift coefficient variation as a function of time for the plunging aerofoil with a reduced frequency of 

0.10 (left hand image) and 0.30 (right hand image) 

It should be noted that previous work on flapping flight using an unsteady lifting line 
model [18] did not capture combined flapping-twisting motion. 

As the first step, a comparison is made for a rectangular wing undergoing a harmonic 
flapping motion. 

The geometry has an aspect ratio of 8, and is generated using a highly-cambered aerofoil 
from the NACA 83-series. 

The variation of the flapping angle is given by the simple sinusoidal law 𝛽𝛽 =
𝛽𝛽0 sin(𝜔𝜔𝜕𝜕). 

Results obtained with the UVLM [25] are available for two reduced frequency values, a 
lower 𝑘𝑘𝑤𝑤 = 0.08 and a very high 𝑘𝑘𝑤𝑤 = 1. Here, the reduced frequency is defined according 
to Walker and is calculated as 𝑘𝑘𝑤𝑤 = (4𝑙𝑙𝛽𝛽0𝑐𝑐) 𝑉𝑉∞⁄ , where 𝑙𝑙 is the half-span and 𝑐𝑐 represents 
the flapping frequency. 

The lower frequency flapping case is representative of a pigeon, having 2𝑙𝑙 = 0.89 m, 
𝛽𝛽0 = 30° and 𝑉𝑉∞ = 11 m/s. 

The high frequency scenario is more representative of insect flight, and thus the 
parameter change accordingly, with 2𝑙𝑙 = 0.032 m, 𝛽𝛽0 = 45° and 𝑉𝑉∞ = 1 m/s. For the 
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aerofoil section, only inviscid results obtained with XFOIL are used, to keep the setup as 
close as possible to the inviscid UVLM. 

Figures 4 and 5 present the variation of the steady and unsteady lift components during 
the flapping motion as calculated by the unsteady lifting line and by the UVLM. It must be 
stressed that the objective of this comparison is not to reproduce the lift generated by an 
actual bird or insect in flight, since the geometry and the kinematics of the wing model are 
much simplified. 

 
Figure 4. Comparison of steady and unsteady lift contributions for the flapping wing case having a reduced 

frequency of 0.08 

 
Figure 5. Comparison of steady and unsteady lift contributions for the flapping wing case having a reduced 

frequency of 1.00 
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Instead, the focal point is demonstrating the ability of the lifting line model of predicting 
the same aerodynamic behaviour as the vortex lattice in a field where it has been only rarely 
used, while bringing the distinct advantage of being able to account for effects such as 
boundary layer separation, stall, dynamic stall, lift hysteresis (provided unsteady high-quality 
aerofoil data is available) and calculating the unsteady bound circulation as a function of 
these effects (achieved through the nonlinear formulation of the model). 

It can be seen that for 𝑘𝑘𝑤𝑤 = 0.08, the unsteady contribution to 𝐶𝐶𝐿𝐿 is negligible, while for 
𝑘𝑘𝑤𝑤 = 1 the steady and unsteady contributions are both significant are out of phase. 

The results agree with the observation that unsteady flapping effects contribute to lift 
generation only if 𝑘𝑘𝑤𝑤 ≥ 0.66, and thus high frequency flapping cannot be numerically 
investigated using quasi-steady approaches. 

Figures 6 and 7 indicate how the wake development differs qualitatively between the 
two cases. 

 
Figure 6. Wake development for flapping wing case having a reduced frequency of 0.08 

 
Figure 7. Wake development for flapping wing case having a reduced frequency of 1.00 
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Figure 8. Comparison of lift coefficient results for the flapping-twisting wing at an angle of attack of 0 degrees 

(left hand image) and 4 degrees (right hand image) 

For the second step, a more sophisticated model of flapping flight combines the effects 
of flapping with dynamic twisting of the lifting surface. 

The results of the unsteady lifting line model are compared with three-dimensional CFD 
results based on the Euler equations [26], for a relatively high airspeed value of 
approximately 100 m/s. 

The wing geometry is a rectangular planform having an aspect ratio of 8 and a NACA 
0012 aerofoil section constant along the span. 

The sinusoidal flapping motion is described by 𝛽𝛽 = 𝛽𝛽0 cos(𝜔𝜔𝜕𝜕), with the amplitude 
𝛽𝛽0 = 15°. 

The dynamic twisting is done with respect to the leading edge line, with an amplitude 
that varies linearly along the span from 0° at the root section up to a maximum amplitude 
𝜃𝜃0 = 4° at the wing tips. 

The flapping and twisting motions are out of phase, with 𝜃𝜃 = 𝜃𝜃0((2𝜂𝜂) 𝑏𝑏⁄ ) sin(𝜔𝜔𝜕𝜕), 
where 𝜂𝜂 is the local span-wise coordinate and 𝑏𝑏 is the wing span. 

The out of phase motions mirror the flight of birds, as this technique can avoid boundary 
layer separation conditions. 

The flapping motion occurs at a reduced frequency 𝑘𝑘 = 0.10. As for the previous 
analysis, the inviscid aerodynamic characteristics of the NACA 0012 aerofoil are generated 
using the XFOIL solver. 

Comparative results are presented in figure 8 for the flapping-twisting wing placed at 
two angle of attack values: 0° and 4°. It can be seen that the agreement between the unsteady 
lifting line model and the CFD results is very good in both cases, in terms of the amplitude 
and phase of the lift coefficient variation. The present results are obtained with considerable 
speed-up and ease compared to the CFD simulation, while not sacrificing accuracy of 
computations. 

5. CONCLUSIONS 
The paper presented an unsteady nonlinear lifting-line model that can be used for the study 
of a wide range of problems of significant engineering interest. As a starting point, an 
unsteady vector form of the Kutta-Joukowski theorem was obtained, in order to extend the 
applicability of the method to lifting surfaces of general shape. Two-dimensional, viscous, 
nonlinear aerodynamic characteristics of the lifting surface aerofoil were introduced through 
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a nonlinear coupling performed at each span-wise strip. Comparisons with experimental 
results for an aerofoil in harmonic pitching and plunging motion showed accurate prediction 
of the lift coefficient variation. The model was then applied to the study of both low and high 
frequency flapping wings, and obtained results very similar to the much wider used UVLM, 
only offering the significant advantage of naturally introducing two-dimensional unsteady 
aerofoil behaviour, provided this data is available. Similar, the inviscid flow around a 
pitching-twisting wing was analysed with the same accuracy as inviscid CFD simulations, at 
reduced computational time and without requiring complex mesh generation. Overall, the 
proposed unsteady lifting-line model showed accuracy in dealing with several different 
applications. The model could be applied, without any modification, for the study of multiple 
lifting surfaces such as wing-tail combinations, tandem flapping wings or interacting wind 
turbines. 
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