
96 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.08

Syncing Mobile Applications with Cloud Storage Services

Paul POCATILU, Cătălin BOJA, Cristian CIUREA

Department of Economic Informatics and Cybernetics

The Bucharest University of Economic Studies

ppaul@ase.ro, catalin.boja@ie.ase.ro, cristian.ciurea@ie.ase.ro

Cloud data storage is an option available almost on any mobile platform. Nowadays, there

are multiple solutions for syncing data in mobile applications. The aim of the paper is to

analyze mobile application developers’ possibilities for syncing content using major free

cloud storage providers. The paper describes the cloud computing in mobile context and

highlights cloud providers APIs. Experimental results are analyzed in order to identify the

best cloud storage solution for syncing mobile applications, depending on the operating

system on which they are implemented.

Keywords: Cloud Computing, Mobile Application, Data Synchronization, Application

Programming Interface, REST, OAuth

Introduction

We are living in the era of agile and

always-available data storage [1], where it is

very important to have instant and

permanently access to the data, personal and

private, with which we are operating at work

or at home. The development of mobile

technologies and the spectacular growth of

mobile devices users created this opportunity

to quickly read our emails, to view our

documents from shared folders, to access all

the data saved in the cloud directly from the

personal smart-phone or tablet.

The mobile devices that we are taking with

us every day represents mobile clients for our

cloud storage subscriptions that we have to

main providers, such as Dropbox, SkyDrive,

Google Drive, Box, and so on. It is very

important to have the same or a similar user

experience on each mobile device,

independently by the operating system.

The choice of a certain cloud storage

provider (CSP) depends on the facilities

provided, the user experience and the storage

amount space that he offers. Some mobile

operators provides also cloud storage

solutions, such as Orange Cloud, which

allow to store your digital content, secure in

the cloud, available anytime and anywhere

[8].

Figure 1 presents the storage and backup

settings for iCloud solution, which is

integrated in every iOS operating system.

Apple provides by default a 5 GB free

storage plan for every iOS user.

Fig. 1. Storage and backup settings for

iCloud

The paper is structured in five sections, as

follows. The section Cloud Computing in

Mobile Context describes the main types of

cloud computing facilities and their

advantages when they are used in mobile

environments.

Section Comparative Analysis analyzes

experimental results and findings for main

cloud providers on the market, such as

Dropbox, SkyDrive and Box, in the mobile

context.

Section Cloud providers API presents all

related information to use cloud providers

1

Informatica Economică vol. 17, no. 2/2013 97

DOI: 10.12948/issn14531305/17.2.2013.08

APIs in order to develop mobile applications,

on different operating systems, which can

store their data in the cloud.

The paper ends with Conclusion and future

work section that summarize important

research results of this analysis and identifies

future development possibilities.

2 Cloud Computing in Mobile Context

Because many hardware and software

manufacturers have invested a lot in cloud

computing solutions, the evolution of public

and private cloud has increased in terms of

users, security, infrastructure and data

storage, [14]. In few years we will assist at

the moment when a user will go at work or at

home with the same tablet that will be

docked in a keyboard and will access all the

data from the cloud. The desktop computers

will disappear slowly and will be replaced

with simple monitors or mobile tablets that

will use the desktop virtualization

technology. When data storage in the cloud

will be cheaper, companies will replace all

the hardware equipment with these simple

monitors in order to use platform as a service

(PaaS), software as a service (SaaS), storage

as a service (STaaS), security as a service

(SECaaS), data as a service (DaaS), database

as a service (DBaaS) or test environment as a

service (TEaaS) [2].

Figure 2 below presents the cloud computing

architecture integrating all related cloud

solutions.

Fig. 2. Cloud services

In [1] is presented a set of challenging

storage issues for researchers and engineers.

One of these problems is how the storage

infrastructure is ensured to be scalable,

efficient, and reliable, without any access

disruptions, even for upgrades and

maintenance periods.

It is very important to have all our data

available on the personal smart-phone, but it

is crucial to ensure their security and their

integrity. Imagine the situation when a user

lost the smart-phone or someone stole it. If

that device was connected to all the shared

folders available in the cloud, the user can

say goodbye to his privacy and maybe to his

career. Taking these hypotheses into

consideration, it is obviously that we must

ensure high data security and integrity to all

data that can be accessed from different

devices connected in the cloud.

98 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.08

Hardware and software producers for mobile

devices have implemented intelligent

solutions to solve these issues, such as:

 the “Find my phone” facility, which

allows to localize a lost or stolen smart-

phone on the map;

 the password to access the smart-phone

when unlocking the screen;

 the backup facilities of personal data in

the cloud; if we consider Apple, they

have the iCloud solution, if we speak

about Android devices, Google allows to

store all the personal data, and also the

Windows Phone devices allows to back

up the data in Microsoft cloud solutions

(SkyDrive).

Figure 3 presents the “Find My Phone” tool

accessed from Windows Phone user

webpage.

Fig. 3. The “Find My Phone” tool accessed

from Windows Phone

In both cases, iOS and Windows Phone, a

user can locate his device on the map and can

send different commands to lock it or to

erase all the data stored on it. An important

disadvantage of mobile devices is related to

their portability that can represent a

vulnerability when the user loses the mobile

device. It is very important to ensure data

security on each mobile solution that can

represent an entry point for the entire data

storage account of a user that save his data to

the cloud.

Figure 5 presents the user interface of Google

Drive mobile application installed on an

iPhone device. The user can acces his files

and documents by categories and also he can

save them offline to reduce data traffic and

access them even when he does not have an

internet data connection.

Fig. 4. Google Drive interface on iOS

The cloud serves not only for data storage,

but also for testing an application on multiple

devices. There are many services that enable

developers to test their desktop or mobile

applications on multiple real devices through

a web interface [4].

3 Comparative Analysis of Cloud Storage

Beginning with the 1997 Dropbox start-up,

[19], new storage cloud services [16] have

been made available for both business and

public users. These services are offered by

independent providers for whom this is the

main business or by large companies that are

adding this new service to their portfolio, like

Apple, Amazon, Microsoft and others.

As a business model, cloud storage has

proved a growing success [15], Figure 5, as it

offers many advantages like:

 solution for disaster recovery and data

backup;

 centralized data management;

 data storage costs saving;

 virtualized storage resources;

 collaborative working and user shared

resources;

 scalability;

 business flexibility;

 synchronization over different devices.

Informatica Economică vol. 17, no. 2/2013 99

DOI: 10.12948/issn14531305/17.2.2013.08

Disadvantages and user concerns for public

cloud data storage:

 Security, privacy and ownership; recent

concerns are highlighted by Bring Your

Own Device (BYOD), [13] companies

policies as is opens new security threats

based on users unprotected and

uncontrolled devices that are integrated in

secure environments;

 latency over WANs;

 little or none data control regarding; how

and where data is stored;

 future performance issue.

Fig. 5. Worldwide forecast regarding cloud storage subscription 2012-2017. Source [15]

A comparative analysis of cloud storage

services must take into consideration a set of

measurable criteria [21]. For this research we

considered that in terms of syncing

efficiency, the next criteria are considered

important for the comparison:

 availability as the number of different

mobile platforms that have a native or

independent client sued to access the

storage. The iCloud is an IOS native

application and it allows only Apple

mobile clients to access the cloud.

 content type diversity as the number of

file types allowed to be stored in the

cloud. For example the Amazon Cloud

Drive mobile client allows only the

upload of photos or music files.

 ease of use in terms of provided

functionalities; these allows users to

manage their content by syncing multiple

local folders, collaborating with other

users, tracking and recovering file

versions;

 security functions used by users to

password protect files, encrypt files,

private and public share of files;

Table 1 below presents a comparative

analysis of cloud storage solutions on

different operating systems.

Table 1. Public cloud storage solutions on different platforms. Source [18].

 Mobile OS

CSP Android Windows Phone iOS BlackBerry Public API
Dropbox yes no* yes yes yes
SkyDrive yes yes yes no yes

Box yes yes yes no yes
Ubuntu One yes no yes no yes
Google Drive yes no no no yes

iCloud no no yes no yes
Sugarsync yes yes yes yes yes
Spideroak yes no yes no yes

100 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.08

As seen from Table 1, the Dropbox solution

is not implemented as a native application on

Windows Phone platform. Third-party

developers created a Dropbox client

application that can run on Windows Phone

operating system.

Analysis of specific target users groups can

describe other usage patterns. A Strategy

Analytics Report [21] done on cloud media

usage has highlighted a significant link

between media providers that offer also

integrated cloud storage, Figure 6.

Fig. 6. Market share of cloud storage

providers for media content. Source [22]

In this case the media provider integrates in

the primary service a secondary cloud

storage service and thus having for this

segment a greater market share. Taking into

account criteria defined for this research, the

same cloud storage provider, Apple with its

iCloud, doesn’t qualify as it doesn’t provide

a cross platform public API.

From a business perspective, Nasuni [17] has

conducted a cloud storage survey based on:

 functionality;

 price;

 performance based on a high level of

writes, reads and deletes operations for

files that varies in size from 1 KB to

1GB, on data availability and also

scalability.

The survey has testes the service provided by

five CSPs: Amazon S3, Microsoft Azure

Blob Storage, Google Cloud Storage, HP

Cloud Object Storage, and Rackspace Cloud

Files.

Fig. 7. Gartner public CSP’s rating based on six criteria. Source [12]

A market research done by Gartner, [12], has

taken into account CSPs that:

 offer APIs for data access and protocols

that include Internet APIs, such as REST;

 offer transparent on-demand accessibility

and scalability;

 offer definable data security, reliability

and availability as part of an SLA;

Informatica Economică vol. 17, no. 2/2013 101

DOI: 10.12948/issn14531305/17.2.2013.08

 offer pay-as-you-go pricing for capacity

and data transfer at a granular level;

 have an established market presence.

They rated ten public CSPs, figure 7, by

measuring measured six critical criteria:

 accessibility as the ease of accessing the

service and its performance;

 manageability;

 pricing;

 availability and fault tolerance;

 security;

 value-added services.

on four different use cases:

 primary storage;

 backup;

 archive;

 content distribution.

4 Case Study: Cloud Storage APIs Usage

in Android Applications

The purpose of this case study is to

implement a native application that uses the

API provided by several cloud services. The

mobile application targeted the Android

platform because of its important coverage.

APIs were used from the following cloud

services: Dropbox, Google Drive and Box.

The application focuses on the following

basic services:

 authentication and authorization;

 file upload;

 file download.

File versioning and revisions are discussed in

context.

The file content is taken from an input box,

stored in a file, and then uploaded. When

downloading files, the remote file content is

stored in a local file and then it is stored in a

widget. This is a simple usage scenario for

such type of dynamically storing data in a

cloud.

Each cloud provider requires developers to

have an account on their Web site.

All native classes, for all tested cloud

services, use REST API. The authorization is

based on OAuth 1.0 standard or OAuth 2.0

framework.

For Android, the APIs include activities for

simple tasks like authorization and

authentication, folder and file selection etc.

4.1 Dropbox API

In order to use the API, the developer is

required to register an application that will

receive a unique key. The key is used for all

API access.

There are three types of APIs that can be

used in applications [9]:

 Dropbox Chooser, for file selection in

Web pages;

 Sync API, for simple file

synchronization;

 Core API, for full access to Dropbox

features.

In order to use the Core API, the SDK has to

be downloaded. Core API SDK is available

at: https://dropbox.com/developers/core/sdk.

The SDK includes several jar libraries that

will be linked in the Android application’s

project.

The Dropbox authentication is based on

OAuth 1.0 protocol.

The initialization and authentication

initiation is presented in Listing 1.

The application key and application’s secret

are stored in Constants class.

Listing 1. Dropbox authentication process
AppKeyPair appKeyPair = new AppKeyPair(Constants.DROPBOX_APP_KEY,

Constants.DROPBOX_APP_SECRET);

AndroidAuthSession androidAuthSession = new AndroidAuthSession(appKeyPair,

AccessType.DROPBOX);

//the type of dropboxApi is DropboxAPI<AndroidAuthSession>

dropboxApi = new DropboxAPI<AndroidAuthSession>(androidAuthSession);

//start authentication process

dropboxApi.getSession().startAuthentication(MainActivity.this);

The dropboxApi member will be used to

access all the provided methods for file

management. AndroidAuthenticationSession

class is used to store records on currently

logged user and provides methods for

authentication using a dedicated Android

activity or a web page.

https://dropbox.com/developers/core/sdk

102 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.08

The method startAuthentication() will begin

the authentication and authorization process

by providing screens for sign in and for

application authorization. The user interface

depends on the existence of the Dropbox

client. The Dropbox client application for

Android is not required to be installed on the

mobile device.

If the client application is not installed on the

device, the user will be redirected to a Web

page were the user can authenticate using the

email address and the password. Figure 8

(left) presents the Sign in page and the

acceptance page for the application to access

the account (right).

Fig. 8. Dropbox’s client authentication window in a Web page

If on the mobile device is installed the

Dropbox client, the authentication and

acceptance are controlled using native

Android activities. In this example, the client

was previously authenticated by the Dropbox

client application so the sign in activity is not

displayed. The application authorization

activity is displayed as in Figure 9.

The results of user interaction are controlled

by authenticationSuccessful() method, that

returns true or false, depending on several

actions, such as user’s selection, correct

inputs, network availability, etc. The tokens

resulted after authorization are stored by

calling finishAuthentication() method. The

above methods are available from

the AndroidAuthenticationSession class and

will be called within onResume()

or onActivityResults() callbacks from current

Activity class.

After the user authorizes the application to

access the Dropbox account, all the file

operation options can be used by it.

Fig. 9. Dropbox’s integrated client

authentication activity

The application uses classes that extend

AsyncTask for file handling operations. This

is required because these operations are made

over a network and these requests have to be

implemented in a separate thread [7]. The

Informatica Economică vol. 17, no. 2/2013 103

DOI: 10.12948/issn14531305/17.2.2013.08

parameters required by the background task

are encoded in the params variable.

Listing 2 presents the operations used to store

a file on the cloud.

In this example, the putFile() method takes

as non-null parameters the remote file name,

the input stream associated to the local file

and the content length (in bytes). The remote

file is updated to the newest version.

Listing 2. Excerpt from doInBackgound() function for file upload using Dropbox API
//take data (params[1] and write to a temporary local file (params[0])

BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(new File(params[0])));

bufferedWriter.write(params[1]);

bufferedWriter.close();

//read the content of the local file (params[0]) and write the remote file(params[2])

File file = new File(params[0]);

FileInputStream inputStream = new FileInputStream(file);

dropboxApi.putFile(params[2], inputStream, file.length(), null, null);

Retrieving a file from the cloud is done using

the remote file name, including the path

starting from the root. The application

implements this operations as in Listing 3.

Listing 3. Excerpt from doInBackgound() function for file download using Dropbox API
File localFile = new File(params[0]);

//if the local file doesn't exists it will be created

FileOutputStream outputStream = new FileOutputStream(localFile);

//take the content from remote file (param[1]) to local file

dropboxApi.getFile(params[1], null, outputStream, null);

outputStream.close();

//read the first line of the saved file (as example, to check the content)

BufferedReader bufferedReader = new BufferedReader(new FileReader(localFile));

result = bufferedReader.readLine();

bufferedReader.close();

The method getFile() receives the remote file

name and the output stream associated to the

local file were the remote file content will be

written.

4.2 Google Drive API

Google Drive SDK allows application

integration in browser, access to files, folder

and other features of Google Drive from user

applications [11].

In order to access these services the

developer has to enable the APIs on the

Google APIs Console, Figure 10. Drive API

and Drive SDK services has to be turned on.

In order to use the API for Google Drive, the

Android project requires the installation and

use of Drive API and Google Play services.

Fig. 10. Drive services activation on Google account

The developer has to register the application

with the Google APIs Console. The

registration implies the use of the same

application certification SHA-1 fingerprint.

After the registration process, the developer

104 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.08

will receive the keys required for

authorization using OAuth 2.0.

Listing 4 presents the authentication in

authorization sequence.

GoogleAccountCredential class is used for

this process. If the authorization is

successful, the Drive service is initialized.

Drive class represent the starting point for

interacting with Drive API.

Listing 4. Google Drive authentication
//GoogleAccountCredential

credential = GoogleAccountCredential.usingOAuth2(this, DriveScopes.DRIVE);

//acountName is the name of selected Google account

credential.setSelectedAccountName(accountName);

//Drive

driveService = new Drive.Builder(AndroidHttp.newCompatibleTransport(),new GsonFactory(),

credential).build();

Figure 11 presents the confirmation screen

used to authorize the application to access

Google Drive.

Fig. 11. Drive authorization confirmation

AndroidManifest configuration file

requires android.permission.GET_ACCOUN

TS - permission which is mandatory when

user has to select the desired account to be

used with Google Drive.

All file operations require the use of MIME

types.

The access to Files collection is made using

files() method. Files collection includes

methods to copy, delete, get and insert files.

The File class (used in Listing 5 and 6) is

defined in

com.google.api.services.drive.model package

and includes file information (metadata) like

name (title), creation date, MIME type etc.

Listing 5 represents the sequence used to

upload a file using Google Drive. The file

metadata are initialized using

com.google.api.services.drive.model.File

class, and the file content is initialized

using java.io.File class. After the

initialization, the file is added to Files

collection using execute() method, which is

applied on an Insert object created by insert()

method of the Files class.

If the resulting File is not null, the operation

was successfully.

Listing 5. Excerpt from doInBackgound() function for file upload using Google Drive API
String mime = "text/plain";

//write data (params[1]) to local file (params[0])

BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(new

java.io.File(params[0])));

bufferedWriter.write(params[1]);

bufferedWriter.close();

Uri fileUri = Uri.fromFile(new java.io.File(params[0]));

// Content initialization

java.io.File file = new java.io.File(fileUri.getPath());

FileContent fileContent = new FileContent(mime, file);

//Metadata initialization

File fileMetadata = new File();

fileMetadata.setTitle(file.getName());

fileMetadata.setMimeType(mime);

Informatica Economică vol. 17, no. 2/2013 105

DOI: 10.12948/issn14531305/17.2.2013.08

File resFile = driveService.files().insert(fileMetadata, fileContent).execute();

In Listing 6 it is presented the sequence used

to download a file from a Google Drive

account. In order to download the file, its

URI is required. File information can be

obtained by executing a search based on the

required parameters. In this example, the file

name is used as search criteria. This is done

by setting the query as title=’filename’.

Listing 6. Excerpt from doInBackgound() function for file download using Google Drive API
// get the file by the name; set the query strig

Files.List request = driveService.files().list().setQ("title='" + params[0] + "'");

FileList files = request.execute();

if (files != null)

{

 //get the first file info

 File file = files.getItems().get(0);

 //check the url

 if (file.getDownloadUrl() != null && file.getDownloadUrl().length() > 0)

{

 //get file content

 HttpResponse resp = driveService.getRequestFactory().buildGetRequest(

 new GenericUrl(file.getDownloadUrl())).execute();

 BufferedReader bufferedReader = new BufferedReader(

 new InputStreamReader(resp.getContent()));

 //read the first line as example

 content = bufferedReader.readLine();

}

File downloading is done using a HTTP

request based on file’s URI. The file content

is read using the response’s input stream.

4.3 Box API

Box provides several SDKs as open source

libraries [10]. The current version of Box for

Android is REST API(V2). Box API uses

OAuth 2.0 authentication framework.

As on other platforms, developers need to

register theirs applications in order to use the

API. They will receive the API key. The

OAuth 2.0 requires the client’s secret key

that is generated for each application.

In order to use the Box APIs in a project, an

Android library project is provided with full

source code.

The library includes Android activities for

authentication and for file and folder

selection.

Listing 7. Box authentication and authorization
Intent intent = OAuthActivity.createOAuthActivityIntent(this, Constants.BOX_CLIENT_ID,

Constants.BOX_CLIENT_SECRET);

this.startActivityForResult(intent, Constants.REQ_CODE_BOX);

...

//BoxAndroidClient

boxClient = data.getParcelableExtra(OAuthActivity.BOX_CLIENT);

The user authentication and application

authorization activities are presented in Fig.

12. After the user authorizes the application,

the API can be used to access the files. An

instance of BoxAndroidClient is initialized

after the authorization.

File operations are performed

using BoxFilesManager class. An instance of

this class can be obtained calling

the getFilesManager() method from

the BoxAndroidClient class.

Uploading a file requires the id of the parent

folder. The root folder’s id is 0. The files and

folders ids can be obtained using dedicated

pickers activities (FilePickerActivity or

FolderPickerActivity) or by searching the

item (folder or file) by its name

using BoxSearchManager class.

106 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.08

Fig. 12. Box authentication and authorization screens

Listing 8 presents the sequence used to

upload a file in the root folder of the Box

account. The folder id is initialized in code.

The method uploadFile() is called to upload

the new file. If the file exists and needs to be

updated, uploadNewVersion() method will be

used. This methods requires the id of the

existing file.

Listing 8. Excerpt from doInBackgound() function for file upload using Box API
File localFile = new File(params[0]);

//take data (params[1] and write to a temporary local file (params[0])

BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(localFile));

bufferedWriter.write(params[1]);

bufferedWriter.close();

//root folder

String folderId = "0";

BoxFileUploadRequestObject boxFileUploadRequestObject =

BoxFileUploadRequestObject.uploadFileRequestObject(folderId, params[2], localFile);

//upload a new file

boxClient.getFilesManager().uploadFile(boxFileUploadRequestObject);

Listing 9 presents the code used to download

a file using Box API. The

method downloadFile() requires the id of the

file that needs to be downloaded. In this

example, the id is obtained by using search()

method from the BoxSearchManager class.

Another option is to use dedicated Android

picker activities for files and folders.

Listing 9. Excerpt from doInBackgound() function for file download using Box API
BoxDefaultRequestObject defaultRequest = new BoxDefaultRequestObject();

//search the remote file by name in the default folder

BoxCollection coll = boxClient.getSearchManager().search(params[1], defaultRequest);

if (coll.getEntries().size() != 0)

{

 File localFile = new File(params[0]);

 //get the id of the remote file and store locally the remote file

 boxClient.getFilesManager().downloadFile(coll.getEntries().get(0).getId(), localFile,

null, null);

 //read the first line of the saved file (as example, to check the content)

Informatica Economică vol. 17, no. 2/2013 107

DOI: 10.12948/issn14531305/17.2.2013.08

 BufferedReader bufferedReader = new BufferedReader(new FileReader(localFile));

 result = bufferedReader.readLine();

 bufferedReader.close();

}

In this example the file used for

synchronization is stored in the root folder.

5 Conclusion and future work

Almost all cloud services provides free APIs

for developers. As it can be seen from the

examples, the code required to use the APIs

is intuitive, easy to use and it generally

follows the same pattern.

All platforms include an authentication and

authorization phase that uses a Web based

access or a dedicated Android activity. The

user is required to authorize the application.

The authorization tokens can be stored so

that further use of the application does not

require user interaction at this level.

When using smart solutions for syncing

mobile applications to the cloud, users save

time and money for syncing their files and

documents, which represent an important

thing in a business process.

A very delicate aspect of this anytime and

anywhere advantage that is offered by these

solutions is related to data security and users

must agree that his files and documents can

be automatically scanned by cloud storage

providers in order to extract some sensitive

information.

References

[1] S. Nagarajan, Era of Agile and Always-

Available Data Storage, Computer Now,

March 2013, Available at:

http://www.computer.org/portal/web/com

putingnow/archive/march2013?lf1=3634

08692f248216093269c6779825

[2] Wikipedia, Cloud computing, Available

at: http://en.wikipedia.org/

 [3] Android Developers, Syncing to the

Cloud, Available at:

http://developer.android.com/training/clo

udsync/index.html

[4] Smashing Magazine, Getting to Know the

Android Platform: Building, Testing and

Distributing Apps, Available at:

http://mobile.smashingmagazine.com/201

2/06/01/getting-to-know-android/

[5] How to Sync App Data across Android

Devices, Available at:

http://android.appstorm.net/how-

to/synchronization/how-to-sync-app-

data-across-android-devices-2/

[6] 12 Awesome Android Apps for Plugging

in to the Cloud, Available at:

http://android.appstorm.net/roundups/12-

awesome-android-apps-for-plugging-in-

to-the-cloud/

[7] P. Pocatilu, Programarea dispozitivelor

mobile, ASE Publishing House,

Bucharest

[8] Orange Cloud, Available at:

https://cloud.orange.ro

[9] Developers – Dropbox, Available at:

https://www.dropbox.com/developers

[10] Box Platform Developer Documentation,

Available at:

https://developers.box.com/sdks/

[11] Google Drive SDK – Google Developers,

Available at:

https://developers.google.com/drive/

[12] Gene Ruth, Arun Chandrasekaran, Critical

Capabilities for Public Cloud Storage

Services, Gartner Report, January 2013,

Available at http://www.gartner.com/

technology/reprints.do?id=1-

1D9C6ZM&ct=121216&st=sg

[13] Lucas Mearian, Mobile devices bring cloud

storage -- and security risks -- to work,

ComputerWorld, June 2012, available

online at http://www.computerworld.com

[14] Han Qi, Abdullah Gani, “Research on

Mobile Cloud Computing: Review, Trend

and Perspectives,” Second International

Conference on Digital Information and

Communication Technology and it's

Applications (DICTAP), 2012, Bangkok, pp.

195 – 202, ISBN 978-1-4673-0733-8

[15] Jagdish Rebello, “Subscriptions to Cloud

Storage Services to Reach Half-Billion

Level This Year,” IHS iSuppli Market

Research, September 2012, Available at:

http://www.isuppli.com

108 Informatica Economică vol. 17, no. 2/2013

DOI: 10.12948/issn14531305/17.2.2013.08

[16] Wikipedia, Comparison of file hosting

services, 2013, available online at

http://en.wikipedia.org/wiki/Comparison

_of_file_hosting_services

[17] Nasuni, The State of Cloud Storage

2013 Industry Report, A Benchmark

Comparison of Performance,

Availability and Scalability, Available

at: http://www6.nasuni.com/rs/nasuni/

images/2013_Nasuni_CSP_Report.pdf

[18] E. Hamburger, “Google Drive vs.

Dropbox, SkyDrive, SugarSync, and

others: a cloud sync storage face-off,”

The Verge, April 2012, Available at:

http://www.theverge.com/

[19] V. Barret, Dropbox Hits 100 Million

Users Says Drew Houston, November

2012, Available at:

http://www.forbes.com

[20] M. Endler, Apple, Dropbox Lead Cloud

Storage Market, Available at:

http://www.informationweek.com

[21] M. Popa, “Characteristics of the Audit

Process for ICT Mobile System,”

Proceedings of the Tenth International

Conference on Informatics in Economy

– Education, Research & Business

Technologies, Academy of Economic

Studies, Bucharest, 05 – 07 May 2011,

ASE Publishing House, Bucharest, ISSN

2247-1480, ISSN-L 2247-1480.

[22] J. Fingas, Strategy Analytics: iCloud,

Dropbox and Amazon top cloud media

in the US, Available at:

http://www.engadget.com/

Paul POCATILU graduated the Faculty of Cybernetics, Statistics and

Economic Informatics in 1998. He achieved the PhD in Economics in 2003

with thesis on Software Testing Cost Assessment Models. He has published

as author and co-author over 45 articles in journals and over 40 articles on

national and international conferences. He is author and co-author of 10

books, (Mobile Devices Programming and Software Testing Costs are two of

them). He is associate professor in the Department of Economic Informatics

of the Academy of Economic Studies, Bucharest. His current research areas are software

testing, software quality, project management, and mobile application development.

Catalin BOJA is associate professor at the Economic Informatics and

Cybernetics Department at the Academy of Economic Studies in Bucharest,

Romania. In June 2004 he has graduated the Faculty of Cybernetics,

Statistics and Economic Informatics at the Academy of Economic Studies in

Bucharest. He is a team member in various undergoing university research

projects where he applied most of his project management knowledge. His

work currently focuses on the analysis of mobile computing, information

security and cryptography. He is currently holding a PhD degree on

software optimization and on improvement of software applications performance.

Cristian CIUREA has a background in computer science and is interested

in collaborative systems related issues. He has graduated the Faculty of

Economic Cybernetics, Statistics and Informatics from the Bucharest

University of Economic Studies in 2007. He has a master in Informatics

Project Management (2010) and a PhD in Economic Informatics (2011)

from the Bucharest University of Economic Studies. Other fields of interest

include software metrics, data structures, object oriented programming in

C++, windows applications programming in C# and mobile devices

programming in Java.

