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In this paper we obtain soliton solutions to chiral nonlinear Schrödinger’s equation with the Bohm potential by

the modified simple equation method and trial equation method. Solitons and shock wave solutions are obtained.
Additionally, singular periodic solutions are revealed as a by-product of these approaches and these are also listed.
The existence criteria of these form of solutions are also presented.
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1. Introduction
The dynamics of chiral solitons along with its pertur-

bations has been an ongoing research area, in nuclear
physics, for the past few decades [1–15]. This model
has gained popularity ever since its first appearance in
the literature by Jackiw et al. during 1990 [9]. Since
this point onwards, this is also famously referred to as
the Jackiw–Pi model. Later, this model was studied in
(2+1)-dimensions and time-dependent coefficients [3, 4].
Subsequently, this area of research expanded along sev-
eral avenues. These include soliton perturbation the-
ory [2], the Lie symmetry analysis [12], semi-inverse vari-
ational principle [5], numerical simulation of the govern-
ing model [8] and finally the generalization of the model
to retrieve solitons and other solutions [14]. This pa-
per revisits the governing model that is chiral nonlinear
Schrödinger’s equation (C-NLSE) with the Bohm poten-
tial that is treated as a perturbation term. There are two
integration schemes implemented to extract solitons and
shock wave solutions to the perturbed model with the
Bohm potential. These are simple equation method and
trial equation algorithm. The existence criteria of these
solutions are also presented. The details now follow.

1.1. Governing model
The perturbed C-NLSE with the Bohm potential is

given by

iqt + aqxx + ib (qq∗x − q∗qx) q = iαq
|q|xx
|q|

. (1)

∗corresponding author

In Eq. (1), q is the complex valued dependent vari-
able, x, t are the independent variables. Moreover, in
(1), the first term represents the evolution term which
governs how the wave evolves with time, the second is
the dispersion term with coefficient a and the third term
is through derivative coupling, its coefficient b is the non-
linear coupling constant. This kind of nonlinearity is also
known as the current density. The right-hand side of (1)
is called the Bohm potential that is also known as the
internal self-potential that was introduced by de Broglie
and explored by Bohm to introduce the hidden variable
theory, its coefficient is denoted by α. Here, a, b and α
are all real-valued constants.

2. A rapid overview
of modified simple equation method

Suppose we have a nonlinear evolution equation in the
form

P (u, ut, ux, utt, uxt, uxx, ...) = 0, (2)
where P is a polynomial in u(x, t) and its partial deriva-
tives in which the highest order derivatives and nonlinear
terms are involved. In the following, we give the main
steps of this method.
Step-1: We use the transformation
u(x, t) = U(ξ), ξ = x− ct, (3)

where c is a constant to be determined, to reduce Eq. (2)
to the following ordinary differential equation (ODE):

Q (U,U ′, U ′′, U ′′′, ...) = 0, (4)
where Q is a polynomial in U(ξ) and its total derivatives,
while ′ = d/dξ.
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Step-2: We suppose that Eq. (4) has the formal
solution

U(ξ) =

N∑
l=0

al

(
ψ′ (ξ)

ψ (ξ)

)l
, (5)

where al are constants to be determined, such that
aN 6= 0, and ψ (ξ) is an unknown function to be de-
termined later.
Step-3: We determine the positive integer N in Eq. (5)

by considering the homogeneous balance between the
highest order derivatives and the nonlinear terms in
Eq. (4).
Step-4: We substitute (5) into (4), then we calcu-

late all the necessary derivatives U ′,U ′′ ,... of the un-
known function U(ξ) and we account the function U(ξ)
. As a result of this substitution, we get a polynomial of
ψ′ (ξ) /ψ (ξ) and its derivatives. In this polynomial, we
gather all the terms of the same power of ψ−j (ξ), j = 0,
1, 2,... and its derivatives, and we equate with zero all
the coefficients of this polynomial. This operation yields
a system of equations which can be solved to find ak
and ψ (ξ). Consequently, we can get the exact solutions
of Eq. (2).

2.1. Application to C-NLSE

In order to solve Eq. (1) by the modified simple equa-
tion method, we use the following wave transformation:

q(x, t) = U(ξ)e iφ(x,t), q∗(x, t) = U(ξ)e− iφ(x,t), (6)
where U(ξ) represents the shape of the pulse, ξ =
k (x− vt) and φ(x, t) = −κx + ωt + θ. The func-
tion φ(x, t) is the phase component of the soliton, κ
is the soliton frequency, while ω is the wave num-
ber, θ is the phase constant and v is the velocity
of the soliton.

Substituting Eq. (6) into Eq. (1) and then decomposing
into real and imaginary parts yields a pair of relations.
The imaginary part gives

(2aκ+ v) kU ′ + αk2U ′′ = 0, (7)
while the real part gives

ak2U ′′ −
(
aκ2 + ω

)
U − 2bκU3 = 0. (8)

It needs to be noted that Eqs. (7) and (8) are to be solved
together in order to integrate Eq. (1). From Eq. (7),
it is possible to determine the velocity of the soliton by
solving for v in terms of the remaining parameters, where
the soliton expression for the function U is given later
in (9) and (24).
2.1.1. Case-1

Balancing U ′′ with U3 in Eq. (8), then we get N = 1.
Consequently, we reach

U (ξ) = a0 + a1

(
ψ′ (ξ)

ψ (ξ)

)
. (9)

Substituting Eq. (9) into Eq. (8) and then setting the
coefficients of ψ−j , j = 0, 1, 2, 3 to zero, we obtain a set
of algebraic equations as follows:
ψ−3 coeff.:

−2a1 (ψ′)
3 (
κba21 − ak2

)
= 0, (10)

ψ−2 coeff.:
−3a1ψ′

(
2κba0a1ψ

′ + ak2ψ′′
)
= 0, (11)

ψ−1 coeff.:
−a1

[(
6κba20 + aκ2 + ω

)
ψ′ − ak2ψ′′′

]
= 0, (12)

ψ0 coeff.:
−a0

(
2κba20 + aκ2 + ω

)
= 0. (13)

Solving this system, we obtain

a0 = ±
√
−aκ

2 + ω

2bκ
,

a1 = ±
√

a

bκ
k, (14)

and

ψ′′ = ±1

k

√
−2 (aκ2 + ω)

a
ψ′, (15)

ψ′′′ = −
2
(
aκ2 + ω

)
ak2

ψ′. (16)

From Eqs.(15) and (16), we can deduce that

ψ′ = ±
√
− a

2 (aκ2 + ω)
kc1 e

± 1
k

√
− 2(aκ2+ω)

a ξ, (17)

and

ψ = − ak2

2 (aκ2 + ω)
c1 e
± 1
k

√
− 2(aκ2+ω)

a ξ + c2, (18)

where c1 and c2 are constants of integration. Substitut-
ing Eq. (17) and (18) into Eq. (9), we obtain the following
exact solution to Eq. (1):

q (x, t) =

[
±
√
−aκ

2 + ω

2bκ
±
√

a

bκ
k

×

±
√
− a

2(aκ2+ω)kc1 e
± 1
k

√
− 2(aκ2+ω)

a k(x−vt)

− ak2

2(aκ2+ω)c1 e
± 1
k

√
− 2(aκ2+ω)

a k(x−vt) + c2




×e i (−κx+ωt+θ).

If we set

c1 = −
2
(
aκ2 + ω

)
ak2

e±
1
k

√
− 2(aκ2+ω)

a ξ0 , c2 = ±1,

we obtain

q (x, t) = ±
√
−aκ

2 + ω

2bκ
(19)

× tanh

(
1

k

√
−aκ

2 + ω

2a
(k (x− vt) + ξ0)

)
e i (−κx+ωt+θ),

q (x, t) = ±
√
−aκ

2 + ω

2bκ
(20)

× coth

(
1

k

√
−aκ

2 + ω

2a
(k (x− vt) + ξ0)

)
e i (−κx+ωt+θ),

where Eqs. (19) and (20) represent dark soliton and sin-
gular soliton solutions respectively. These solitons are
valid for

a
(
aκ2 + ω

)
< 0.
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q (x, t) = ±
√
aκ2 + ω

2bκ
(21)

× tan

(
1

k

√
aκ2 + ω

2a
(k (x− vt) + ξ0)

)
e i (−κx+ωt+θ),

q (x, t) = ±
√
aκ2 + ω

2bκ
(22)

× cot

(
1

k

√
aκ2 + ω

2a
(k (x− vt) + ξ0)

)
e i (−κx+ωt+θ),

where Eqs.(21) and (22) represent singular periodic solu-
tions. These solutions are valid for

a
(
aκ2 + ω

)
> 0.

2.1.2. Case-2
By using transformation U = V

1
2 , Eq. (8) becomes

ak2
(
− (V ′)

2
+ 2V V ′′

)
− 4

(
aκ2 + ω

)
V 2

−8bκV 3 = 0. (23)
Balancing V V ′′ or (V ′)

2 with V 3 in Eq. (23), then we
get N = 2. Consequently, we reach

V (ξ) = a0 + a1

(
ψ′ (ξ)

ψ (ξ)

)
+ a2

(
ψ′ (ξ)

ψ (ξ)

)2

. (24)

Substituting Eq. (24) into Eq. (23) and then set-
ting the coefficients of ψ−j , j = 0, 1, 2, 3, 4,
5, 6 to zero, we obtain a set of algebraic equations
as follows:
ψ−6 coeff.:

−8a22 (ψ′)
6 (
κba2 − ak2

)
= 0, (25)

ψ−5 coeff.:

−12a2 (ψ′)
4((

2κba1a2−ak2a1
)
ψ′+ak2a2ψ

′′)=0, (26)
ψ−4 coeff.:

− (ψ′)
3 [(

4κ2aa22 + 24κba0a
2
2 + 24κba21a2

−12ak2a0a2 − 3ak2a21 + 4ωa22
)
ψ′ + 18ak2a1a2ψ

′′

−4ak2a22ψ′′′
]
= 0, (27)

ψ−3 coeff.:

−2 (ψ′)2
[(
4κ2aa1a2 + 24κba0a1a2 + 4κba31

−2ak2a0a1+4ωa1a2
)
ψ′+

(
10ak2a0a2+2ak2a21

)
ψ′′

−3ak2a1a2ψ′′′
]
= 0, (28)

ψ−2 coeff.:(
−8κ2aa0a2 − 4κ2aa21 − 24κba20a2 − 24κba0a

2
1 (29)

−8ωa0a2−4ωa21
)
(ψ′)

2
+
(
4ak2a0a2+2ak2a21

)
ψ′ψ′′′

−6ak2a0a1ψ′ψ′′ +
(
4ak2a0a2 − ak2a21

)
(ψ′′)

2
= 0,

ψ−1 coeff.:
−2a0a1

[(
4κ2a+ 12κba0 + 4ω

)
ψ′ − ak2ψ′′′

]
=0, (30)

ψ0 coeff.:
−4a20

(
κ2a+ 2κba0 + ω

)
= 0. (31)

Solving this system, we obtain

a0 = 0, a1 = ±2k
√
a2κ2 + aω

bκ
, a2 =

ak2

bκ
, (32)

and

ψ′′ = ±2

k

√
aκ2 + ω

a
ψ′, (33)

ψ′′′ =
4
(
aκ2 + ω

)
ak2

ψ′. (34)

From Eqs. (33) and (34), we can deduce that

ψ′ = ±k
2

√
a

aκ2 + ω
c1 e
± 2
k

√
aκ2+ω
a ξ, (35)

and

ψ =
ak2

4 (aκ2 + ω)
c1 e
± 2
k

√
aκ2+ω
a ξ + c2, (36)

where c1 and c2 are constants of integration. Substituting
Eq. (35) and (36) into Eq. (24), we obtain the following
exact solution to Eq. (1):

q (x, t) =

± 2k
√
a2κ2 + aω

bκ

×

 ±k2
√

a
aκ2+ω c1 e

± 2
k

√
aκ2+ω
a k(x−vt)

ak2

4(aκ2+ω)c1 e
± 2
k

√
aκ2+ω
a k(x−vt) + c2



+
ak2

bκ

 ±k2
√

a
aκ2+ω c1 e

± 2
k

√
aκ2+ω
a k(x−vt)

ak2

4(aκ2+ω)c1 e
± 2
k

√
aκ2+ω
a k(x−vt) + c2


2

1
2

×e i (−κx+ωt+θ).

If we set

c1 =
4
(
aκ2 + ω

)
ak2

e±
2
k

√
aκ2+ω
a ξ0 , c2 = ±1,

we obtain

q (x, t) =

[
−aκ

2 + ω

bκ
(37)

×sech2
(
1

k

√
aκ2 + ω

a
(k (x− vt) + ξ0)

)] 1
2

e i (−κx+ωt+θ),

q (x, t) =

[
aκ2 + ω

bκ
(38)

×csch2
(
1

k

√
aκ2 + ω

a
(k (x− vt) + ξ0)

)] 1
2

e i (−κx+ωt+θ),

where Eqs.(37) and (38) represent soliton and singular
soliton solutions, respectively. These solitons are valid for

a
(
aκ2 + ω

)
> 0.
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q (x, t) =

[
−aκ

2 + ω

bκ
(39)

×sec2
(
1

k

√
−aκ

2 + ω

a
(k (x− vt) + ξ0)

)] 1
2

e i (−κx+ωt+θ),

q (x, t) =

[
−aκ

2 + ω

bκ
(40)

×csc2
(
1

k

√
−aκ

2 + ω

a
(k (x− vt) + ξ0)

)] 1
2

e i (−κx+ωt+θ),

where Eqs.(39) and (40) represent singular periodic solu-
tions. These solutions are valid for

a
(
aκ2 + ω

)
< 0.

3. Quick review of trial equation method
In this section we outline the main steps of the trial

equation method as following:
Step-1: Suppose a nonlinear partial differential equa-

tion (PDE) with time-dependent coefficients
P (u, ut, ux, utt, uxt, uxx, ...) = 0 (41)

can be converted to an ODE
Q (U,U ′, U ′′, U ′′′, ...) = 0, (42)

using a travelling wave hypothesis u(x, t) = U(ξ), ξ =
x − vt, where U = U(ξ) is an unknown function, Q is
a polynomial in the variable U and its derivatives. If
all terms contain derivatives, then Eq. (42) is integrated
where integration constants are considered zeros.
Step-2: Take the trial equation

(U ′)
2
= F (U) =

N∑
l=0

alU
l, (43)

where al, (l = 0, 1, ..., N) are constants to be determined.
Substituting Eq. (43) and other derivative terms such as
U ′′ or U ′′′ and so on into Eq. (42) yields a polynomial
G(U) of U . According to the balance principle we can
determine the value ofN . Setting the coefficients ofG(U)
to zero, we get a system of algebraic equations. Solving
this system, we can determine v and values of a0, a1,... ,
aN . Step-3: Rewrite Eq. (43) by the integral form

± (ξ − ξ0) =
∫

dU√
F (U)

. (44)

According to the complete discrimination system of the
polynomial, we classify the roots of F (U), and solve the
integral Eq. (44). Thus we obtain the exact solutions to
Eq. (41).

3.1. Application to C-NLSE
This subsection will perform the trial equation method

to derive soliton solutions to Eq. (1).
3.1.1. Case-1

Balancing U ′′ with U3 in Eq. (8), then we get
N = 4. Using the solution procedure of the trial equation
method, we obtain the system of algebraic equations as
follows:

U3 coeff.:
ak2a4 − bκ = 0, (45)
U2 coeff.:
ak2a3 = 0, (46)
U1 coeff.:
ak2a2 −

(
aκ2 + ω

)
= 0, (47)

U0 coeff.:
ak2a1 = 0. (48)

Solving the above system leads to

a1 = 0, a2 =
aκ2 + ω

ak2
,

a3 = 0, a4 =
bκ

ak2
.

Substituting these results into Eqs. (43) and (44), we get

± (ξ − ξ0) =
∫

dU√
a0 +

aκ2+ω
ak2 U2 + bκ

ak2U
4
. (49)

If we set a0 = 0 in Eq. (49) and integrating with
respect to U , we get the following exact solution
of Eq. (1):

q (x, t) = ±
√
−aκ

2 + ω

bκ

×sech

(√
aκ2 + ω

ak2
k (x− vt)

)
e i (−κx+ωt+θ), (50)

q (x, t) = ±
√
aκ2 + ω

bκ

×csch

(√
aκ2 + ω

ak2
k (x− vt)

)
e i (−κx+ωt+θ), (51)

where Eq. (50) and Eq. (51) represent solitons and sin-
gular soliton solutions, respectively. These solitons are
valid for

a
(
aκ2 + ω

)
> 0.

q (x, t) = ±
√
−aκ

2 + ω

bκ

× sec

(√
−aκ

2 + ω

ak2
k (x− vt)

)
e i (−κx+ωt+θ), (52)

q (x, t) = ±
√
−aκ

2 + ω

bκ

× csc

(√
−aκ

2 + ω

ak2
k (x− vt)

)
e i (−κx+ωt+θ), (53)

where Eq. (52) and Eq. (53) represent singular periodic
solutions. These solutions are valid for

a
(
aκ2 + ω

)
< 0.

If we set a0 =
(aκ2+ω)

2

4ak2bκ in Eq. (49) and integrating
with respect to U , we get the following exact solution
of Eq. (1):
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q (x, t) = ±
√
aκ2 + ω

2bκ
(54)

× tan

(√
aκ2 + ω

2ak2
k (x− vt)

)
e i (−κx+ωt+θ),

q (x, t) = ±
√
aκ2 + ω

2bκ
(55)

× cot

(√
aκ2 + ω

2ak2
k (x− vt)

)
e i (−κx+ωt+θ),

where Eq. (54) and Eq. (55) represent singular periodic
solutions. These solutions are valid for

a
(
aκ2 + ω

)
> 0.

q (x, t) = ±
√
−aκ

2 + ω

2bκ
(56)

× tanh

(√
−aκ

2 + ω

2ak2
k (x− vt)

)
e i (−κx+ωt+θ),

q (x, t) = ±
√
−aκ

2 + ω

2bκ
(57)

× coth

(√
−aκ

2 + ω

2ak2
k (x− vt)

)
e i (−κx+ωt+θ),

where Eq. (56) and Eq. (57) represent dark and singular
soliton solutions, respectively. These solitons are valid for

a
(
aκ2 + ω

)
< 0.

3.1.2. Case-2

By using transformation U = V
1
2 , Eq. (8) becomes

ak2
(
− (V ′)

2
+ 2V V ′′

)
− 4

(
aκ2 + ω

)
V 2

−8bκV 3 = 0. (58)
Balancing V V ′′ or (V ′)2 with V 3 in Eq. (58), then we get
N = 3. Using the solution procedure of the trial equation
method, we obtain the system of algebraic equations as
follows:

V 3 coeff.:
ak2a3 − 4bκ = 0, (59)
V 2 coeff.:
ak2a2 − 4

(
aκ2 + ω

)
= 0, (60)

V 0 coeff.:
ak2a0 = 0. (61)

Solving the above system leads to

a0 = 0, a2 =
4
(
aκ2 + ω

)
ak2

, a3 =
4bκ

ak2
.

Substituting these results into Eqs. (43) and (44),
we get

± (ξ − ξ0) =
∫

dV√
a1V + 4(aκ2+ω)

ak2 V 2 + 4bκ
ak2V

3

. (62)

If we set a1 = 0 in Eq. (62) and integrating with respect
to V , we get the following exact solution of Eq. (1):

q (x, t) = ±
√
−aκ

2 + ω

bκ

×sech

(√
aκ2 + ω

ak2
k (x− vt)

)
e i (−κx+ωt+θ), (63)

q (x, t) = ±
√
aκ2 + ω

bκ

×csch

(√
aκ2 + ω

ak2
k (x− vt)

)
e i (−κx+ωt+θ), (64)

where Eq. (63) and Eq. (64) represent bright and sin-
gular soliton solutions, respectively. These solitons are
valid for

a
(
aκ2 + ω

)
> 0.

q (x, t) = ±
√
aκ2 + ω

bκ

× sec

(√
−aκ

2 + ω

ak2
k (x− vt)

)
e i (−κx+ωt+θ), (65)

q (x, t) = ±
√
aκ2 + ω

bκ

× csc

(√
−aκ

2 + ω

ak2
k (x− vt)

)
e i (−κx+ωt+θ), (66)

where Eq. (52) and Eq. (53) represent singular periodic
solutions. These solutions are valid for

a
(
aκ2 + ω

)
< 0.

4. Conclusions

In this paper, soliton solutions are studied for C-NLSE
with the Bohm potential. Solitons and shock waves are
obtained by the modified simple equation method and
trial equation method along with necessary constraint
conditions that guarantees the existence of such solitons.
As a byproduct, singular periodic solutions are revealed
as a by-product of these approaches and these are also
listed. The results of this paper reveal yet another couple
of powerful mathematical techniques to retrieve soliton
solutions in the context of nuclear physics.

5. Future work

The results of this paper are indeed encouraging and
thus lead to several additional avenues of research in this
field. Later, the model will be addressed with fractional
temporal evolution as well as time-dependent coefficients
along with generalized version of C-NLSE. Additional in-
tegration schemes will enlighten the model further along.
Some of these schemes that can shed more light into this
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model are extended trial function method, Kudryashov’s
algorithm, the Lie symmetry analysis and many more.
Numerically, this model can be made to glow from a vi-
sual perspective. Such research activities are all under
way and their results will be visible, with time, across a
variety of journals.
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