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We present detailed calculations of commutators of the Jastrow factor and certain differential operators useful
in the fractional quantum Hall effect. In particular, we analyze action of the angular momentum operators projected
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1. Introduction

Fractional quantum Hall effect (FQHE) is remarkable
behavior of electrons in high magnetic field, intensively
studied for over three decades [1-6]. Despite complex-
ity of the general problem of interacting electrons in a
flat band, form of wave functions is relatively well under-
stood. Description of multiple fermions confined to the
lowest Landau level (LLL), relevant for the description
of FQHE, emergence of composite fermions (CFs), and
other phenomena connected with condensation of two-
dimensional (2D) electrons in high magnetic field into
incompressible quantum liquids, have a simple mathe-
matical structure of antisymmetric polynomials

¢(2’1,22...):D(Zl,ZQ...)W(Zl,ZQ...) (].)
where z;’s are complex electron coordinates on a plane,

¥ is fully symmetric and D is a Vandermonde determi-
nant

D =T - 2). (2)
i<j
In particular, the famous Laughlin ground state at fil-
ling factor v = 1/3 [1, 3] has the form &, = D3. The
Laughlin state corresponds to a completely filled Landau
level of identical and essentially noninteracting composite
fermions. In general, the factorization ¢cp = D?PT1 W
(multiplication by the Jastrow factor) signifies emergence
of CFs — topological bound states of electrons and 2p
attached vortices (or magnetic flux quanta) in a state
D [1, 2].

Certain aspects of FQHE are simpler when examined
in spherical geometry (the Haldane sphere). The Hal-
dane sphere brings useful analytical tools, for example
projection of a trial wave function on the sphere impo-
ses analytical conditions. Such analysis regarding the
Jack polynomials had been done by Haldane and Ber-
nevig [7-9]. They used lowest weight (LW) and highest
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weight (HW) conditions to determine so-called “Jack sta-
tes” [7-16].

In this paper we extend their calculations and analyze
more general form of trial wave functions. We give de-
tailed calculations of commutators of the Jastrow factor
and certain differential operators useful in FQHE. Paper
is organized as follows: in the next section we briefly dis-
cuss construction of CFs and spherical geometry, third
section is devoted to the main result — calculations of
commutators. In the final section we discuss results.

2. Composite fermions, planar
and spherical geometry

The composite fermion theory [1, 2] explains appea-
rance of many FQH states. CFs are quasiparticles, topo-
logical bound states of an electron and an even number
of quantized vortices. For a system of N electrons in the
perpendicular, uniform magnetic field B, when each of
them bounds 2p fluxes, then in the limit of infinite N,
each of electron experiences an effective magnetic field
smaller than B. Filing factor of the composite fermions
v* in terms of filling factor for the electrons v is expres-
sed as

W) t=vt—2p. (3)
Composite fermions theory gives trial wave functions for
systems of electrons WFQHE at filling factor v in terms
of wave function of composite fermions W/@HE at filling
factor v*

WFQHE =Prrr @IQHE H(Zz o Zj)Qp’ (4)

i<j
where Prrr is a projection into the lowest Landau level.

The Haldane sphere [1, 17, 18] is two-dimensional sp-
here containing electrons. Magnetic field, perpendicular
to the surface is provided by the Dirac monopole in the
center of the sphere. The magnetic flux through the sur-
face of considered sphere is quantized. Value of the radial
magnetic field B on the surface of the sphere of radius r
is given by

(405)
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= dnr2 (5)
where ¢9 = he/e and Ng is a strength of monopole. On
the surface of the Haldane sphere instead of standard 6
and ¢ coordinates one uses u, v defined as:

u = cos(0/2)e'?/?, v =sin(h/2)e"¥/2. (6)
For a Hilbert space of square integrable functions over C
on a sphere, with respect to the standard, rotation inva-
riant measure d2£2 = sin§dfdyp, denote by Hg subspace
of homogeneous polynomials in u, v [8]. Set of functions
{€qQ.m}q,m provide an orthonormal basis in Hg:

NG +1( 2Q \ nysm Noe
m = m ) m7 7
eNgb, \/ A7 <N¢+m>u v ( )

where m € {—Ng,—Ng + 1,..., Ng}. Transition from
the space Hg to the space of the wave functions in the
LLL is established by linear mapping I

2QNg 2Ng
r ( Z ciuQNds_lv") = chzk (8)
i=0 i=1

One writes angular momentum operators on the Haldane
sphere

L* = % (vV0y + udy) , (9a)
LY = 2 (v9, —ud,), (9b)
1
L7 = 3 (u0y, — v0y) . (9¢)
Then
Lt =LX +iLY = —ud,, (10a)
L~ =LY —iLY = —vd,. (10b)

By stereographic projection, operators can be applied to
functions on the plane. Then operators take form

LT = Ey, (11a)
L™ =NgZ — Ey, (11b)
1
L? = 3NNo = B, (11c)
where
N
=1
N
Z = Z 2. (12b)
=1

Papers [7-9] give necessary conditions for both partition
and real parameter of the Jack polynomial to be a candi-
date for FQH ground state wave function. Bernevig and
Haldane required a Jack wave function ¥, to be anni-
hilated by raising and lowering operators on the sphere
L*T¥ =0, L™ ¥ = 0 (highest weight — HW and lowest
weight — LW conditions, respectively).

3. Results

We calculate commutators of differential operator E,,
and the Jastrow factor D™ (for details see Appendix A).

The Jastrow factor is to be understood as operator of
multiplication by the Jastrow factor: D™ : ¥ — D™ V.
We obtain

n

Z.
E,, D" =mD™ L =
B D" =mD" 3 S
n_ i
2t — 2k
mD™ -—1, 13
e (13
Forn=0,1,2:
[Eo, D™] =0, (14a)
1
[E,D™] = mDmiN(N -1, (14b)
[Ey, D™ = mD™(N — 1)Z. (14c)

Consider action of LT, L™ operators on wave function
of electrons for composite fermions in a state ¥. Then
electrons are described by function Pppp(D™¥). We
analyze case of function D™ ¥ being in LLL. Then one
can skip projection operator and obtain
LT (D™W) = Ey(D™W¥)=D"Ey¥ =D"L" V¥,
(15)
L™ (D™¥)=D"(((Ng —m(N —1))Z — E5) V).
(16)

3.1. Examples

Consider polynomials over two variables: z,y, then
N =2and L' = 9, + 8,. Polynomial D* 4+ 2D = (x —
y)2+2(z—y) although not homogeneous is an eigenvector
of L™ with eigenvalue 0 (thus satisfies HW condition)

LY(D®*+D)=(LTD*)+LtD=0.
For any m, D™(D? + 2D) also satisfies HW condition
Lt*D™(D3 +2D) = D™L*(D® 4 2D) = D™ -0 = 0.
For N = 2, variables x,y, magnetic monopole inside
sphere Ng = 3 one writes L™ = 3(x + y) — 220, — yzﬁy.
Polynomial 233> satisfies LW condition
(3(z +y) — 220, — y20,)x>y® = 32ty + 3x3y*

—3z%y3 — 323y = 0.

Function (z —y)a?y® = 2*y3 —23y* satisfy HW condition
on a sphere with monopole 3+ 1- (2 — 1) = 4 since
(4(z +y) — 220, — y20,)xty® — 23y* = 4ay?

—4x3y® — (425y3 — 3yt + 32yt — 423y5) = 0.

Consider any bosonic Jack state described by a Jack
polynomial J§ where a is a real number and A is a
partition (non-increasing sequence of nonnegative inte-
gers) [19-25]. Calculations reveals that as long as boso-
nic Jack satisfies HW and LW conditions on a sphere
with monopole Ng, then corresponding fermionic Jack
DJy satisfies HW and LW conditions on a sphere with
monopole Ng + N — 1.

4. Summary

Calculations reveal that as long as ¥ is an eigenvector
of LT with eigenvalue eg, then D™ ¥ is en eigenvector of
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LT with the same eigenvalue. This result is independent
of the strength of a monopole of the sphere. In particula-
rity ¥ satisfy HW condition if and only if D™ ¥ satisfies
HW condition. In the case of L~ situation is similar, but
not exactly the same. For ¥ being eigenvector of L™ on
a sphere with magnetic monopole Ng, function D™ ¥ is
eigenvector of L~ on a sphere with magnetic monopole
Ng+m(N —1). Thus LW condition is satisfied by D™ ¥
on a sphere with adequately higher magnetic monopole,
when LW condition is satisfied by ¥ on a sphere with
monopole Ng.

Appendix A: Calculations of comutators

Consider the operator (2]'0;)D™ applied to the
function ¥. Then

(Zi—l 72’7)m(2’z fzi+1)m...(z,; 7ZN)m . W), (17)
where D; is a product of all of the elements of D with no
variable z; in the brackets

Di= ] G- (18)
J,k:g<k;j k#i
One writes
ju<j
(z; —zn)™ - VU + Z(zl —z)" ...
jii>j

(zi—an)" W

(Grone —=)m)

+(z —z)" (i —2N)™ - (210N | =

(==7)
D™ . v+ D™. L v
Z-mz_zj " Z-mj_zi
J<g jii>j
+D™ . (21'0;) ¥ =
z
D™ L ' "0 W 19
mY o o V) (19)
JriF£]
Thus
zn
n9;, D™ = mD™ L. 20
[z J=m Z'zi_zj (20)
Jri#j
What follows
Zn
E,,D™ = mD™ L =
[Ens J=m Z e
1,j:0F#]
A
D™ -7 21
oy T o1

1<j
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