ALL Metrics
-
Views
-
Downloads
Get PDF
Get XML
Cite
Export
Track
Systematic Review
Revised

Global prevalence and pathogenesis of headache in COVID-19: A systematic review and meta-analysis

[version 2; peer review: 2 approved]
PUBLISHED 10 Mar 2021
Author details Author details
OPEN PEER REVIEW
REVIEWER STATUS

This article is included in the Emerging Diseases and Outbreaks gateway.

This article is included in the Coronavirus collection.

Abstract

Background: This study was conducted to determine the prevalence of headache in coronavirus disease 2019 (COVID-19) and to assess its association as a predictor for COVID-19. This study also aimed to discuss the possible pathogenesis of headache in COVID-19.
Methods: Available articles from PubMed, Scopus, and Web of Science were searched as of September 2nd, 2020. Data on characteristics of the study, headache and COVID-19 were extracted following the PRISMA guidelines. Biases were assessed using the Newcastle-Ottawa scale. The cumulative prevalence of headache was calculated for the general population (i.e. adults and children). The pooled odd ratio (OR) with 95% confidence intervals (95%CI) was calculated using the Z test to assess the association between headache and the presence of COVID-19 cases.
Results: We included 104,751 COVID-19 cases from 78 eligible studies to calculate the global prevalence of headache in COVID-19 and 17 studies were included to calculate the association of headache and COVID-19. The cumulative prevalence of headache in COVID-19 was 25.2% (26,464 out of 104,751 cases). Headache was found to be more prevalent, approximately by two-fold, in COVID-19 patients than in non-COVID-19 patients (other respiratory viral infections), OR: 1.73; 95% CI: 1.94, 2.5 with p=0.04.
Conclusion: Headache is common among COVID-19 patients and seems to be more common in COVID-19 patients compared to those with the non-COVID-19 viral infection. No definitive mechanisms on how headache  emerges in COVID-19 patients but several possible hypotheses have been proposed. However, extensive studies are warranted to elucidate the mechanisms.
PROSPERO registration: CRD42020210332 (28/09/2020)

Keywords

COVID-19, SARS-CoV-2, headache, severity, predictor

Revised Amendments from Version 1

In the new version we have revised some parts: 
1. We have provided clearer explanation  what "non-COVID-19 patients" means in abstract, methods and results section. For example in Data synthesis subheading we added "non-COVID-19 cases (other respiratory viral infections such as rhinovirus, influenza, parainfluenza and respiratory syncytial virus)."
2. We have provided the approach how to solve in case there was discrepancies between two authors during evaluation of the studies. 
3. We have provided more detail information of Newcastle-Ottawa scale (NOS) - What items that were assessed and how to score as well how the studies classified. We also have added the NOS scores briefly to all studies included in the study. 
4. We have included the limitation of the data and the analysis in particular inability to do sub-analyses based on COVID-19 severity, the existence of COVID-19 co-morbidity and demographic characteristics due to  scarcity of the available data. We added "In this analysis we did not analyze the prevalence of headache based on COVID-19 severity, the existence of COVID-19 co-morbidity (such as diabetes and hypertension) and based on demographic characteristics such as gender due to scarcity of the available data. Therefore, whenever enough data are available, such sub-analyses are critical to be conducted."

See the authors' detailed response to the review by Morteza Arab-Zozani
See the authors' detailed response to the review by Erni J. Nelwan

Introduction

The current coronavirus disease 2019 (COVID-19) pandemic has caused a global crisis for both the health and economic sectors. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is a member of the Coronavirinae family and Betacoronavirus subfamily together with severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle Eastern respiratory syndrome coronavirus (MERS-CoV)1. The virus is primarily transmitted from person-to-person through droplets from symptomatic and pre-symptomatic patients, and is likely to also be transmitted by asymptomatic individuals26. Currently, no effective vaccines or pharmaceutical agents against SARS-CoV-2 are available but some progressions have been made to produce vaccines and drugs against the disease710.

Although up to 20.3% of hospitalized patients require admission to the intensive care unit (ICU)11 with complications such as hypoxemia, acute respiratory distress syndrome (ARDS), arrhythmia, shock, acute cardiac injury, and acute kidney injury1214, most SARS-CoV-2 infections are asymptomatic or have mild symptoms1,15,16. The common clinical symptoms of COVID-19 include fever, dry cough, dyspnea, chest pain, fatigue and myalgia1,12,17,18. In some cases, other neurological manifestations such as headache, dizziness, seizure, taste and smell impairment were also reported12,1821. Headache is one of the symptoms that is also reported in various viral infections such as dengue and chikungunya that are common in the tropical regions22,23 and therefore may not be specific for COVID-19. In addition, the prevalence of headache in COVID-19 patients varies across studies19,20,24. A study found that the prevalence of headache was 17.4% (94/540) in Hubei province, the epicenter of the outbreak, and 14.1% (111/788) among patients outside the epicenter21. Another study in European countries found that the headache was reported in more than 40% of 417 COVID-19 patients19. Furthermore, the association of headache with the presence of COVID-19 is unknown. This systematic review was undertaken to provide robust evidence on the prevalence of headache in COVID-19 patients globally and its association with COVID-19 cases. Information described in this study might help clinicians to decide whether headache could be used as one of the basic symptoms to be included in diagnosing SARS-CoV-2 infection, especially those in the front line with limited resources.

Methods

Registration and protocol

This systematic review was conducted as recommended by the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines25. The protocol of this study was registered with PROSPERO, an international database of prospectively registered systematic reviews at the University of York, on 28th September 2020 (CRD42020210332).

Eligibility criteria of studies

Articles reporting headache as a symptom of COVID-19 cases were included. COVID-19 cases should be diagnosed with RT-PCR test using either nasopharyngeal and oropharyngeal swab, bronchoalveolar lavage or cerebrospinal fluid (CSF). All cross-sectional and cohort studies that included COVID-19 cases randomly selected from the population were considered eligible while case reports and case series including all editorials, reviews, and commentaries were excluded. Case-control studies with pre-allocated number of patients with headache and non-headache were excluded. Studies that were conducted in specific populations only such as in pregnancy, children, cancer patients and other groups were excluded. Only articles written in English were included in this study.

Information sources and search strategy

To identify potential articles for analysis, systematic searches were conducted using three bibliographical databases (PubMed, Scopus, and Web of Science as of September 2nd, 2020). The search criteria were as follows. Pubmed ([Title] "SARS-CoV-2" OR "COVID-19" OR "Wuhan coronavirus" OR "Wuhan virus" OR "novel coronavirus" OR "nCoV" OR "severe acute respiratory syndrome coronavirus 2" OR "coronavirus disease 2019 virus" OR "2019-nCoV" OR "2019 novel coronavirus" OR "severe acute respiratory syndrome coronavirus 2" OR "coronavirus" OR "coronaviruses" OR "SARS 2" OR "2019-nCoV acute respiratory disease" OR "novel coronavirus pneumonia"OR "COVID") AND ([All] “Headache”). Scopus ([Title] "SARS-CoV-2" OR "COVID-19" OR "Wuhan coronavirus" OR "Wuhan virus" OR "novel coronavirus" OR "nCoV" OR "severe acute respiratory syndrome coronavirus 2" OR "coronavirus disease 2019 virus" OR "2019-nCoV" OR "2019 novel coronavirus" OR "severe acute respiratory syndrome coronavirus 2" OR "coronavirus" OR "coronaviruses" OR "SARS 2" OR "2019-nCoV acute respiratory disease" OR "novel coronavirus pneumonia"OR "COVID") AND ([All] “Headache”). Web of Science ([Title] "SARS-CoV-2" OR "COVID-19" OR "Wuhan coronavirus" OR "Wuhan virus" OR "novel coronavirus" OR "nCoV" OR "severe acute respiratory syndrome coronavirus 2" OR "coronavirus disease 2019 virus" OR "2019-nCoV" OR "2019 novel coronavirus" OR "severe acute respiratory syndrome coronavirus 2" OR "coronavirus" OR "coronaviruses" OR "SARS 2" OR "2019-nCoV acute respiratory disease" OR "novel coronavirus pneumonia"OR "COVID") AND ([All] “Headache”). English as language limitation was imposed in the searches. Only peer-reviewed articles were included. Data were extracted both from the articles and the supplementary materials. Reference lists from the eligible articles were retrieved for further relevant studies.

Study selection

All titles and abstracts of identified articles were imported into the EndNote X9 (Thompson Reuters, Philadelphia, PA, USA) and duplicate records between databases were removed. Retrieved articles were initially screened based on title and abstract to identify possible eligible studies. The full texts of potentially eligible articles were then reviewed. The screening and review processes were conducted by two authors (MF and JKF). After reviewing the full texts, the eligibility of each study was decided. Any discrepancies between the two authors were solved by consulting with another investigator (HH).

Data extraction

The following data were extracted from eligible articles: study characteristics (author, title, journal, study site and study design), headache characteristics (number of patients with headache, type of headache, localization, and severity), COVID-19 characteristics (number of patients with COVID-19, severity, and outcome).

Role of the funding source

This study received no external funding.

Outcomes

The primary outcomes of this systematic review were: a) the prevalence of headache in COVID-19 cases; and b) the association between headache and COVID-19 cases compared to other viral infections.

Data synthesis

The cumulative prevalence rate of headache was calculated for COVID-19 cases in the general population. The prevalence was calculated as the number of COVID-19 cases with headache divided by the total number of COVID-19 cases with and without headache, expressed as a percentage (%). Pooled odd ratios (OR) and 95% confidence intervals (95% CI) were calculated to assess the association of headache and COVID-19 compared to non-COVID-19 cases (other respiratory viral infections such as rhinovirus, influenza, parainfluenza and respiratory syncytial virus).

Risk of bias assessment

To reduce sample selection bias, a critical assessment was specifically conducted in terms of setting of study and diagnosis of COVID-19. The quality of eligible studies was assessed using critical appraisals based on the Newcastle-Ottawa scale (NOS)26. This scale evaluates 9 criteria of the study including the sample selection (4 items), group comparison (1 item), and the outcome (3 items). The scores range between 0 to 9 in which classified into three groups: low (≤ 4), moderate (between 5–6), and high quality study (≥ 7).

Statistical analysis

The association between headache and the presence of COVID-19 was assessed by the calculation of a pooled OR and 95%CI using the Z test (p<0.05 was considered statistically significant). Prior to analysis, gathered data from studies were evaluated for heterogeneity and potential publication bias. Heterogeneity among studies was assessed using the Q test. Initial analysis found that the data had heterogeneity (p<0.10) and therefore a random effect model was employed. Egger’s test and a funnel plot were used to assess the reporting or publication bias (p<0.05 was considered having potential for publication bias). The data were analyzed using Review Manager version 5.327. The cumulative pooled OR and 95%CI was presented in a forest plot.

Results

Study eligibility results

The literature searches yielded 732 articles, of which 229 were excluded as duplicates between databases. Following a screening process of the titles and abstracts of the remaining 503 articles, an additional 253 articles were excluded due to irrelevant studies leaving 250 articles (Figure 1). The full texts of the remaining 250 articles were retrieved and screened for eligibility. This process excluded additional 49 articles that were not eligible as they did not fulfill the inclusion criteria. A full assessment was conducted on 201 articles. All included studies had high quality with NOS score ≥ 7.

bb3ccbff-1400-4905-9c7b-1ae11ff2b316_figure1.gif

Figure 1. Flowchart of the result of literature search according to the preferred reporting items of systematic reviews and meta-analyses (PRISMA).

To calculate the prevalence of headache in COVID-19, full-text assessment resulted in the exclusion of 123 articles for the following reasons: case control studies (n=2), case report studies (n=69), case series (n=29), duplicated dataset (n=1), and conducted in specific population only (n=23). The targeted population studies were conducted among healthcare workers2831, diabetic patients32, pediatrics33, pregnant women34, cancer patients35, children and young adults3640, patient undergone surgery41, critical patients42, women undergone delivery43, patients with mild-moderate COVID-194446, patients with gastrointestinal symptoms47, patients with severe headache only48, and patients with anosmia only49. In total, 78 studies were included to calculate the prevalence of headache in COVID-19 and all studies were published in 2020. The studies were conducted in Brazil50, China13,5196, Egypt97, France98101, Germany102, India103,104, Italy105111, Japan112,113, Jordan114, Somalia115, South Korea116,117, Spain118,119, Turkey120,121, and the US122126. Two studies were cross-sectional119,122, five were prospective cohort studies65,90,98,110,121 and the remaining 71 studies were retrospective studies.

To calculate the association between headache and COVID-19, the full-text assessment yielded 16 eligible studies. The rest of the references had been excluded for these reasons: (a) the studies were case reports or case-series (n=98); (b) the full-text did not include data of outcome of interest (n=84); and (c) low quality of study (n=3) (Figure 1). The included studies were conducted in a wide ranges of regions: Australia127, Belgium29, Brazil50, China70, France99, Hongkong128, Israel129, Italy130, Germany131, Netherlands31, Turkey120, and the US28,105,122,132,133. Out of the studies, ten were case-control28,29,31,99,105,120,128,130,132, four were cross-sectional50,70,122,131,133, and two were prospective cohort studies127,129.

The prevalence of headache in COVID-19 cases

Our systematic review included 78 studies consisting of 104,751 COVID-19 patients and headache was reported in 26,464 patients with a cumulative prevalence of 25.26%. The list of the studies and the prevalence of headache of each study is presented in Table 1. One study which included 51 patients described the specific location of headache: 1.96% (1/51) was a temporal headache, 35.29% (18/51) was a frontal headache, 23.52% (12/51) was a retro-orbital headache, and 39.21% (20/51) was a diffuse headache99. Another study which involved 46 patients reported that 40 (86%) had tension-type pain and 6 (14%) had migraine-like headache107. Data from 18 studies indicated that 72.17% (236/327) of headaches were reported in mild-moderate COVID-19 cases51,53,5558,62,63,67,76,88,9297,117. The prevalence of headache in severe COVID-19 cases from 15 studies was 27.83% (86/309)53,55,57,58,62,63,73,76,88,92,93,9597,117.

Table 1. Characteristic of eligible studies and the prevalence of headache in each study.

NoCountryStudy designTotal headacheTotal populationHeadache PercentageReference
1JapanRetrospective75712.3112
2ItalyRetrospective102134.7105
3ChinaRetrospective4725.651
4USACross sectional395966.1122
5ChinaRetrospective6837.252
6ItalyRetrospective117015.7106
7ChinaRetrospective172626.553
8USARetrospective24,30891,41226.6123
9EgyptRetrospective186627.397
10IndiaRetrospective345226.5103
11ChinaRetrospective21414.354
12ChinaRetrospective55010.055
13IndiaRetrospective32114.3104
14ChinaRetrospective3368.356
15ChinaRetrospective22010.057
16ChinaRetrospective1918910.158
17ChinaRetrospective3378.159
18South KoreaRetrospective5417231.4116
19ChinaRetrospective126717.960
20ChinaRetrospective131379.561
21ChinaRetrospective142046.962
22ChinaRetrospective172217.763
23ChinaRetrospective4854.764
24FranceProspective9919750.298
25FranceRetrospective517072.999
26ChinaProspective3387.965
27ChinaRetrospective216233.966
28ChinaRetrospective122025.967
29USARetrospective7225128.7124
30ChinaRetrospective98510.668
31ChinaRetrospective757889.569
32JordanRetrospective148117.3114
33ChinaRetrospective3348.870
34JapanRetrospective2238.7113
35ChinaRetrospective87211.171
36ChinaRetrospective1410813.072
37ItalyRetrospective4610842.6107
38ChinaRetrospective21118.273
39ChinaRetrospective85115.774
40ChinaRetrospective8998.113
41ChinaRetrospective121368.875
42South KoreaRetrospective14069420.2117
43ChinaRetrospective54810.476
44ChinaRetrospective42814.377
45ChinaRetrospective145326.478
46ChinaRetrospective111258.879
47ChinaRetrospective6765110.380
48ChinaRetrospective9810849.081
49ChinaRetrospective65910.282
50SpainRetrospective13757623.8118
51SpainCross sectional10457618.1119
52FranceRetrospective8213959.0100
53ChinaRetrospective212707.883
54ChinaRetrospective8065512.284
55ChinaRetrospective2336.185
56BrazilRetrospective7614552.450
57ChinaRetrospective91366.686
58ChinaRetrospective106016.787
59SomaliaRetrospective106016.7115
60ItalyRetrospective21020.0108
61TurkeyRetrospective4314330.1120
62GermanyRetrospective6310858.3102
63FranceRetrospective106415.6101
64ChinaRetrospective2821413.188
65USARetrospective12920862.0125
66ItalyRetrospective307241.7109
67ItalyProspective144332.6110
68ChinaRetrospective42416.789
69TurkeyProspective6423926.8121
70ChinaProspective3837.590
71ChinaRetrospective3518718.791
72ChinaRetrospective5935.492
73ChinaRetrospective32910.393
74ChinaRetrospective11080.994
75ChinaRetrospective206633.095
76USARetrospective4020020.0126
77ItalyRetrospective167222.2111
78ChinaRetrospective143893.696
Total26,464104,75125.2

Association of headache and COVID-19

A total of 16 studies, consisting of 5,407 COVID-19 cases in adults and 94,818 adults with non-COVID-19 infections (mostly COVID-19-like respiratory viral infections), were analyzed to determine the association between headache and COVID-19. Of these studies, an association between headache and the occurrence of COVID-19 was observed in 9 studies28,29,31,105,122,127,129,130,132 while seven studies reported no association50,70,99,120,131,133,134 (Table 2). Our cumulative calculation revealed that headache was found to be 1.7-fold more prevalent in patients with COVID-19 compared to those with non-COVID-19 respiratory viral infections, OR: 1.73; 95% CI: 1.94, 2.51 with p=0.04. The correlation between headache and COVID-19 is presented in Figure 2.

Table 2. Prevalence of headache in COVID-19 and non-COVID-19.

Author, yearStudy
type
COVID-19Non-COVID-19COVID-19
severity
Control
criteria
Reference
Headache
n (%)
Sample
size
Headache
n (%)
Sample
size
Çalıca Utku et al.,
2020
Case
control
43 (0.30)14342 (0.27)154Mild-criticalViral
symptoms,
negative PCR
120
Caturegli et al., 2020Case
control
17 (0.28)605 (0.09)55Not
specified
Viral
symptoms,
negative PCR
132
Fistera et al., 2020Cross-
sectional
5 (0.12)4321 (0.08)271Not
specified
Viral
symptoms,
negative PCR
131
He et al., 2020Cross-
sectional
3 (0.09)345 (0.10)48Not
specified
Viral
symptoms,
negative PCR
13
Ibrahim et al., 2020Cohort3 (0.75)422 (0.05)429Not
specified
Viral
symptoms,
negative PCR
127
Kosugi et al., 2020Cross
sectional
76 (0.52)14520 (0.53)38Not
specified
Viral
symptoms,
negative PCR
50
La Torre et al., 2020Case
control
18 (0.60)3014 (0.19)75Not
specified
Viral
symptoms,
negative PCR
130
Lam et al., 2020Case
control
0 (0.00)377 (0.06)111Not
specified
Viral
symptoms,
negative PCR
128
Lan et al., 2020Case
control
34 (0.41)83141 (0.28)509Not
specified
Viral
symptoms,
negative PCR
28
Luigetti et al., 2020Case
control
10 (0.05)2131 (0.00)218Not
specified
Viral
symptoms,
negative PCR
105
Mizrahi et al., 2020Cohort126 (3.09)40662794 (3.05)91597Not
specified
Viral
symptoms,
negative PCR
129
Rolan et al., 2020Cross-
sectional
93 (0.64)14590 (0.57)157Not
specified
Viral
symptoms,
negative PCR
133
Tostmann et al., 2020Case
control
64 (0.71)90296 (0.42)713MildCOVID
symptoms,
negative PCR
31
Van Loon et al., 2020case
control
145 (0.62)185116 (0.78)186MildViral
symptoms,
negative PCR
29
Yan et al., 2020Cross-
sectional
39 (0.66)5999 (0.49)203Not
specified
Viral
symptoms,
negative PCR
122
Zayet et al., 2020Case
control
51 (0.73)7031 (0.57)54Not
specified
Confirmed
influenza A/B
99
bb3ccbff-1400-4905-9c7b-1ae11ff2b316_figure2.gif

Figure 2. Forest plot of the correlation between headache and the prevalence of COVID-19.

Discussion

Headache and COVID-19

As a non-specific symptom, headache might present not only in COVID-19 cases but also in other viral diseases, therefore, headache might not raise suspicion of SARS-CoV-2 infection22,23. However, a study described that headache is one of the main neurological symptoms of coronavirus infection including SARS-CoV-2135. The global prevalence of headache in our systematic review is more than 25% out of 104,751 COVID-19 cases. This result was almost double that of the previously reported prevalence from studies in China early in the pandemic that ranged from 6.5–13.1%53,88. This suggests that headache is prevalent in SARS-CoV-2 infection and therefore could potentially be used as one of the indicators to diagnose COVID-19 cases. In this analysis we did not analyze the prevalence of headache based on COVID-19 severity, the existence of COVID-19 co-morbidity (such as diabetes and hypertension) and based on demographic characteristics such as gender due to scarcity of the available data. Therefore, whenever enough data are available, such sub-analyses are critical to be conducted.

Our study also highlights that headache was significantly more prevalent in COVID-19 patients, 2.2-fold, than suspected non-COVID-19 viral infection (other respiratory viral infections). A study found that only around 11% of MERS patients reported they suffered from headaches136. A study in COVID-19 patients with pre-existing primary headache disorders revealed that the headache during COVID-19 had an unusual presentation with 42% (44/104) reporting a recent onset of headaches, 49% (51/104) had a change in headache pattern, and 39% (39/104) reported the worst headache they had ever had119. These results suggest that new onset headache and changes of headache pattern should be carefully explored as this might be able to differentiate patients with COVID-19 from those without.

Headache pathogenesis in COVID-19

We explored the available literature to broaden our knowledge of the pathogenesis of headache in COVID-19. In general, three main primary headaches are observed in COVID-19 patients i.e. migraine, cluster headache and tension-type headache137140. No fixed mechanisms have been reported on how these headaches emerge in COVID-19 patients. However, it has been proposed that the activation of trigeminal nerve ending in the periphery followed by the sensitization of various sites in the brain is one of the main pathomechanism of headache in these patients137,138.

A headache attack is initiated by the release of several vasoactive neuropeptides such as glutamate, calcitonin gene-related peptide (CGRP), substance P and pituitary adenylate cyclase-activating polypeptide (PACAP), from nociceptive sensory fibers (especially nociceptive C-fibers and Aδ-fibers) innervating blood vessels located in the meninges and other cranial structures leading to vasodilation, degranulation of mast cells and plasma protein extravasation in those vascular structures141143. The release of those peptides from the fibers could be due to either electrical, chemical or mechanical induction emerged from three branches of the trigeminal nerve i.e. ophthalmic, maxillary and mandibular branches143. However, because of its wider area of innervation in the meninges and cranial blood vessels, ophthalmic branch seems to play more of a role in stimulating nociceptive processes in meningeal structures than the other two branches143,144.

Next, any physiological events, such as vasodilation, that have occurred in the meningeal and large cerebral blood vessels will become a stimulus which is sent to the trigeminal ganglion (TG) where other nociceptive information from other afferent trigeminal branches are also converging141. Although cerebral and meningeal vasodilation is not the sole cause of headache145, most studies have agreed on the critical role of blood vessel dilation in the emergence of headaches.

From the TG, the stimulus is projected to an area in the brainstem called the trigeminocervical complex (TCC) via first-order neurons143. These transmissions are then projected to the diencephalon structures, including the thalamus and hypothalamus, via the second-order neurons143,146. The third-order neurons are subsequently responsible for transmitting the information from diencephalic systems to various cortical areas associated with motoric, somatosensory, auditory, retrosplenial and visual functions141,143, leading to the manifestation of headache pain and other related symptoms (Figure 3).

bb3ccbff-1400-4905-9c7b-1ae11ff2b316_figure3.gif

Figure 3. Proposed pathway of headache pathophysiology.

Nociceptive information coming from peripheral networks is transmitted to trigeminal ganglion acting as central hub between peripheral and central nervous systems. Next, this information is sent to TCC located in the brainstem, transmitted to diencephalon structures and terminated in various areas in cortex. The transmission in this pathway is linked to the pivotal involvement of neurotransmitters (e.g. glutamate, GABA and serotonin) and nociceptive neuropeptides (e.g. CGRP, substance P and PACAP) released from nerve fibers synapses, particularly nociceptive C-fibers and Aδ-fibers. The receptors of these signaling molecules are identified in both peripheral blood vessel, trigeminal ganglion and central structures, such as in cerebrospinal fluid and TCC142,147.

During these transmission processes, the release of neuropeptides, especially CGRP, is limited only in the meninges and in the central terminals of trigeminal afferents147. When the transmission reaches TCC structures, CGRP and substance P may act to induce the release of glutamate and reduce gamma aminobutyric acid (GABA) production147,148. It has been proposed that during a headache attack, the level of glutamate in the TCC increases, while GABA release is decreased148. This condition could result in the increase of nociceptive neurons excitability149. Moreover, low level of serotonin in trigeminal nerve might also be involved in migraine pathophysiology as the release of this neurotransmitter has been linked to the inhibition of CGRP in trigeminal nerves150,151.

Several mechanisms have been postulated to explain how trigeminovascular system is activated in COVID-19. Firstly, direct invasion of the virus may activate the peripheral trigeminal system137. This theory is hypothesized according to a study, confirming that trigeminal ganglia possess an angiotensinergic activity152. Thus, the viral attack would hypothetically disturb the activity of the renin-angiotensin-aldosterone system (RAAS), which may increase the level of CGRP153. Although the invasion of SARS-CoV-2 into the olfactory nerve ending seems to be the main route154156, the action of the virus on the trigeminal nerve must not be overlooked, as suggested by Perlman et al. (1989). They demonstrated that the trigeminal nerve, in addition to the olfactory nerve, was a route used by neurotropic murine coronavirus to invade the central nervous system (CNS)157. The hypothesis of trigeminal nerve attack by SARS-CoV-2 is also supported by the fact that olfactory mucosa is innervated by the trigeminal nerve158,159 suggesting the invasion of the olfactory mucosa by SARS-CoV-2 may also induce trigeminal nerve injury.

Following entry into the trigeminal nerve, SARS-CoV-2 may hijack the transneuronal transport system to direct the virus to enter the nucleus via a retrograde axonal transport mechanism. This transport occurs by the involvement of cytoskeletal motor proteins called dynein supported by cofactor dynactin that function to move substances, such as endosomes and vesicles, including hijacking viruses, on microtubule towards the cell body160. Once the virus gains access to the nucleus in the cell body through the microtubule-organizing center (MTOC), viral replication is initiated161. Finally, viral progenies may spread to other areas of the body, including the CNS, via anterograde axonal transport assisted by the kinesin motor protein family160.

A study suggested a transneuronal transport system used by coronavirus after investigating the neuroinvasiveness of HCoV-OC43 in mice162. Furthermore, the movement of SARS-CoV-2 via retrograde axonal transport is also hypothesized as it has been reported that the envelope protein of SARS-CoV could subvert dynein function either directly or indirectly163. The role of dynein in the retrograde axonal movement of several viruses, such as herpesviruses, West Nile virus, rabies, and influenza virus, upon their penetration in the neuronal plasma membrane has also been reported164169.

Secondly, SARS-CoV-2 may also invade the trigeminal nerve by indirect mechanisms. Cytokine storm and vasculopathy mechanisms are also proposed to explain the activation of trigeminal nerve upon SARS-CoV-2 infection137. Cytokine storm has attracted substantial interest from researchers and clinicians as this unwanted condition is strongly suggested to be related to the increased mortality in SARS-CoV-2-infected patients170,171. It is hypothesized that the headache suffered by COVID-19 patients at the later stage of this infection is induced by the cytokine storm139,172,173. This notion has been supported by the fact that proinflammatory cytokines, such as IL-1, IL-6 and TNF-α, have been linked to the activation of the trigeminovascular system, which is responsible for the emergence and development of headache through the modulation of CGRP174177.

Moreover, the presence of angiotensin-converting enzyme 2 (ACE2) receptor on the endothelial cells makes the blood vessels vulnerable to invasion by SARS-CoV-2178,179. It is known that ACE2 is associated with several protective mechanisms within the body, such as vasodilation180 and antinociception181. ACE2 also diminishes excessive free radical production which prevents oxidative stress182. The utilization of this receptor by the virus may decrease its activities, leading to the disturbance of vascular function. The perivascular trigeminal nerve may in turn be affected resulting in the COVID-19-related headache137. More studies are required to improve our understanding on the role of the ACE2 receptor in headache pathophysiology.

Another hypothesis by which SARS-CoV-2 could induce headache is offered by Abboud et al. (2020). They proposed that gas exchange disturbance in alveolar tissues triggered by the viruses would induce hypoxia, which in turn leads to ischemia170,183. Ischemia itself has been known to have a strong relation with headache incidents184 that could be induced by exaggerating the production of free radicals.

In regards to the headache characteristics presented by COVID-19 patients compared to the headache induced by other viral infections, no apparent differences could be observed. Headache in COVID-19 could be worsened by physical or head movement, felt in either the entire head (holocranial) or unilaterally (hemicranial) and the pain is typically pressing or tightening139. It is hypothesized that headaches occurring in COVID-19 patients might be the result of the same mechanisms as observed in influenza A and influenza B infections, which could be related to the activity of cytokines173,185187. A recent report on dengue-related headache suggested that the headache could be pulsating and either affect the entire brain, only frontal, or orbital area, which may resemble primary headaches reported in COVID-19 patients139,172,188. Therefore, although we found that headache is more frequent in COVID-19 patients than those of non-COVID-19 patients, diagnosis of COVID-19 should not be based on the presence of a headache.

In conclusion, headache is a common symptom in COVID-19 cases. Some mechanisms have been proposed as to the mechanism for headaches in COVID-19 such as the activation of the trigeminovascular system by either direct action of the virus or indirect mechanisms induced by cytokine storm, vasculopathy, or ischemia induced by gas exchange disturbance in COVID-19 patients. Extensive efforts must be carried out to provide definitive answers about COVID-19-related headaches. Detailed investigations on the mechanisms by which SARS-CoV-2 attacks the CNS and thus generates headaches are important to improve our understanding on the pathophysiology of COVID-19, and therefore influences possible pharmacological intervention decisions.

Data availability

Underlying data

All data underlying the results are available as part of the article and no additional source data are required.

Reporting guidelines

Figshare: PRISMA checklist for ‘Global prevalence and pathogenesis of headache in COVID-19: A systematic review and meta-analysis’, https://doi.org/10.6084/m9.figshare.13166783.v1189

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Comments on this article Comments (0)

Version 2
VERSION 2 PUBLISHED 12 Nov 2020
Comment
Author details Author details
Competing interests
Grant information
Copyright
Download
 
Export To
metrics
Views Downloads
F1000Research - -
PubMed Central
Data from PMC are received and updated monthly.
- -
Citations
CITE
how to cite this article
Mutiawati E, Syahrul S, Fahriani M et al. Global prevalence and pathogenesis of headache in COVID-19: A systematic review and meta-analysis [version 2; peer review: 2 approved] F1000Research 2021, 9:1316 (https://doi.org/10.12688/f1000research.27334.2)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
track
receive updates on this article
Track an article to receive email alerts on any updates to this article.

Open Peer Review

Current Reviewer Status: ?
Key to Reviewer Statuses VIEW
ApprovedThe paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approvedFundamental flaws in the paper seriously undermine the findings and conclusions
Version 2
VERSION 2
PUBLISHED 10 Mar 2021
Revised
Views
6
Cite
Reviewer Report 14 Apr 2021
Erni J. Nelwan, Division of Tropical Medicine and Infectious Disease, Department of Internal Medicine, Medical Faculty, Cipto Mangunkusumo General Hospital, University of Indonesia, Jakarta, Indonesia;  Infectious Diseases and Immunology Research Cluster, Faculty of Medicine, Universitas Indonesia, Depok City, Indonesia 
Approved
VIEWS 6
I confirm that I have read this submission and believe that I have an appropriate level of expertise ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Nelwan EJ. Reviewer Report For: Global prevalence and pathogenesis of headache in COVID-19: A systematic review and meta-analysis [version 2; peer review: 2 approved]. F1000Research 2021, 9:1316 (https://doi.org/10.5256/f1000research.55021.r81184)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
Views
11
Cite
Reviewer Report 11 Mar 2021
Morteza Arab-Zozani, Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran 
Approved
VIEWS 11
Thank you for modifying your paper and clearly addressing ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Arab-Zozani M. Reviewer Report For: Global prevalence and pathogenesis of headache in COVID-19: A systematic review and meta-analysis [version 2; peer review: 2 approved]. F1000Research 2021, 9:1316 (https://doi.org/10.5256/f1000research.55021.r81183)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
Version 1
VERSION 1
PUBLISHED 12 Nov 2020
Views
17
Cite
Reviewer Report 15 Feb 2021
Morteza Arab-Zozani, Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran 
Approved with Reservations
VIEWS 17
Thank you for considering a great area of interest related to COVID-19. This study aimed to investigate the prevalence and pathogenesis of headache in COVID-19 patients, globally. The methodology is completely rigorous and the results are interesting. I have a ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Arab-Zozani M. Reviewer Report For: Global prevalence and pathogenesis of headache in COVID-19: A systematic review and meta-analysis [version 2; peer review: 2 approved]. F1000Research 2021, 9:1316 (https://doi.org/10.5256/f1000research.30205.r79512)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
  • Author Response 10 Mar 2021
    Endang Mutiawati, Department of Neurology, Dr. Zainoel Abidin Hospital, Banda Aceh, 23126, Indonesia
    10 Mar 2021
    Author Response
    Dear Dr Morteza Arab-Zozani, 

    Thank you for your comments.

    1. We have provide the approach how to solve in case there was discrepancies between two authors during evaluation of ... Continue reading
COMMENTS ON THIS REPORT
  • Author Response 10 Mar 2021
    Endang Mutiawati, Department of Neurology, Dr. Zainoel Abidin Hospital, Banda Aceh, 23126, Indonesia
    10 Mar 2021
    Author Response
    Dear Dr Morteza Arab-Zozani, 

    Thank you for your comments.

    1. We have provide the approach how to solve in case there was discrepancies between two authors during evaluation of ... Continue reading
Views
31
Cite
Reviewer Report 04 Dec 2020
Erni J. Nelwan, Division of Tropical Medicine and Infectious Disease, Department of Internal Medicine, Medical Faculty, Cipto Mangunkusumo General Hospital, University of Indonesia, Jakarta, Indonesia;  Infectious Diseases and Immunology Research Cluster, Faculty of Medicine, Universitas Indonesia, Depok City, Indonesia 
Approved with Reservations
VIEWS 31
Authors seem not considered potential important bias while choosing headaches to be analysed. While among patients with fever (mainly), headache is in the same pathophysiology response due to prostaglandin release. Not to include other symptoms, so it is not merely ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Nelwan EJ. Reviewer Report For: Global prevalence and pathogenesis of headache in COVID-19: A systematic review and meta-analysis [version 2; peer review: 2 approved]. F1000Research 2021, 9:1316 (https://doi.org/10.5256/f1000research.30205.r74699)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
  • Author Response 10 Mar 2021
    Endang Mutiawati, Department of Neurology, Dr. Zainoel Abidin Hospital, Banda Aceh, 23126, Indonesia
    10 Mar 2021
    Author Response
    Dear Dr Erni J. Nelwan

    We agreed that our study have limitation since we did not able to analysed the data based on existence of COVID-19 co-morbidity. This is mainly ... Continue reading
COMMENTS ON THIS REPORT
  • Author Response 10 Mar 2021
    Endang Mutiawati, Department of Neurology, Dr. Zainoel Abidin Hospital, Banda Aceh, 23126, Indonesia
    10 Mar 2021
    Author Response
    Dear Dr Erni J. Nelwan

    We agreed that our study have limitation since we did not able to analysed the data based on existence of COVID-19 co-morbidity. This is mainly ... Continue reading

Comments on this article Comments (0)

Version 2
VERSION 2 PUBLISHED 12 Nov 2020
Comment
Alongside their report, reviewers assign a status to the article:
Approved - the paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations - A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approved - fundamental flaws in the paper seriously undermine the findings and conclusions
Sign In
If you've forgotten your password, please enter your email address below and we'll send you instructions on how to reset your password.

The email address should be the one you originally registered with F1000.

Email address not valid, please try again

You registered with F1000 via Google, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Google account password, please click here.

You registered with F1000 via Facebook, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Facebook account password, please click here.

Code not correct, please try again
Email us for further assistance.
Server error, please try again.