胰腺神经内分泌肿瘤的流行病学、诊断学及药物治疗研究进展
Advances in Epidemiology, Diagnostics and Drug Treatment of Pancreatic Neuroendocrine Neoplasm
DOI: 10.12677/ACM.2023.132256, PDF, HTML, XML, 下载: 305  浏览: 529 
作者: 马明福*, 何铁英#:新疆医科大学第一附属医院胰腺外科,新疆 乌鲁木齐
关键词: 神经内分泌肿瘤胰腺流行病学诊断成像诊断学药物治疗Neuroendocrine Neoplasms Pancreas Epidemiology Diagnostic Imaging Diagnostics Drug Therapy
摘要: 胰腺神经内分泌肿瘤是来源于弥散的胰腺神经内分泌细胞,被认为是一种罕见的胰腺肿瘤。随着医学影像学、基因组学、免疫组织病理学等相关学科的发展,胰腺神经内分泌肿瘤的正确诊断率及检出率越来越高。胰腺神经内分泌肿瘤被正确地诊断及病理学分级对患者后续治疗选择是至关重要的。此外,胰腺神经内分泌肿瘤的治疗与肿瘤分期、肿瘤分级分化、激素产生、肿瘤负荷和肿瘤进展高度相关。随着分子靶向药物和生长抑素类似物的问世,胰腺神经内分泌肿瘤的药物治疗取得了很大进展。目前,全身治疗药物方案包括生长抑素类似物(SSAs)、分子靶向药物、细胞毒性化疗药物、免疫检查点抑制剂和肽受体放射性核素治疗(PRRT)。已被临床使用和正在进行临床试验的药物都显著提高了胰腺神经内分泌肿瘤患者的生存率。本文就胰腺神经内分泌肿瘤的流行病学、诊断学及药物治疗的最新进展做一综述。
Abstract: Pancreatic neuroendocrine neoplasm is derived from diffused pancreatic neuroendocrine cells and is considered to be a rare pancreatic tumor. With the development of medical imaging, genomics, immunohistopathology and other related disciplines, the correct diagnosis rate and detection rate of pancreatic neuroendocrine neoplasm are getting higher and higher. The correct diagnosis and pathological grading of pancreatic neuroendocrine neoplasm are very important for the choice of subsequent treatment. In addition, the treatment of pancreatic neuroendocrine neoplasm is highly correlated with tumor stage, tumor grade and differentiation, hormone production, tumor burden and tumor progression. With the advent of molecular targeted drugs and somatostatin analogues, great progress has been made in the drug therapy of pancreatic neuroendocrine neoplasm. At pre-sent, systemic therapeutic drug regimens include somatostatin analogues (SSAs), molecular tar-geted drugs, cytotoxic chemotherapeutic drugs, immune checkpoint inhibitors and peptide recep-tor radionuclide therapy (PRRT). Drugs in clinical use and ongoing clinical trials have significantly improved survival in patients with pancreatic neuroendocrine neoplasm. This article reviews the latest advances in epidemiology, diagnostics and drug treatment of pancreatic neuroendocrine ne-oplasm.
文章引用:马明福, 何铁英. 胰腺神经内分泌肿瘤的流行病学、诊断学及药物治疗研究进展[J]. 临床医学进展, 2023, 13(2): 1849-1859. https://doi.org/10.12677/ACM.2023.132256

1. 背景

神经内分泌肿瘤(neuroendocrine neoplasms, NENs)是一组具有神经内分泌分化和免疫组化特征的上皮肿瘤 [1] 。最近,世界卫生组织(WHO)发布了消化系统神经内分泌肿瘤分类的最新标准 [1] 。NENs按免疫组织病理学分为分化良好的神经内分泌肿瘤(neuroendocrine tumor, NET)和分化不良的神经内分泌癌 (neuroendocrine carcinoma, NEC) [2] 。NENs可出现在身体的大多数器官的上皮组织中,胃肠道和胰腺大约占所有原发部位的50%左右 [3] 。对于不同原发部位的肿瘤、不同的病理组织学分级、临床分期、激素产生的有无,其肿瘤生物学行为也是不同的 [4] 。此外,除了某些遗传性遗传综合征之外,NENs的病因在很大程度上是未知的,例如多发性内分泌肿瘤1型综合征(MEN-1)、MEN-2、VHL综合征和结节性硬化症(TSC1, TSC2) [5] 。最近,基因组学和表观遗传学的进展为肿瘤学研究提供了很多的益处 [6] 。虽然NENs既往被认为是罕见的肿瘤性疾病,但它的发病率在全球范围内一直在增加,这引起了临床医生和研究人员的更多关注。

2. 流行病学

胰腺神经内分泌肿瘤(pancreatic neuroendocrine neoplasms, pNENs)发病率既往被认为是较低的。pNENs通常表现为生长缓慢及生物学行为的惰性,其在被明确诊断前的多年可能都不会被发现 [3] 。尽管pNENs的生物学行为是惰性的,但其发病率在增加。Dasari等 [3] 的一项基于监测、流行病学和最终结局(surveillance, epidemiology, and end results, SEER)数据库的回顾性研究显示胃肠胰腺神经内分泌肿瘤年龄调整后发病率从1973年的1.09/10万人上升到2012年的6.98/10万人。欧洲 [2] 胃肠胰腺神经内分泌肿瘤的发病率则处于1.33~2.33/10万人。此外,德国的Andreas Stang等 [7] 研究了胰腺导管腺癌(pancreatic ductal adenocarcinoma, PDAC)和胰腺神经内分泌肿瘤的发病率,发现胰腺神经内分泌肿瘤和胰腺神经内分泌癌两者的的发病率都为0.1~0.3/10万人。在亚洲地区,中国台湾省的最新研究报道 [8] 提示,胃肠胰腺神经内分泌肿瘤发病率从1996年的0.244/10万人增加到2015年的3.162/10万人。日本Tomonobu Koizumi等 [9] 统计了从2009~2015年共计33215名神经内分泌肿瘤及神经内分泌癌患者的发病情况。统计后发现2009年纳入的神经内分泌肿瘤患者中包含NEC 1501例和NET 1237例患者。然而,到2015年,纳入当年所有的神经内分泌肿瘤患者,对其进行统计后发现NEC患者占3178例和NET患者占3798例,且研究发现大多数神经内分泌肿瘤发生在肺(31.1%),其次是胃(12.9%)、胰腺(7.5%)、直肠(6.7%)和食管(5.8%)。在性别方面,Dasari [3] 对纳入的NENs患者统计后发现女性患者约占52.7%。最近,中国学者Fu Mengfei等 [10] 研究了中国湖北省胰腺神经内分泌肿瘤发病情况的性别差异,结果提示纳入的胰腺神经内分泌肿瘤女性患者和男性患者的构成比为52.8% vs 47.2%,两者之间的发病率无统计学差异。在功能性神经内分泌肿瘤发病率方面,最常见的是胰岛素瘤,其次是胰高血糖素瘤、生长抑素瘤、异位分泌促肾上腺皮质激素(ACTH)的肿瘤、胃泌素瘤和血管活性肠肽瘤(VIPoma, VIP) [11] 。随着医学影像学的发展及临床病理学医师对神经内分泌肿瘤认识的提高,以及全民健康体检的普及,越来越多的胰腺神经内分泌肿瘤患者被发现了。

3. 诊断学进展

胰腺神经内分泌肿瘤起源于神经内分泌细胞,其特征是合成和分泌神经肽和激素的能力,以及神经内分泌标志物(如突触素和嗜铬蛋白颗粒A)的表达 [12] 。除此之外,它们的临床表现可能与其他的肿瘤比较类似,进而导致治疗不当和治疗延迟。由于诊断的延迟,在被确诊时21%~69%的患者发生了转移 [13] 。因此,及时并正确的诊断是至关重要的。

3.1. 基因组学方面的进展

在分子层面的最新研究发现,神经内分泌肿瘤和神经内分泌癌是两种截然不同的实体肿瘤 [14] 。通过基因组学研究发现,神经内分泌肿瘤的基因改变可以对肿瘤组织的病理分化分级提供帮助 [1] 。例如,在pNENs中可经常观察到MEN1、DAXX和ATRX中的突变,而NEC通常具有TP53或RB1突变。Andreas Venizelos等 [15] 基于360个癌症相关基因的测序评估了基因的突变和拷贝数改变(CNA)。在NEC中,突变频率最高的基因是TP53 (64%)、APC (28%)、KRAS (22%)和BRAF (20%)。此外,RB1基因突变仅占14%。在纳入的13例NEC患者中,有9例被发现有TP53突变,8例被发现有RB1的突变或缺失。3例患者被发现有BRAF和KRAS突变。除此之外,基因组测序技术也被用散发的胃肠胰神经内分泌肿瘤遗传易感性危险因素的确定。Obazee等 [16] 的一项研究发现,胰腺导管腺癌与胰腺神经内分泌肿瘤的相关的易感位点可能存在重叠关联,并且还发现单核苷酸多态性rs9543325、rs10919791和rs1561927可能会增加发生胰腺神经内分泌肿瘤的风险。目前,国内基因检测技术实验室实力雄厚,对于有一定经济基础的患者,建议行基因检测对患者的诊断及治疗是有一定的帮助。

3.2. 组织病理学方面的进展

肿瘤的组织形态学分析对于确定NENs的诊断是必要的。世界卫生组织2019年对消化系统NENs根据有丝分裂计数和Ki-67指数分为NET1-3级、NEC和MiNEN [1] 。然而,NEC由于分化不良以及伴有明显的异型性和区域性坏死,被进一步细分为神经内分泌癌、小细胞型和神经内分泌癌、大细胞型。在神经内分泌分化方面,免疫组织化学染色被用于诊断的确认。最常检测的是突触素和嗜铬蛋白颗粒A (CgA) [17] 。然而,CgA特异性不高,因为它在其他肿瘤疾病和非肿瘤疾病相关情况下呈假阳性升高。CgA对神经内分泌肿瘤的诊断效能可能受肿瘤种类、原发灶部位、肿瘤分化程度、肿瘤负荷、肿瘤分泌功能、病人临床状态、实验室检测方法等因素的影响 [18] 。嗜铬粒蛋白B (CgB)是颗粒蛋白家族的一种酸性蛋白,可用于检测神经内分泌性质的肿瘤。对CgB做诊断效能的ROC分析,得出曲线下的面积(AUC)为0.88 (95%CI 0.83~0.929)。取CgB的最佳截断值15.8 ng/ml时,CgB灵敏度为69.4%,特异度为96.3%。诊断灵敏度最高的部位是肠道NENs (75.0%)和胰腺(71.2%) [19] 。该研究显示了CgB作为不同部位NEN诊断的潜在生化标记物,未来可能取代CgA成为诊断NEN的标记物。先前的研究发现所有胰腺神经内分泌肿瘤均含有表达胰岛素瘤相关蛋白1 (INSM1)的细胞,pNEN组织中INSM1的表达量高于PDAC组织 [20] ,这可为两者的鉴别提供参考。

3.3. 外周血相关标记物的进展

相关研究表明促泌素(SCGN)在神经内分泌细胞和神经内皮细胞中有特异性表达。Yigit Baykara等 [21] 研究发现促泌素在肺脏神经内分泌肿瘤诊断方面有有一定的价值。与CgA对小细胞肺癌和大细胞神经内分泌肿瘤诊断灵敏度的68%相比,促泌素的灵敏度为71%。然而,促泌素在胰腺神经内分泌肿瘤中的研究较少,其在胰腺神经内分泌肿瘤的作用及价值值得进一步研究。血清胃泌素释放肽前体(ProGRP)经常被用作诊断和监测小细胞肺癌的标志物 [22] 。此外,Korse等发现血清ProGRP水平与NEN中的病理组织学分级有关 [23] 。肿瘤标志物(CgA、NSE、ProGRP和细胞角蛋白片段)的组合提供了比单独使用标志物更多的诊断和预后信息。胰多肽(PP)由位于胰腺头部和钩突的胰岛细胞产生。Hofland等 [24] 研究报道了PP对胰腺神经内分泌肿瘤的诊断灵敏度范围为41%~68%。由于PP的诊断灵敏度和特异度较低,所以,PP通常被认为是次要的胰腺神经内分泌肿瘤的标记物。神经元特异性烯醇化酶(NSE)是一种在神经元、神经内分泌和副神经元细胞中表达的糖酵解酶。NSE在临床实践中通常不单独使用,因为它的诊断敏感性仅为31% [25] 。神经内分泌转录因子Sox11的表达与肿瘤组织学类型密切相关。Sox11在小细胞肺癌中的表达显著高于神经内分泌肿瘤(63.33% vs 12.50%) [26] 。SOX11对小细胞肺癌具有较高的灵敏度(63.3%)和特异度(87.5%) [26] 。SOX11可作为经典神经内分泌标志物组合的有益补充,与CgA、CD56、Syn、TTF-1联合应用有助于小细胞肺癌的诊断。NETest [27] 是一种新型多分析物生物标志物,基于PCR的多转录本分析,使用基于血液的定量实时PCR来测量51个不同的NET相关转录本,在NET的诊断和预后方面都显示出有希望的结果。这51个相关转录本由来自组织和血液转录组数据库的基因共表达网络捕获,包括一系列与肿瘤行为以及NET的增殖、信号传导和分泌相关的基因 [28] 。一项前瞻性的研究包括206名胃肠胰腺NETs (GEP-NETs)患者,其中NETest在两个不同的验证组中具有0.95和0.98的曲线下面积。应用于pNEN诊断的灵敏度和特异度分别为80%和94% [29] 。Modlin等 [30] 研究发现NETest对胰腺神经内分泌肿瘤的诊断准确率达到了91%,然而CgA正确诊断率仅为54%。与CgA相比,NETest可以准确地诊断NENs,是成像、分级、转移和疾病状态的有效替代标记物。Irvin等 [31] 也得出了相似的结果,术前NETest可以准确诊断所有的神经内分泌肿瘤。所有经手术切除的患者术后NETest指标都是下降的。且术后30天的NETest指标异常对复发患者(影像学已明确)的准确率和灵敏度分别为94%、100%。然而,Van Treijen等 [32] 发现NETest的对胃肠胰腺神经内分泌肿瘤的诊断特异度不如CgA (分别为56%~72%和83%)。尽管NETest灵敏度高并在疾病监测中已体现出价值,但是将其用于疾病筛查工具的研究得出的结果并不是很理想。

3.4. 影像学方面的进展

在影像学方面,超声内窥镜(EUS)对胰腺神经内分泌肿瘤的诊断有很高的价值,也是胃、十二指肠和直肠肿瘤局部区域神经内分泌肿瘤手术的首选技术 [33] 。EUS引导下的细针穿刺活组织病理学检查对pNEN的诊断具有重要意义 [34] 。Stefano等 [35] 对比研究了EUS引导下细针抽吸(EUS-FNA)与EUS引导下细针活检(EUS-FNB)在胰腺神经内分泌肿瘤(pNENs)诊断价值后发现,EUS-FNB与手术标本Ki-67值具有较强的相关性,在评价小的pNENs方面,EUS-FNB优于EUS-FNA。EUS-FNB应成为对可疑PNENs进行分级评估的标准诊断手段。Alexander Appelstrand等 [36] 认为胰腺神经内分泌肿瘤患者治疗前准确的病理分级对治疗是至关重要的。通过回顾性研究评价了超声内镜引导下细针穿刺活检(EUS-FNB)在胰腺神经内分泌肿瘤的术前诊断和分级中的作用,结果提示EUS-FNB对pNEN诊断准确率达到了85%。结合分子学和超声内镜引导下穿刺细胞学分析,诊断准确率从单纯细胞学的74%提高到91%。常规横断面成像检查,如计算机断层扫描(CT)和磁共振成像(MRI),是定位、定性和分期GEP-NEN的关键诊断工具 [37] 。经静脉对比的多期CT对提高诊断率至关重要。pNEN通常是富血供的,在动脉晚期强化明显,而pNEN的转移灶也是富血供的,在动脉期也可以很好地显示 [38] 。基于增强CT图像特征及病人临床信息的影像组学方法在预测胰腺神经内分泌肿瘤的病理学分级方面的准确度也很高 [39] 。MRI及弥散加权成像技术(diffusion-weighted imaging, DWI)同样是诊断、鉴别、评估pNEN的有效手段。由其对最大径较小的pNEN及pNEN肝转移灶的发现,MRI比CT更敏感 [40] 。然而,由于成本、图像获取时间和运动伪影的存在,MRI的使用比CT少 [38] 。随着自动化和人工智能应用的发展,GEP-NEN功能成像的诊断一致性和准确性都提高了,18F-FDG PET/CT对这一领域的研究更为广泛。18F-FDG PET/CT显像可较好地显示NF-pNENs原发灶及转移灶 [41] 。超声造影对组织灌注敏感,可协助pNEN的诊断及鉴别诊断 [42] 。此外,SRI主要包括单光子生长抑素受体闪烁显像和利用68-Ga标记的新一代生长抑素类似物(somatostatin analogue, SSA)的PET-CT。Se JinChoi等 [43] 对68Ga-DOTA标记生长抑素类似物(68Ga-DOTASSA) PET/MRI对神经内分泌肿瘤肝转移的诊断价值做了荟萃分析。68Ga-DOTASSA PET/MRI和PET/CT对肝转移的诊断阳性率分别为93.5和76.8%。PET/MRI的检出率显著高于PET/CT。

4. 药物治疗进展

根治性手术是局部可切除的pNEN患者的主要治疗选择。然而,40%~50%的pNEN在最初诊断时就存在远处转移,限制了手术切除的机会。此外,许多经手术切除pNEN的患者也会复发并伴有远处转移 [44] 。对于局部晚期或远处转移性pNENs患者,全身治疗方案包括生长抑素类似物、分子靶向药物、细胞毒性化疗药物、免疫检查点抑制剂和肽受体放射性核治疗。

4.1. 系统化疗方面的进展

全身化疗是晚期pNENs的主要治疗方法之一。根据病理分类和分级提供适当的化疗方案,主要包括基于替莫唑胺的联合方案和基于铂类的联合方案。其中,以替莫唑胺为基础的联合化疗(CAPTEM和STEM)方案可用于晚期pNETsG2/G3患者的一线治疗 [45] 和pNEC患者的二线治疗 [2] Bongio-vanni Alberto等 [46] 发现在胰腺、肠道和肺源性肿瘤中,基于TEM的方案具有较高的疾病控制率(DCR)和相对可耐受的毒性特征。卡培他滨联合替莫唑胺化疗的协同作用可能是由于其能够耗尽肿瘤细胞中的6-甲基鸟嘌呤DNA甲基转移酶(MGMT)水平,从而增强替莫唑胺的烷基化作用 [47] 。晚期pNEC中最常见的化疗方案是基于铂类的(EP、EC)方案和FOLFOX、叶酸或CAPTEM方案的二线治疗 [48] 。

4.2. 生物治疗方面的进展

SSAs具有抗分泌和抗增殖作用,是晚期pNENs患者最常见的一线治疗方法,可用于控制功能性pNETs患者的激素症状,以及对晚期无功能pNEN患者发挥抗增殖作用 [49] 。SSAs的疗效与肿瘤细胞表面上生长抑素受体的表达相关 [50] 。SSAs是Ki-67 < 10%、SSTR阳性和缓慢生长的肿瘤患者的主要治疗选择 [44] 。Merola Elettra等 [51] 回顾性研究了包括晚期、分化良好的pNENs,其Ki-67为10%~35%且接受一线长效SSAs,结果发现 SSAs仍然对Ki-67 > 10%的pNENs发挥抗增殖活性,但对高级别和肝肿瘤负荷 > 25%的pNENs作用有限。

4.3. 靶向治疗方面的进展

目前在pNENs中使用的靶向治疗主要包括哺乳动物雷帕霉素靶蛋白(mTOR)抑制剂和抗血管生成药物。美国食品药品监督管理局批准的治疗pNENs的靶药物包括依维莫司(mTOR抑制剂)和舒尼替尼(酪氨酸激酶抑制剂) [52] 。中国的胰腺神经内分泌肿瘤诊断和治疗指南(2020版)中推荐了索凡替尼(酪氨酸激酶抑制剂)用于胰腺神经内分泌肿瘤的治疗 [53] 。依维莫司是一种mTOR抑制剂,已被证明通过抑制PI3K/AKT/mTOR通路来抑制肿瘤细胞的生长。Yao等 [54] 研究了依维莫司对晚期pNEN治疗后发现,在依维莫司组中,晚期pNENs的患者的中位PFS为11个月,与安慰剂组相比增加了6.4个月,并且依维莫司的安全性很好。然而,Baudin等 [55] 关于依维莫司联合长效帕瑞肽治疗晚期肺部和胸腺NENs的试验结果表明,依维莫司联合长效帕瑞肽治疗组的中位无进展生存期(mPFS)明显长于单用长效帕瑞肽组和单用依维莫司治疗组。日本临床肿瘤协会正在进行一项多中心、随机、对照的三期临床试验(jRCT1031200023)以证实联合使用依维莫司和兰瑞肽治疗晚期胃肠胰腺神经内分泌肿瘤的疗效是优于单药依维莫司 [56] 。另一些研究发现兰瑞肽治疗NEN可以使肿瘤缩小,但主要是减缓肿瘤生长而不是加速肿瘤消退 [57] 。然而,在一些案例报道中,依维莫司被报道与乙肝病毒再激活有关,对于将接受依维莫司治疗的pNEN慢性乙肝患者,应考虑预防性治疗乙肝病毒感染,因为在极少数情况下可能会发生致命的乙肝病毒再激活而导致爆发性肝衰竭 [58] 。抗血管生成药物包括酪氨酸激酶抑制剂(TKIs)和非TKI药物。pNENs具有高度的血管化,高表达促血管生成因子,因此抗肿瘤血管生成是一种有效的治疗方法 [59] 。Xu等 [60] 进行了一项随机、对照、双盲的索凡替尼对晚期pNENs患者的III期临床试验,与安慰剂组相比,索凡替尼组的中位PFS显著延长(10.9月vs 3.7月),客观缓解率也有显著的提高(19% vs 2%)。TALENT研究(GETNE1509) [61] 是一项关于VEGFR1-3和FGFR1-4抑制剂乐伐替尼的II期临床研究,在pNEN队列中观察到了良好的临床疗效以及可耐受的安全性。其调查了乐伐替尼对先前经药物治疗过的晚期 GEP-NEN患者的疗效和安全性。结果显示胰腺神经内分泌肿瘤对乐伐替尼总体有效率为44.2%,中位无进展生存期为15.7个月。在另一项III期试验中,与安慰剂相比,舒尼替尼延长了转移性胰腺神经内分泌肿瘤患者的无进展生存期(PFS) [62] 。此外,各种免疫检查点抑制剂,如程序性细胞死亡配体1 (PD-L1)抑制剂、程序性细胞死亡1 (PD-1)抑制剂和细胞毒性T淋巴细胞抗原4 (CTLA-4)抑制剂,在pNEN领域得到了广泛的开展和迅速的发展。关于特瑞普利单抗作为二线治疗方案治疗晚期神经内分泌肿瘤的Ib期临床研究,发现pNEN亚组的ORR为22.2%,疾病控制率(DCR)为55.5%,并观察到PD-L1表达阳性、TMB-H (前10%)和/或MSI-H阳性的患者可能优先受益于该治疗 [63] 。目前一些临床试验的结果显示,在单独使用免疫检查点抑制剂治疗的NENs患者中没有观察到显著的益处,而PD-L1/PD-1抑制剂联合CLTA-4抑制剂的双重免疫治疗开始引起兴趣 [64] 。一项多队列II期临床试验(NCT02923934)评估了伊匹单抗联合纳武单抗在NENs中的疗效,最新结果显示NEN对其客观缓解率为25% [65] 。免疫检查点抑制剂联合其他药物(抗血管生成药物、化疗药物、PRRT和SSAs)的临床试验继续出现,目前一些免疫治疗联合抗血管生成药物的临床研究表明有更好的疗效。在一项II期临床试验中,特瑞普利单抗联合索凡替尼治疗晚期NECs一线化疗失败后的患者的客观缓解率(ORR)为20%,中位PFS为3.94个月 [66] 。索凡替尼联合特瑞普利单抗已被建议作为晚期神经内分泌癌的二线治疗方案。

4.4. 肽受体放射性核素治疗方面的进展

PRRT在欧洲、美国和亚洲一些国家被批准广泛应用于神经内分泌肿瘤的治疗 [67] 。在一项关于PRRT治疗神经内分泌肿瘤的3期临床研究中,用177Lu-DOTATE标记的长效奥曲肽(每28天30 mg)和大剂量长效奥曲肽(每28天60 mg)治疗两组中肠神经内分泌肿瘤,观察到177Lu-DOTATE标记的长效奥曲肽显著增加了患者的ORR (18% vs 3%),也延长了患者的中位OS (48月vs 36.3月) [68] 。另一项关于PRRT在pNENs中治疗的多中心回顾性研究表明,在晚期SSTR阳性pNENs患者中,177Lu-DOTATE治疗的患者的中位PFS为24.8个月,ORR为40.3% [69] 。177Lu-DOTA-JR11是一种新型的放射性标记SSTR2拮抗剂,在SSTR阳性的I/II期临床试验中应用后发现,其疾病控制率(DCR)为90%以及可接受的安全性 [70] 。Fröss-Baron Katarzyna等 [71] 回顾分析177Lu-DOTATE多肽受体放射性核素治疗(PRRT)治疗pNEN的无进展生存期(PFS)、总生存期(OS)及其影响因素。发现mPFS为24个月,中位OS为42个月。进展和死亡的独立危险因素是肝脏肿瘤负担>50%,既往化疗超过一次,以及碱性磷酸酶升高。177Lu-DOTA对胰腺神经内分泌肿瘤治疗仍需大样本、前瞻性的随机对照试验研究。

5. 结论

胰腺神经内分泌肿瘤是来源于弥散的胰腺神经内分泌细胞,既往被认为是一种罕见的胰腺肿瘤,得益于影像学、实验室检查技术的发展以及临床医师对该疾病认识的提高,其检出率和发病率近些年是增高的。传统的成像技术,如对比增强的计算机断层扫描,在疾病分期方面表现良好。对于肿瘤的分级、组织病理学检查、核分裂计数和Ki-67指数的测定被认为是最佳的。各种成像技术可用于这些肿瘤的功能和形态评估,对每个患者进行的检查的选择应该根据临床问题进行定制。此外,随着横断面成像检查的增加,这些肿瘤在常规放射学检查中也越来越多地被偶然发现。发病率的上升和生存时间的延长使得pNEN在医疗诊治中越来越普遍。对于复发或无法切除的疾病,一线治疗可能包括SSAs,它可以延缓病情进展并控制激素症状;依维莫司和舒尼替尼在内的针对性治疗也会减缓肿瘤的生长;卡培他滨和替莫唑胺的全身化疗也可以考虑。此外,PRRT已经显示了对PFS的改善,并强烈建议在SSTR阳性的进展期pNEN中使用PRRT。对较少见的高级别NEC的治疗通常包括铂类/依托泊苷化疗,但卡培他滨和替莫唑胺也可考虑作为后续治疗的化疗方案。令人欣喜的是,目前已被临床使用和正在进行临床试验的药物都显著提高了pNEN患者的生存率。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Nagtegaal, I.D., Odze, R.D., Klimstra, D., et al. (2020) The 2019 WHO Classification of Tumours of the Digestive Sys-tem. Histopathology, 76, 182-188.
https://doi.org/10.1111/his.13975
[2] Pavel, M., Oberg, K., Falconi, M., et al. (2020) Gastroenteropancreatic Neuroendocrine Neoplasms: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 31, 844-860.
https://doi.org/10.1016/j.annonc.2020.03.304
[3] Dasari, A., Shen, C., Halperin, D., et al. (2017) Trends in the Incidence, Prevalence, and Survival Outcomes in Patients with Neuroendocrine Tumors in the United States. JAMA On-cology, 3, 1335-1342.
https://doi.org/10.1001/jamaoncol.2017.0589
[4] Cives, M. and Strosberg, J.R. (2018) Gastroenteropancreatic Neuroendocrine Tumors. CA: A Cancer Journal for Clinicians, 68, 471-487.
https://doi.org/10.3322/caac.21493
[5] Shah, M.H., Goldner, W.S., Benson, A.B., et al. (2021) Neuroendocrine and Adrenal Tumors, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Com-prehensive Cancer Network, 19, 839-868.
https://doi.org/10.6004/jnccn.2021.0032
[6] Sunami, K., Ichikawa, H., Kubo, T., et al. (2019) Feasibility and Util-ity of a Panel Testing for 114 Cancer-Associated Genes in a Clinical Setting: A Hospital-Based Study. Cancer Science, 110, 1480-1490.
https://doi.org/10.1111/cas.13969
[7] Stang, A., Wellmann, I., Holleczek, B., et al. (2022) Incidence and Relative Survival of Pancreatic Adenocarcinoma and Pancreatic Neuroendocrine Neoplasms in Germany, 2009-2018. An In-Depth Analysis of Two Population-Based Cancer Registries. Cancer Epidemiology, 79, Article ID: 102204.
https://doi.org/10.1016/j.canep.2022.102204
[8] Chang, J.S., Chen, L.T., Shan, Y.S., et al. (2021) An Updated Analysis of the Epidemiologic Trends of Neuroendocrine Tumors in Taiwan. Scientific Reports, 11, Article No. 7881.
https://doi.org/10.1038/s41598-021-86839-2
[9] Koizumi, T., Otsuki, K., Tanaka, Y., et al. (2022) Epidemiology of Neuroendocrine Neoplasmas in Japan: Based on Analysis of Hospital-Based Cancer Registry Data, 2009-2015. BMC Endocrine Disorders, 22, Article No. 105.
https://doi.org/10.1186/s12902-022-01016-4
[10] Fu, M., Yu, L., Yang, L., et al. (2022) Gender Differences in Pancreatic Neuroendocrine Neoplasms: A Retrospective Study Based on the Population of Hubei Province, China. Fron-tiers in Endocrinology (Lausanne), 13, Article ID: 885895.
https://doi.org/10.3389/fendo.2022.885895
[11] 李浩明, 曲玉清, 王先令, 等. 286例功能性胰腺神经内分泌肿瘤的临床特点及治疗: 一项单中心回顾性研究[J]. 国际内分泌代谢杂志, 2021, 41(3): 178-183.
[12] Fraenkel, M., Faggiano, A. and Valk, G.D. (2015) Epidemiology of Neuroendocrine Tumors. Frontiers of Hormone Research, 44, 1-23.
https://doi.org/10.1159/000381970
[13] Janson, E.T., Knigge, U., Dam, G., et al. (2021) Nordic Guidelines 2021 for Diagnosis and Treatment of Gastroenteropancreatic Neuroendocrine Neoplasms. Acta Oncologica, 60, 931-941.
https://doi.org/10.1080/0284186X.2021.1921262
[14] Mafficini, A. and Scarpa, A. (2019) Genetics and Epigenet-ics of Gastroenteropancreatic Neuroendocrine Neoplasms. Endocrine Reviews, 40, 506-536.
https://doi.org/10.1210/er.2018-00160
[15] Venizelos, A., Elvebakken, H., Perren, A., et al. (2021) The Molecular Characteristics of High-Grade Gastroenteropancreatic Neuroendocrine Neoplasms. Endocrine-Related Cancer, 29, 1-14.
https://doi.org/10.1530/ERC-21-0152
[16] Obazee, O., Capurso, G., Tavano, F., et al. (2018) Common Genetic Variants Associated with Pancreatic Adenocarcinoma May Also Modify Risk of Pancreatic Neuroendocrine Neoplasms. Carcinogenesis, 39, 360-367.
https://doi.org/10.1093/carcin/bgx150
[17] Pulvirenti, A., Rao, D., Mcintyre, C.A., et al. (2019) Limited Role of Chromogranin A as Clinical Biomarker for Pancreatic Neuroendocrine Tumors. HPB (Oxford), 21, 612-618.
https://doi.org/10.1016/j.hpb.2018.09.016
[18] Di Giacinto, P., Rota, F., Rizza, L., et al. (2018) Chromogranin A: From Laboratory to Clinical Aspects of Patients with Neuroendocrine Tumors. International Journal of Endocrinology, 2018, Article ID: 8126087.
https://doi.org/10.1155/2018/8126087
[19] Lyubimova, N.V., Timofeev, Y.S., Markovich, A.A., et al. (2022) Chromogranin B in Blood Serum of Patients with Neuroendocrine Tumors. Kliniceskaja Laboratornaja Diagnostika, 67, 440-443.
https://doi.org/10.51620/0869-2084-2022-67-8-440-443
[20] Takase, Y., Naito, Y., Okabe, Y., et al. (2019) Insu-linoma-Associated Protein 1 Expression in Pancreatic Neuroendocrine Tumours in Endoscopic Ultrasound-Guided Fi-ne-Needle Aspiration Cytology: An Analysis of 14 Patients. Cytopathology, 30, 194-200.
https://doi.org/10.1111/cyt.12640
[21] Baykara, Y., Xiao, Y., Yang, D.F., et al. (2022) Utility of Secretagogin as a Marker for the Diagnosis of Lung Neuroendocrine Carcinoma. Virchows Archiv, 481, 31-39.
https://doi.org/10.1007/s00428-022-03312-9
[22] Wu, X.Y., Hu, Y.B., Li, H.J., et al. (2018) Diagnostic and Therapeutic Value of Progastrin-Releasing Peptide on Small-Cell Lung Cancer: A Single-Center Experience in China. Journal of Cellular and Molecular Medicine, 22, 4328-4334.
https://doi.org/10.1111/jcmm.13722
[23] Korse, C.M., Taal, B.G., Vincent, A., et al. (2012) Choice of Tumour Markers in Patients with Neuroendocrine Tumours Is Dependent on the Histological Grade. A Marker Study of Chromogranin A, Neuron Specific Enolase, Progastrin-Releasing Peptide and Cytokeratin Fragments. European Journal of Cancer, 48, 662-671.
https://doi.org/10.1016/j.ejca.2011.08.012
[24] Hofland, J., Zandee, W.T. and De Herder, W.W. (2018) Role of Biomarker Tests for Diagnosis of Neuroendocrine Tumours. Nature Reviews Endocrinology, 14, 656-669.
https://doi.org/10.1038/s41574-018-0082-5
[25] Nobels, F.R., Kwekkeboom, D.J., Coopmans, W., et al. (1997) Chromogranin A as Serum Marker for Neuroendocrine Neoplasia: Comparison with Neuron-Specific Enolase and the Alpha-Subunit of Glycoprotein Hormones. The Journal of Clinical Endocrinology & Metabolism, 82, 2622-2628.
https://doi.org/10.1210/jc.82.8.2622
[26] Wang, X.L., Wang, L.X., Ding, B.Q., et al. (2022) Expression and Clinicopathological Significance of SOX11 in Small-Cell Lung Cancer. BioMed Research International, 2022, Article ID: 1707914.
https://doi.org/10.1155/2022/1707914
[27] Modlin, I.M., Drozdov, I. and Kidd, M. (2013) The Identification of Gut Neuroendocrine Tumor Disease by Multiple Synchronous Transcript Analysis in Blood. PLOS ONE, 8, e63364.
https://doi.org/10.1371/journal.pone.0063364
[28] Kidd, M., Drozdov, I. and Modlin, I. (2015) Blood and Tissue Neuroendocrine Tumor Gene Cluster Analysis Correlate, Define Hallmarks and Predict Disease Status. Endo-crine-Related Cancer, 22, 561-575.
https://doi.org/10.1530/ERC-15-0092
[29] Pavel, M., Jann, H., Prasad, V., et al. (2017) NET Blood Transcript Analysis Defines the Crossing of the Clinical Rubicon: When Stable Disease Becomes Progressive. Neuroendocrinology, 104, 170-182.
https://doi.org/10.1159/000446025
[30] Modlin, I.M., Kidd, M., Falconi, M., et al. (2021) A Multigenomic Liquid Biopsy Biomarker for Neuroendocrine Tumor Disease Outperforms CgA and Has Surgical and Clinical Utility. Annals of Oncology, 32, 1425-1433.
https://doi.org/10.1016/j.annonc.2021.08.1746
[31] Modlin, I.M., Kidd, M., Oberg, K., et al. (2021) Early Identifi-cation of Residual Disease after Neuroendocrine Tumor Resection Using a Liquid Biopsy Multigenomic mRNA Signa-ture (NETest). Annals of Surgical Oncology, 28, 7506-7517.
https://doi.org/10.1245/s10434-021-10021-1
[32] Van Treijen, M.J.C., Korse, C.M., Van Leeuwaarde, R.S., et al. (2018) Blood Transcript Profiling for the Detection of Neuroendocrine Tumors: Results of a Large Independent Valida-tion Study. Frontiers in Endocrinology (Lausanne), 9, Article 740.
https://doi.org/10.3389/fendo.2018.00740
[33] Rossi, R.E., Elvevi, A., Gallo, C., et al. (2022) Endoscopic Tech-niques for Diagnosis and Treatment of Gastro-Entero- Pancreatic Neuroendocrine Neoplasms: Where We Are. World Journal of Gastroenterology, 28, 3258-3273.
https://doi.org/10.3748/wjg.v28.i26.3258
[34] Di Leo, M., Poliani, L., Rahal, D., et al. (2019) Pancreatic Neuro-endocrine Tumours: The Role of Endoscopic Ultrasound Biopsy in Diagnosis and Grading Based on the WHO 2017 Classification. Digestive Diseases, 37, 325-333.
https://doi.org/10.1159/000499172
[35] Crino, S.F., Ammendola, S., Meneghetti, A., et al. (2021) Comparison between EUS-Guided Fine-Needle Aspiration Cytology and EUS-Guided Fine-Needle Biopsy Histology for the Evalua-tion of Pancreatic Neuroendocrine Tumors. Pancreatology, 21, 443-450.
https://doi.org/10.1016/j.pan.2020.12.015
[36] Appelstrand, A., Bergstedt, F., Elf, A.-K., et al. (2022) Endoscopic Ultrasound-Guided Side-Fenestrated Needle Biopsy Sampling Is Sensitive for Pancreatic Neuroendocrine Tumors but Inadequate for Tumor Grading: A Prospective Study. Scientific Reports, 12, Article No. 5971.
https://doi.org/10.1038/s41598-022-09923-1
[37] Kos-Kudła, B., Foltyn, W., Malczewska, A., et al. (2022) Update of the Diagnostic and Therapeutic Guidelines for Gastro-Entero-Pancreatic Neuroendocrine Neoplasms (Recommended by the Polish Network of Neuroendocrine Tumours) [Aktualizacja zaleceń ogólnych dotyczących postępowania diagnostyczno-terapeutycznego w nowotworach neuroendokrynnych układu pokarmowego (rekomendowane przez Polską Sieć Guzów Neuroendokrynnych)]. Endokrynologia Polska, 73, 387-454.
https://doi.org/10.5603/EP.a2022.0049
[38] Malla, S., Kumar, P. and Madhusudhan, K.S. (2021) Radiology of the Neuroendocrine Neoplasms of the Gastrointestinal Tract: A Comprehensive Review. Abdominal Radiology (NY), 46, 919-935.
https://doi.org/10.1007/s00261-020-02773-3
[39] Luo, Y., Chen, X., Chen, J., et al. (2020) Preoperative Prediction of Pancreatic Neuroendocrine Neoplasms Grading Based on Enhanced Computed Tomography Imaging: Validation of Deep Learning with a Convolutional Neural Network. Neuroendocrinology, 110, 338-350.
https://doi.org/10.1159/000503291
[40] Jawlakh, H., Velikyan, I., Welin, S., et al. (2021) 68Ga-DOTATOC-PET/MRI and 11C-5-HTP-PET/MRI Are Superior to 68Ga-DOTATOC-PET/CT for Neuroendocrine Tumour Imaging. Journal of Neuroendocrinology, 33, e12981.
https://doi.org/10.1111/jne.12981
[41] 王佩佩, 霍力, 刘宇, 等. 无功能胰腺神经内分泌肿瘤18F-FDG PET/CT显像的临床应用价值[J]. 中华核医学与分子影像杂志, 2022, 42(3): 139-143.
[42] Dietrich, C.F. and Jenssen, C. (2020) Modern Ultrasound Imaging of Pancreatic Tumors. Ultrasonography, 39, 105-113.
https://doi.org/10.14366/usg.19039
[43] Choi, S.J., Choi, S.H., Lee, D.Y., et al. (2022) Diagnostic Value of [68Ga]Ga-DOTA-Labeled-Somatostatin Analogue PET/MRI for Detecting Liver Metastasis in Patients with Neuroendo-crine Tumors: A Systematic Review and Meta-Analysis. European Radiology, 32, 4628-4637.
https://doi.org/10.1007/s00330-021-08527-z
[44] Halfdanarson, T.R., Strosberg, J.R., Tang, L., et al. (2020) The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Medical Management of Pancreatic Neuroendocrine Tumors. Pancreas, 49, 863-881.
https://doi.org/10.1097/MPA.0000000000001597
[45] Zhao, J., Zhao, H. and Chi, Y. (2018) Safety and Efficacy of the S-1/Temozolomide Regimen in Patients with Metastatic Neuroendocrine Tumors. Neuroendocrinology, 106, 318-323.
https://doi.org/10.1159/000480402
[46] Bongiovanni, A., Liverani, C., Foca, F., et al. (2021) Te-mozolomide Alone or Combined with Capecitabine for the Treatment of Metastatic Neuroendocrine Neoplasia: A “Re-al-World” Data Analysis. Neuroendocrinology, 111, 895-906.
https://doi.org/10.1159/000513218
[47] Chatzellis, E., Angelousi, A., Daskalakis, K., et al. (2019) Activity and Safety of Standard and Prolonged Capecitabine/Temozolomide Administration in Patients with Advanced Neuroendo-crine Neoplasms. Neuroendocrinology, 109, 333-345.
https://doi.org/10.1159/000500135
[48] Bardasi, C., Spallanzani, A., Benatti, S., et al. (2021) Irinotecan-Based Chemotherapy in Extrapulmonary Neuroendocrine Carcinomas: Survival and Safety Data from a Multicentric Italian Experience. Endocrine, 74, 707-713.
https://doi.org/10.1007/s12020-021-02813-y
[49] Stueven, A.K., Kayser, A., Wetz, C., et al. (2019) Somatostatin Analogues in the Treatment of Neuroendocrine Tumors: Past, Present and Future. International Journal of Molecular Sciences, 20, Article 3049.
https://doi.org/10.3390/ijms20123049
[50] Carmona-Bayonas, A., Jiménez-Fonseca, P., Custodio, A., et al. (2017) Optimizing Somatostatin Analog Use in Well or Moderately Differentiated Gastroenteropancreatic Neuroendocrine Tu-mors. Current Oncology Reports, 19, Article No. 72.
https://doi.org/10.1007/s11912-017-0633-2
[51] Merola, E., Alonso Gordoa, T., Zhang, P., et al. (2021) Somatostatin Analogs for Pancreatic Neuroendocrine Tumors: Any Benefit When Ki-67 Is ≥10%? Oncologist, 26, 294-301.
https://doi.org/10.1002/onco.13633
[52] Pavel, M., O’Toole, D., Costa, F., et al. (2016) ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of In-testinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocri-nology, 103, 172-185.
https://doi.org/10.1159/000443167
[53] 吴文铭, 陈洁, 白春梅, 等. 中国胰腺神经内分泌肿瘤诊疗指南(2020) [J]. 中华外科杂志, 2021, 59(6): 401-421.
[54] Yao, J.C., Shah, M.H., Ito, T., et al. (2011) Everolimus for Advanced Pancreatic Neuroendocrine Tumors. The New England Journal of Medicine, 364, 514-523.
https://doi.org/10.1056/NEJMoa1009290
[55] Baudin, E., Berruti, A., Giuliano, M., et al. (2021) First Long-Term Results on Efficacy and Safety of Long-Acting Pasireotide in Combination with Everolimus in Patients with Advanced Carcinoids (NET) of the Lung/Thymus: Phase II LUNA Trial. JCO, 39, 8574.
https://doi.org/10.1200/JCO.2021.39.15_suppl.8574
[56] Hijioka, S., Morizane, C., Ikeda, M., et al. (2021) Cur-rent Status of Medical Treatment for Gastroenteropancreatic Neuroendocrine Neoplasms and Future Perspectives. Japa-nese Journal of Clinical Oncology, 51, 1185-1196.
https://doi.org/10.1093/jjco/hyab076
[57] Dromain, C., Loaiza-Bonilla, A., Mirakhur, B., et al. (2021) Novel Tu-mor Growth Rate Analysis in the Randomized CLARINET Study Establishes the Efficacy of Lanreotide Depot/Autogel 120 mg with Prolonged Administration in Indolent Neuroendocrine Tumors. Oncologist, 26, E632-E638.
https://doi.org/10.1002/onco.13669
[58] Chang, S.-C., Tsai, C.-Y., Liu, K.-H., et al. (2021) Everolimus Related Fulminant Hepatitis in Pancreatic Neuroendocrine Tumor with Liver Metastases: A Case Report and Literature Review. Frontiers in Endocrinology (Lausanne), 12, Article 639967.
https://doi.org/10.3389/fendo.2021.639967
[59] Couvelard, A., O’Toole, D., Turley, H., et al. (2005) Microvascu-lar Density and Hypoxia-Inducible Factor Pathway in Pancreatic Endocrine Tumours: Negative Correlation of Microvas-cular Density and VEGF Expression with Tumour Progression. British Journal of Cancer, 92, 94-101.
https://doi.org/10.1038/sj.bjc.6602245
[60] Xu, J., Shen, L., Bai, C., et al. (2020) Surufatinib in Advanced Pancre-atic Neuroendocrine Tumours (SANET-p): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Study. The Lan-cet Oncology, 21, 1489-1499.
https://doi.org/10.1016/S1470-2045(20)30493-9
[61] Capdevila, J., Fazio, N., Lopez Lopez, C., et al. (2019) Final results of the TALENT Trial (GETNE1509): A Prospective Multicohort Phase II Study of Lenvatinib in Patients (pts) with G1/G2 Advanced Pancreatic (panNETs) and Gastrointestinal (giNETs) Neuroendocrine Tumors (NETs). JCO, 37, 4106.
https://doi.org/10.1200/JCO.2019.37.15_suppl.4106
[62] Fazio, N., Kulke, M., Rosbrook, B., et al. (2021) Up-dated Efficacy and Safety Outcomes for Patients with Well- Differentiated Pancreatic Neuroendocrine Tumors Treated with Sunitinib. Targeted Oncology, 16, 27-35.
https://doi.org/10.1007/s11523-020-00784-0
[63] Lu, M., Zhang, P., Zhang, Y., et al. (2020) Efficacy, Safety, and Biomarkers of Toripalimab in Patients with Recurrent or Metastatic Neuroendocrine Neoplasms: A Multiple-Center Phase Ib Trial. Clinical Cancer Research, 26, 2337-2345.
https://doi.org/10.1158/1078-0432.CCR-19-4000
[64] Strosberg, J., Mizuno, N., Doi, T., et al. (2020) Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Neuroendocrine Tumors: Results from the Phase II KEYNOTE-158 Study. Clinical Cancer Research, 26, 2124-2130.
https://doi.org/10.1158/1078-0432.CCR-19-3014
[65] Klein, O., Kee, D., Markman, B., et al. (2019) A Phase II Clinical Trial of Ipilimumab/Nivolumab Combination Immunotherapy in Patients with Rare Upper Gastrointestinal, Neu-roendocrine, and Gynecological Malignancies. JCO, 37, 2570.
https://doi.org/10.1200/JCO.2019.37.15_suppl.2570
[66] Shen, L., Yu, X., Lu, M., et al. (2021) Surufatinib in Combination with Toripalimab in Patients with Advanced Neuroendocrine Carcinoma: Results from a Multicenter, Open-Label, Single-Arm, Phase II Trial. JCO, 39, e16199.
https://doi.org/10.1200/JCO.2021.39.15_suppl.e16199
[67] Ito, T., Masui, T., Komoto, I., et al. (2021) JNETS Clinical Practice Guidelines for Gastroenteropancreatic Neuroendocrine Neoplasms: Diagnosis, Treatment, and Fol-low-Up: A Synopsis. Journal of Gastroenterology, 56, 1033-1044.
https://doi.org/10.1007/s00535-021-01827-7
[68] Strosberg, J.R., Caplin, M.E., Kunz, P.L., et al. (2021) Final Overall Survival in the Phase 3 NETTER-1 Study of Lutetium-177-DOTATATE in Patients with Midgut Neuroendo-crine Tumors. JCO, 39, 4112.
https://doi.org/10.1200/JCO.2021.39.15_suppl.4112
[69] Clement, D., Navalkissoor, S., Srirajaskanthan, R., et al. (2021) Efficacy and Safety of 177Lu-DOTATATE in Patients (pts) with Advanced Pancreatic Neuroendocrine Tumors (pNETs): Data from the NETTER-R International, Retrospective Registry. JCO, 39, 4116.
https://doi.org/10.1200/JCO.2021.39.15_suppl.4116
[70] Nicolas, G.P., Ansquer, C., Lenzo, N.P., et al. (2020) 1160O An International Open-Label Study on Safety and Efficacy of 177Lu-Satoreotide Tetraxetan in Somatostatin Re-ceptor Positive Neuroendocrine Tumours (NETs): An Interim Analysis. Annals of Oncology, 31, S771.
https://doi.org/10.1016/j.annonc.2020.08.1373
[71] Fross-Baron, K., Garske-Roman, U., Welin, S., et al. (2021) Lu-177-DOTATATE Therapy of Advanced Pancreatic Neuroendocrine Tumors Heavily Pretreated with Chemotherapy: Analysis of Outcome, Safety, and Their Determinants. Neuroendocrinology, 111, 330-343.
https://doi.org/10.1159/000506746