正五聚蛋白3与肺部感染相关性研究新进展
Recent New Progress in Research on the Correlation between Pentraxin 3 and Pulmonary Infection
DOI: 10.12677/ACM.2022.1281079, PDF, HTML, XML, 下载: 171  浏览: 244 
作者: 董艳芳:延安大学,榆林市第一医院,陕西 榆林
关键词: PTX3肺部感染先天免疫肺损伤Pentraxin 3 Pulmonary Infection Congenital Immunity Injury of Lungs
摘要: 肺作为人体最大的呼吸器官与外界进行气体交换,可直接与病原体及其他有害刺激性气体接触。肺部感染作为呼吸系统常见病、多发病,近些年其发病率及死亡率上升趋势显著。可溶性识别分子正五聚蛋白3 (PTX3)是早期发现的一种急性期反应蛋白,是天然免疫反应中体液反应的重要组成部分,是机体抵御外界微生物入侵的第一道防线,在预防肺部感染中发挥重要作用。近年来也有研究显示,PTX3在肺部感染治疗中发挥一定作用。本文将对PTX3在肺部感染研究中新进展作一综述。
Abstract: As the largest respiratory organ in the human body, the lungs exchange gas with the outside world and can directly contact pathogens and other harmful irritating gases. Pulmonary infection is a common and frequently-occurring disease of the respiratory system, and its morbidity and mortal-ity have increased significantly in recent years. The soluble recognition molecule Pentraxin 3 (PTX3) is an acute phase response protein discovered early. It is an important part of the humoral response in the natural immune response and the body’s first line of defense against the invasion of external microorganisms, playing an important role in infection. In recent years, studies have also shown that PTX3 plays a role in the treatment of pulmonary infections. This article will review the new progress of PTX3 in pulmonary infection research.
文章引用:董艳芳. 正五聚蛋白3与肺部感染相关性研究新进展[J]. 临床医学进展, 2022, 12(8): 7479-7484. https://doi.org/10.12677/ACM.2022.1281079

1. 引言

正五聚蛋白超家族是一种高度保守的多聚体糖蛋白,依据其分子量大小及结构的不同,可分为长正五聚蛋白及短五聚蛋白(CRP、SAP为典型代表)。PTX3是30年前发现的一种新基因,是发现最早的长正五聚蛋白,又被称之为TSG-14 (肿瘤坏死因子刺激基因14) [1]。人类PTX3基因定位于3q25号染色体上,由2个内含子及3个外显子组成,其C端结构域178个氨基酸肽链与SAP同源,N端203个氨基酸区域与CRP同源 [2]。PTX3蛋白具有复杂的四元结构,其特征是两个四聚体通过共价键连接为八聚体结构,具有更多的功能活性 [3]。PTX3识别配体和其独特的四元结构和蛋白糖基化状态有关,并最终决定其生物学功能。虽然PTX3与短五聚蛋白具有高度同源性,但在来源细胞和诱导产生方面有很大差异。CRP和SAP主要由肝脏在IL-6的刺激下产生,而PTX3可通过Toll样受体激动剂、炎性细胞因子(IL-1β、TN F-α等)、微生物组成成分如脂多糖(LPS)或外膜蛋白A (AOmpA)等刺激,诱导局部炎症细胞及固有免疫细胞进行分泌表达。适应性免疫细胞不表达。PTX3可预先储存于成熟NE中,在微生物及炎症信号的刺激下可迅速释放提供机体抵御病原体。目前关于PTX3在成熟NE中的表达尚存在争议。有研究表明LPS可刺激刚分离的成熟NE表达PTX3mRNA [4]。也有研究发现未成熟的NE前体在骨髓分化过程中表达PTX3转录本并合成蛋白,而成熟的外周血NE不能表达PTX3mRNA [5]。

2. PTX3的生物学功能

PTX3能激活经典的补体途径;促进吞噬细胞识别外来的病原体;参与细胞外基质的沉积;组织的修复及重建等 [6]。具体表现在:PTX3可与多种微生物结合,包括真菌、细菌和病毒,并参与抵抗选定的病原体。不依赖钙离子结合C1q激活经典补体途径。PTX3结合FH和FHL-1以抑制补体过度激活 [7]。作为调理素,以Fcg受体和补体依赖的方式促进吞噬,放大对细菌和病毒的中和反应 [8]。PTX3还可通过调节补体级联和与P选择素结合调节NE的募集来调节感染 [9] 或无菌组织损伤 [10] 引起的炎症。最后,PTX3通过促进纤维蛋白溶解、血管生成和基质沉积参与组织重塑 [8]。同时,脾脏B辅助性NE产生的PTX3结合脾边缘区B细胞,促进IgM到IgG之间的转换,将天然免疫系统和适应性免疫系统联系起来 [11]。在健康人群血清中其含量极低,一般小于2 ng/ml,在炎症刺激下数小时内可升高至正常值得数千倍。

3. PTX3与肺部感染相关作用机制

3.1. PTX3与肺部细菌感染的相关性

肺炎链球菌是肺部感染中最常见的致病菌。肺炎球菌毒素溶血素通过JNK MAPK信号通路负责PTX3上调表达 [12]。PTX3也可正调节其炎症反应,增强诱导其他细胞因子的表达。PTX3的缺失对小鼠的急性肺炎球菌炎症和死亡具有保护作用。铜绿假单胞菌(PA)主要引起结构性肺病的慢性肺部感染。重组PTX3治疗可减少囊性纤维化小鼠中PA的定植及肺部炎症。最新研究表明PA DnaK (热休克蛋白70的同系物)通过TLR4依赖的核因子κB和细胞外信号调节激酶通路刺激PTX3的表达 [13]。已有研究表明,PTX3在转基因小鼠的肺炎克雷伯菌(Kpn)感染中发挥双刃剑作用,这取决于细菌的载量和过表达PTX3数量 [14]。在该研究中PTX3被证明可以调节炎症因子的分泌,通过抑制或促进NE募集识别病原体机制有关。PTX3也有助于针对Kpn外膜蛋白A的先天免疫应答。最新研究证明,PTX3通过补体依赖的调理吞噬及炎症调节作用机制发挥抵抗Kpn的感染 [13]。为评估PTX3在Kpn感染进展中的重要性,我们使用两种不同感染模型调查死亡率。野生型和Ptx3-/-小鼠经鼻或腹腔接种Kpn,观察5天。在两种感染模型中,Ptx3-/-小鼠的死亡率均高于野生型小鼠,经鼻感染72小时后,Ptx3-/-小鼠的死亡率为100%,而野生型小鼠的死亡率为17%;经腹腔感染60小时后,Ptx3-/-小鼠的死亡率为100%,而野生型小鼠的死亡率为42%。充分表明PTX3缺乏与Kpn感染中不良预后相关。之前的研究表明,PTX3缺乏与烟熏曲霉、PA、大肠杆菌和福氏志贺氏菌感染后的更高细菌载量、更严重的结局和死亡率有关 [15] [16]。而最新研究也表明PTX3缺乏与更高的Kpn感染易感性相关。因此,可证明PTX3在抵抗细菌感染中通过不同的通路发挥了重要作用,并与其预后密切相关。

3.2. PTX3与肺部真菌感染的相关性

真菌在环境中无处不在,对于免疫抑制缺陷患者具有极大的威胁,其中曲霉菌属和隐球菌属是最常见的两种病原体。在PTX3基因敲除小鼠的真菌感染模型中,显示出病原体对DC识别能力和Th1免疫应答减弱,进一步表现出更严重的感染症状 [17]。在曲霉菌肺炎小鼠模型中,通过静脉或腹腔注射重组PTX3可显著降低小鼠的真菌负荷,并增强巨噬细胞的吞噬功能 [17]。一项大鼠模型试验中,用醋酸可的松诱导免疫功能低下状态,服用PTX3可以清除呼吸道真菌感染,提高肺部感染的存活率 [18]。一些体外实验证实,PTX3可与纤维凝胶蛋白(FCN)1、FCN2和甘露糖结合凝集素结合,形成蛋白质复合物,增加补体沉积,促进真菌清除 [19]。也有实验表明,酵母多糖可促进小鼠腹腔巨噬细胞PTX3的表达,而PTX3可通过凝集素-1依赖途径促进其聚集和吞噬 [20]。近年来虽有多项证据表明PTX3单核苷酸多态性(SNPs)与免疫抑制人群对多种真菌疾病感染的高风险相关,但最新研究表明PTX3基因变异也与免疫功能正常患者的侵袭性肺曲霉菌病风险相关 [21],但仍需对大量人群进一步调查研究。因此,PTX3在抗真菌疾病的先天免疫中发挥非冗余作用。

3.3. PTX3与肺部病毒感染的相关性

针对流感及巨细胞病毒,PTX3基因敲除小鼠表现出更高的易感性,重组PTX3可通过与病毒结合降低细胞内病毒载量,并通过激活TLR9/MyD88和IL-12的表达与IRF3结合,发挥治疗作用 [22]。Schirinzi等观察到急诊住院患者在COVID-19病程早期PTX-3升高 [23]。也有研究证实SARS-CoV-2在代表呼吸道上皮细胞的两个细胞系Calu-3和A549中强烈诱导或扩增PTX3转录本表达 [24]。PTX3成为covid-19住院患者中28天死亡率一个强有力的独立预测因子,优于传统的炎症标志物 [24]。不受控制的补体激活已被证明在COVID-19疾病发病机制中起重要作用,并代表了一个治疗的靶点。新冠肺炎的高水平PTX3反映了对异常的负调控的失败。PTX3以及更广泛的体液固有免疫在抵抗SARS-CoV-2和疾病发病机制中的实际作用值得进一步研究。PTX3在某些病毒感染中具有潜在的治疗作用,其作用机制有待进一步探究。

4. PTX3与急性肺损伤

炎症是具有血管系统的活性组织对损伤因子所发生的防御反应,具有杀灭病原体、限制感染及修复损伤等作用,但需要精确调控的过程,否则过度炎症反应会造成组织损伤,严重时可危及生命,如ALI就是炎症反应失衡的后果。ALI发生过程中炎性因子升高,继而引起PTX3分泌增多,PTX3的升高进一步增加组织因子活性,彼此影响在病程的发生、发展起重要作用。在严重急性呼吸综合征(SARS)小鼠模型中,PTX3在冠状病毒诱导的急性肺损伤中起到保护作用,但在COVID-19患者中其保护作用或有害作用尚不清楚,由于SARS-CoV2和SARS-CoV的病毒基因组和致病性非常相似,可以合理地设想PTX3可能在抵抗病毒过程中发挥类似的保护作用 [25],但仍需进一步研究。SARS-CoV2与肺泡内壁中肺细胞表达的血管紧张素转换酶2相互作用可能介导内皮细胞活化,从而导致肺损伤 [26]。大量肺栓塞和深静脉血栓形成的高发病率表明凝血病在COVID19死亡中起着关键作用,其血清PTX3水平与血浆D-二聚体水平升高有关,这意味着PTX3可能参与COVID-19患者的凝血功能紊乱 [27]。目前已证实的作用机制为PTX3与内皮细胞功能障碍和对一氧化氮、P-选择素的抑制。NO信号通路在维持内皮细胞功能、调节血小板聚集、粘附和血栓形成中起着核心作用。PTX3抑制NO合成导致内皮功能障碍、血管内稳态失衡和血栓前状态 [28]。P-选择素是启动白细胞和内皮细胞粘附的关键因素 [29],而P-选择素表达失调导致病理性炎症和深静脉血栓形成。PTX3通过与P-选择素相互作用,促进血管炎症反应和内皮功能障碍。同时,PTX3也可能通过激活组织因子(T.F.)影响凝血功能。T.F.是FVII/VIIa的高亲和力受体和辅助因子。TF-FVIIa复合物是血液凝固的主要起始物,在止血中起着至关重要的作用。通过增加内皮细胞、激活的单核细胞和单核细胞衍生的树突状细胞中的T.F.表达,PTX3可能具有亲血栓活性,并在血栓形成中发挥作用 [30] [31]。此外,先天性和适应性免疫对感染的不受控制的激活会导致过度炎症反应,通过影响肺组织和血管,导致ALI发病机制、休克和多器官衰竭 [32]。因此,检测血清PTX3水平有助于在入院早期识别较严重的患者,以及在急性肺损伤中发挥的潜在治疗作用仍需进一步探索。

5. 总结

PTX3作为炎性因子成为近些年研究的热点。参与调节多种病理生理反应,在抵抗病原体进展中起重要作用。大量研究证实PTX3较CRP有更高的灵敏性,有望成为更具有临床应用价值的炎症反应标志物,在ALI、肺部感染等疾病早期辅助诊断及预后评估方面发挥积极作用,并可能成为潜在的治疗靶点。目前仍需大样本临床试验来证明PTX3水平与肺部相关疾病的关系,并明确PTX3在各类疾病中的诊断阈值,其临床应用仍需更深入的研究来验证。

参考文献

[1] Lee, G.W., Goodman, A.R., Lee, T.H., et al. (1994) Relationship of TSG-14 Protein to the Pentraxin Family of Major Acute Phase Proteins. The Journal of Immunology, 153, 3700-3707.
[2] Breviario, F., D’Aniello, E.M., Golay, J., et al. (1992) Interleukin-1-Inducible Genes in Endothelial Cells. Cloning of a New Gene Related to C-Reactive Protein and Serum Amyloid P Component. Biological Chemistry, 267, 22190-22197.
https://doi.org/10.1016/S0021-9258(18)41653-5
[3] 彭婉君, 赵彬彬, 武婧, 等. 可溶性识别分子PTX3的研究进展[J]. 中国比较医学杂志, 2020, 30(1): 115-121.
[4] Imamura, M., Kawasaki, T., Savchenko, A.S., et al. (2007) Lipopolysaccharide Induced Expression of Pentraxin 3 in Human Neutrophils and Monocyte-Derived Macrophages. Cellular Immunology, 248, 86-94.
https://doi.org/10.1016/j.cellimm.2007.09.003
[5] Jaillon, S., Peri, G., Delneste, Y., et al. (2007) The Humoral Pattern Recognition Receptor PTX3 Is Stored in Neutrophil Granules and Localizes in Extracellular Traps. Journal of Experimental Medicine, 204, 793-804.
https://doi.org/10.1084/jem.20061301
[6] Bottazzi, B., Bastone, A., Doni, A., et al. (2006) The Long Pentraxin PTX3 as a Link among Innate Immunity, Inflammation, and Female Fertility. Journal of Leukocyte Biology, 79, 909-912.
https://doi.org/10.1189/jlb.1005557
[7] Kopp, A., Strobel, S., Tortajada, A., et al. (2012) Atypical Hemolytic Uremic Syndrome-Associated Variants and Autoantibodies Impair Binding of Factor h and Factor h-Related Protein 1 to Pentraxin 3. The Journal of Immunology, 189, 1858-1867.
https://doi.org/10.4049/jimmunol.1200357
[8] Garlanda, C., Bottazzi, B., Magrini, E., et al. (2018) PTX3, a Hu-moral Pattern Recognition Molecule, in Innate Immunity, Tissue Repair, and Cancer. Physiological Reviews, 98, 623-639.
https://doi.org/10.1152/physrev.00016.2017
[9] Bottazzi, B., Doni, A., Garlanda, C., et al. (2010) An Integrated View of Humoral Innate Immunity: Pentraxins as a Paradigm. Annual Review of Immunology, 28, 157-183.
https://doi.org/10.1146/annurev-immunol-030409-101305
[10] Lech, M., Römmele, C., Gröbmayr, R., et al. (2013) Endogenous and Exogenous Pentraxin-3 Limits Postischemic Acute and Chronic Kidney Injury. Kidney International, 83, 647-661.
https://doi.org/10.1038/ki.2012.463
[11] Chorny, A., Casas-Recasens, S., Sintes, J., et al. (2017) Correc-tion: The Soluble Pattern Recognition Receptor PTX3 Links Humoral Innate and Adaptive Immune Responses by Help-ing Marginal Zone B Cells. Journal of Experimental Medicine, 214, 1559.
https://doi.org/10.1084/jem.2015028204172017c
[12] Koh, S.H., Shin, S.G., Andrade, M.J., et al. (2017) Long Pentraxin PTX3 Mediates Acute Inflammatory Responses against Pneumococcal Infection. Biochemical and Biophysical Research Communications, 493, 671-676.
https://doi.org/10.1016/j.bbrc.2017.08.133
[13] Asgari, F., Supino, D., Parente, R., et al. (2021) The Long Pen-traxin PTX3 Controls Klebsiella Pneumoniae Severe Infection. Frontiers in Immunology, 12, Article ID: 666198.
https://doi.org/10.3389/fimmu.2021.666198
[14] Soares, A.C., Souza, D.G., Pinho, V., et al. (2006) Dual Function of the Long Pentraxin PTX3 in Resistance against Pulmonary Infection with Klebsiella Pneumoniae in Transgenic Mice. Microbes and Infection, 8, 1321-1329.
https://doi.org/10.1016/j.micinf.2005.12.017
[15] Ciancarella, V., Lembo-Fazio, L., Paciello, I., et al. (2018) Role of a Fluid-Phase PRR in Fighting an Intracellular Pathogen: PTX3 in Shigella Infection. PLOS Pathogens, 14, e1007469.
https://doi.org/10.1371/journal.ppat.1007469
[16] Schaeffer, E.M. (2015) Re: The Humoral Pattern Recognition Molecule PTX3 Is a Key Component of Innate Immunity against Urinary Tract Infection. The Journal of Urology, 193, 151-152.
https://doi.org/10.1016/j.juro.2014.10.018
[17] Garlanda, C., Hirsch, E., Bozza, S., et al. (2002) Non-Redundant Role of the Long Pentraxin PTX3 in Anti-Fungal Innate Immune Response. Nature, 420, 182-186.
https://doi.org/10.1038/nature01195
[18] Marra, E., Sousa, V., Gaziano, R., et al. (2014) Efficacy of PTX3 and Posaconazole Combination in a Rat Model of Invasive Pulmonary Aspergillosis. Antimicrobial Agents and Chemothera-py, 58, 6284-6286.
https://doi.org/10.1128/AAC.03038-14
[19] Ma, Y.J., Doni, A., Hummelshøj, T., et al. (2009) Synergy between Ficolin-2 and Pentraxin 3 Boosts Innate Immune Recognition and Complement Deposition. Biological Chemistry, 284, 28263-28275.
https://doi.org/10.1074/jbc.M109.009225
[20] Diniz, S.N., Nomizo, R., Cisalpino, P.S., et al. (2004) PTX3 Func-tion as an Opsonin for the Dectin-1-Dependent Internalization of Zymosan by Macrophages. Journal of Leukocyte Biolo-gy, 75, 649-656.
https://doi.org/10.1189/jlb.0803371
[21] Tang, T., Dai, Y., Zeng, Q., et al. (2020) Pentraxin-3 Polymorphisms and Pulmonary Fungal Disease in Non-Neutropenic Patients. Annals of Translational Medicine, 8, 1142.
https://doi.org/10.21037/atm-20-5454
[22] Qin, S., Chen, X., Gao, M., et al. (2017) Prenatal Exposure to Lipopol-ysaccharide Induces PTX3 Expression and Results in Obesity in Mouse Offspring. Inflammation, 40, 1847-1861.
https://doi.org/10.1007/s10753-017-0626-1
[23] Schirinzi, A., Pesce, F., Laterza, R., et al. (2021) Pentraxin 3: Po-tential Prognostic Role in SARS-CoV-2 Patients Admitted to the Emergency Department. Infect, 82, 84-123.
https://doi.org/10.1016/j.jinf.2020.10.027
[24] Brunetta, E., Folci, M., Bottazzi, B., et al. (2021) Macrophage Ex-pression and Prognostic Significance of the Long Pentraxin PTX3 in COVID-19. Nature Immunology, 22, 19-24.
https://doi.org/10.1038/s41590-020-00832-x
[25] Naqvi, A.A.T., Fatima, K., Mohammad, T., et al. (2020) Insights into SARS-CoV-2 Genome, Structure, Evolution, Pathogenesis and Therapies: Structural Genomics Approach. BBA Molecular Basis of Disease, 1866, Article ID: 165878.
https://doi.org/10.1016/j.bbadis.2020.165878
[26] Varga, Z., Flammer, A.J., Steiger, P., et al. (2020) Endothelial Cell Infection and Endotheliitis in COVID-19. The Lancet, 395, 1417-1418.
https://doi.org/10.1016/S0140-6736(20)30937-5
[27] Tong, M., Xiong, Y., Zhu, C., et al. (2021) Elevated Serum Pentraxin-3 Levels Is Positively Correlated to Disease Severity and Coagulopathy in COVID-19 Patients. Mediterranean Journal of Hematology and Infectious Diseases, 13, e2021015.
https://doi.org/10.4084/mjhid.2021.015
[28] Incalza, M.A., D’Oria, R., Natalicchio, A., et al. (2018) Oxidative Stress and Reactive Oxygen Species in Endothelial Dysfunction Associated with Cardiovascular and Metabolic Diseases. Vascular Pharmacology, 100, 1-19.
https://doi.org/10.1016/j.vph.2017.05.005
[29] Lam, F.W., Da, Q., Guillory, B., et al. (2018) Recombinant Human Vimentin Binds to P-Selectin and Blocks Neutrophil Capture and Rolling on Platelets and Endothelium. The Journal of Immunology, 200, 1718-1726.
https://doi.org/10.4049/jimmunol.1700784
[30] Napoleone, E., di Santo, A., Peri, G., et al. (2004) The Long Pen-traxin PTX3 Up-Regulates Tissue Factor in Activated Monocytes: Another Link between Inflammation and Clotting Ac-tivation. Journal of Leukocyte Biology, 76, 203-209.
https://doi.org/10.1189/jlb.1003528
[31] Kasuda, S., Sakurai, Y., Tatsumi, K., et al. (2019) Enhancement of Tissue Factor Expression in Monocyte-Derived Dendritic Cells by Pentraxin 3 and Its Modulation by C1 Esterase Inhibitor. In-ternational Archives of Allergy and Immunology, 179, 158-164.
https://doi.org/10.1159/000496744
[32] Cecconi, M., Forni, G., Mantovani, A., et al. (2020) Ten Things We Learned about COVID-19. Intensive Care Medicine, 46, 1590-1593.
https://doi.org/10.1007/s00134-020-06140-0