自身免疫性肝病与肠道微生物发生发展及预后的关系
Relationship between Gut Microbiota and Development and Prognosis of Autoimmune Liver Disease
摘要: 自身免疫性肝病(Autoimmune liver disease, AILD)是一组免疫介导的肝病,主要包括自身免疫性肝炎(Autoimmune hepatitis, AIH)、原发性胆汁性胆管炎(Primary biliary cholangitis, PBC)和原发性硬化性胆管炎(Primary sclerosing cholangitis, PSC)。AILD目前其发病机制尚不明确,大多数学者认为可能是遗传、免疫、环境等多个因素共同参与的结果。随着近几年微生物研究越来越受到学者重视,不少研究发现肠道微生物与自身免疫性肝病关系越来越密切。本文综述AILD和肠道微生物之间的关系,总结AILD中微生物的组成和功能改变,讨论肠道微生物在疾病发生和进展中的潜在作用,并为AILD的治疗方法提供新的方向。
Abstract: Autoimmune liver disease (AILD) is a group of immune mediated liver diseases, mainly including Autoimmune hepatitis (AIH), Primary biliary cholangitis (PBC) and Primary sclerosing cholangitis (PSC). At present, the pathogenesis of autoimmune liver disease is not clear, and most scholars be-lieve that it may be the result of the joint participation of genetic, immune, environmental and other factors. In recent years, more and more scholars pay attention to microbial research. Many studies have found the relationship between intestinal microorganisms and autoimmune liver disease. This article summarizes the composition and functional changes of Gut microbiota, dis-cusses the potential role of Gut microbiota in disease occurrence and progression, and provides a new direction for the treatment of AILD.
文章引用:李玉杰, 刘丹平. 自身免疫性肝病与肠道微生物发生发展及预后的关系[J]. 临床医学进展, 2022, 12(11): 10814-10821. https://doi.org/10.12677/ACM.2022.12111557

1. 引言

既往研究发现每个个体都有独特的肠道微生物群,其可以调节人体许多功能,肠道微生物由定植于胃肠道的非致病菌、真核微生物、病毒、寄生虫和古细菌组成 [1]。主要的肠道微生物门是厚壁菌门、拟杆菌门、放线菌门、变形菌门、梭杆菌门和疣微菌门,其中拟杆菌门和厚壁菌门构成人体消化道中90%的细菌 [2]。健康成人的肠道中以细菌为主,其中又以双歧杆菌、类杆菌的厌氧菌为主,肠道微生物群编码超过300万个基因,相当于人体“第二基因组”,可产生数千种有益产物,是人类基因组编码数量的150多倍 [3]。肝脏的血液供应大量来自内脏循环,独特的结构使肝脏易暴露于肠道微生物中,肠道微生物组的改变可能导致肝脏损伤。目前越来越多的证据表明 [4],肠道微生物和肝脏之间存在双向关系,以及许多相互关联的因素,如遗传、环境和饮食方面,这些因素一定程度上可以在生态失调中发挥作用。

2. 肠道微生物与自身免疫性肝炎

AIH是一种异常的免疫反应介导的肝内炎症性疾病,以肝细胞为靶点,不同程度的血清转氨酶升高,阳性特征性自身抗体,高丙种球蛋白血症和肝脏组织学的特征性变化 [5],女性居多,全球发病率约为0.09%,目前发病率呈逐年上升趋势 [6]。AIH是由于患者自身免疫耐受的破坏而引起的,其病因和发病机制尚不明确。国内外相关学者做了大量研究工作 [7] [8] [9],人们认为AIH除了遗传易感性相互作用、分子模拟、自身抗原反应、免疫调节功能障碍等共同作用外,肠道微生物也起到不可忽视的作用。

2.1. 自身免疫性肝炎的肠道微生物

AIH的肠道微生物组成成分发生变化,Wei等 [7] 指出AIH患者肠道微生物组中专性厌氧菌(如粪球菌、颤螺菌和瘤胃球菌科)减少,而兼性厌氧菌(如链球菌、克雷伯氏菌和乳杆菌)增加;Liwinksi等 [8] 也发现专性厌氧菌(如粪杆菌)减少,兼性厌氧菌(如链球菌和乳酸杆菌)增加。其部分专性厌氧菌未消化的膳食纤维发酵产生短链脂肪酸(SCFAs),它们通过调节T细胞和为结肠内的上皮细胞提供能量来表现抗炎特性 [10],因此专性厌氧菌的减少可能导致AIH患者的肠道微生物失调。然而有研究发现AIH中乳酸杆菌减少 [10]。AIH患者肠道微生物的α多样性总体下降,血清LPS水平升高 [8] [10] [11] [12],LPS导致toll样受体4和NF-κB通路激活,降低了紧密连接蛋白的表达 [11],有研究 [11] [12] 表明肠道紧密连接受到干扰,zona occludens-1和occludin表达减少,从而增加了肠道通透性允许LPS易位至肝脏,导致细胞因子产生和炎症 [13]。尽管AIH肠道微生物组成成分研究不多,但不难得出肠道微生物成分改变或与AIH发病相关。

肠道微生物与AIH疾病的严重程度可能有关,一些生物标志物或可以作为非侵入性标志物来辅助AIH的诊断以及疾病严重程度的评估。Wei等人报道了AIH中肠道微生物组的组成和功能的改变,表明肠道微生物组可能是评估疾病活动的非侵入性生物标志物 [7]。某些特定的肠道微生物可能与AIH的严重程度相关,如Wei等 [7] 证实Veillonella与AIH最显著相关,Veillonella的丰度与AST水平以及肝脏炎症程度呈正相关。AIH患者肠道微生物失调诱导LPS的增加被证实与AIH的晚期相关 [14]。Liwinski等 [8] 指出双歧杆菌缺乏与疾病活动性增加和AIH无法缓解有关。

2.2. 肠道微生物在自身免疫性肝炎中的发病机制

肠道微生物主要通过以下途径来参与AIH的发生、发展:1) 代谢途径:AIH生态失调对其代谢产生影响,并随之改变各种肠道代谢物的浓度,包括SCFAs、多胺和次级胆汁酸的减少以及支链氨基酸的增加 [7] [8] [9] [15],这些改变是肠屏障破坏、免疫稳态破坏和炎症损伤加重的重要因素,从而推动了AIH的进展。2) 受体通路:AIH生态失调诱导的LPS增加激活IECs中的TLR4/FAK/MyD88信号通路 [16],导致肠屏障破坏并增加肠通透性,AIH中SCFAs的减少使在IECs上表达的GPR41/43和GPR109a的失活加剧了肠屏障破坏和炎症损伤 [17]。肠屏障受损使肠源性细菌和肠代谢物从肠道易位到肝脏,易位的物质激活多种炎症和免疫应答 [18]。还有多种信号通路共同被分布在不同受体被激活,从而参与AIH的发生和进展。3) 免疫途径:有研究表明Tregs和Th17细胞之间的失调 [11]、NKT细胞的激活 [18] 以及由改变的肠道微生物诱导的TFR/TFH细胞的不平衡 [10],可能参与了AIH的发生和发展。

2.3. 肠道微生物与自身免疫性肝炎的治疗

AIH标准治疗方法是免疫抑制治疗(糖皮质激素和硫唑嘌呤联合用药),这有效缓解了大多数患者的症状并延长了生命。然而有些患者不能忍受标准疗法或不能达到缓解,同时糖皮质激素和硫唑嘌呤的有害影响也不能忽视,如中枢性肥胖、骨质疏松、骨髓抑制和肝功能损伤等 [10]。肠道微生物在AIH的发生、发展起到不可忽视的作用,调节肠道微生物为AIH的治疗提供了新的思路。益生菌不仅恢复肠道微生物的组成,还具有调节免疫系统的功能。Ma等 [19] 研究乳酸杆菌联合糖皮质激素治疗AIH的效果较糖皮质激素治疗好,增加了AIH患者中脆弱拟杆菌、梭状芽孢杆菌、轻梭状芽胞杆菌、双歧杆菌和乳酸杆菌的水平,并显著降低了患者血清中ALT、AST、TBIL、SMA、ANA、IgG、IgM、IgA、DAO和ET的水平,表明乳酸杆菌改变肠道微生物组成可能会提高强的松对AIH的治疗效果。长双歧杆菌LC67和植物乳杆菌LC27都可以通过抑制NF-κB炎症通路来抑制炎症 [20]。益生元不被宿主消化吸收,但可促进肠道益生菌的繁殖和代谢,山口等 [21] 发现在施用ConA后12小时喂食菊粉的小鼠的肝损伤在组织学和血清学上显着降低。Liu等 [11] 发现一种由15种益生菌组成的化合物可降低AIH小鼠模型的肝脏炎症、血清转氨酶水平、Th1和Th17细胞并增加调节性T细胞的数量,同时保护肠屏障完整性,阻断脂多糖(LPS)易位,抑制Toll样受体4/核因子κB (TLR4/NF-κB)途径激活和肝脏、回肠中炎性细胞因子的产生。此外,有研究发现抗生素或特定疫苗可有效抑制肠球菌的生长并控制疾病进展 [22],粪便微生物群移植(FMT)和一些药理学试剂可改变肠道微生物群相关的信号传导途径,这些都提示肠道微生物给AIH的治疗提供新的方向。

3. 肠道微生物与自身免疫性胆汁淤积性肝病

AILD除了AIH主要还有PBC和PSC,PBC、PSC属于自身免疫性胆汁淤积性肝病,其病因目前尚未阐明 [23]。越来越多的研究发现,肠道微生物和胆汁酸分别影响胆汁淤积,肠道微生物与胆汁酸可以相互作用,相互影响,因此肠道微生物在这两种疾病的发生、发展及治疗可能起到一定作用。

3.1. 胆汁酸在自身免疫性胆汁淤积性肝病中的作用

胆汁淤积性肝病表现为胆汁淤积,而胆汁酸是胆汁的主要有机溶质,因此正常胆汁酸和/或其衍生物排泄障碍和潜在毒性胆汁酸的过度积累使肝脏受损。胆汁酸可分为初级胆汁酸、次级胆汁酸两大类,前者主要在肝脏合成,经十二指肠进入到肠道,肠道中95%的胆汁酸经过肠肝循环重吸收至肝脏中。有研究 [24] 证明高浓度胆汁酸具有细胞毒性作用,如浓度在50~200 μmol/L引起细胞凋亡,浓度高于200 μmol/L引起炎症反应,而浓度在200~2000 μmol/L或高于2000 μmol/L可造成细胞坏死。作为炎症因子的胆汁酸刺激细胞因子、趋化因子、粘附分子、花生四烯酸代谢中的酶等 [25] 炎症介质的产生。胆汁酸在肝脏的积累可以将树突状细胞从耐受原性转变为活化的高反应性表型,从而增强启动同种异体和同基因T淋巴细胞以及在炎症刺激下分泌促炎细胞因子的能力 [26]。因此胆汁酸可通过多细胞、多种途径调节炎症反应来参与PBC、PSC的疾病进程。

3.2. 肠道微生物在自身免疫性胆汁淤积性肝病的作用

PBC、PSC患者其肠道微生物的组成或发生了变化,目前关于该两种疾病肠道微生物变化的研究较多,菌群的具体变化也分析得比较清楚。Fukui等研究 [27] 发现与健康状态相比,PSC患者的细菌多样性总体降低,肠道中某些细菌的丰度发生了变化,如粪便嗜血杆菌、罗氏菌属、梭菌属、肠球菌属、链球菌属和韦荣氏菌属增加。Nakamoton等 [28] 发现PSC患者的粪便中肠球菌属、乳杆菌属和梭杆菌属的比例过高。PSC虽然是不常见的疾病,但其常伴随IBD [29]。Bajer等 [29] 检查了PSC和PSC-IBD患者的粪便样本,发现与健康个体相比,罗氏菌属、肠球菌属、链球菌属、梭菌属、韦荣氏菌属和嗜血杆菌属增加,而粪球菌属减少。Lv等人 [30] 发现与健康者相比,PBC患者的韦荣氏菌、双歧杆菌、克雷伯氏菌和奈瑟菌水平升高,而蛋类拟杆菌、哈氏菌、瘤胃球菌和巨单胞菌的水平降低,且发现早期PBC患者有益菌减少,潜在致病菌增多。Tang等 [31] 注意到PBC中克雷伯菌属、乳杆菌属、梭菌属、假单胞菌属、嗜血杆菌属、链球菌属、韦荣氏菌属和肠杆菌科的数量增加,而粪杆菌属、萨特氏菌属和拟杆菌属等的数量减少。这些研究证实PBC和PSC患者的肠道微生物组成或发生显著的变化,可能存在潜在有益成分的消耗和机会性病原体的富集。肠道微生物还可能直接参与胆汁淤积性肝病的发病机制。Suri等 [32] 研究大肠埃希菌是第1个被证实可能触发PBC的感染因素,约30%的PBC患者的血清抗线粒体M2抗体与大肠埃希菌的HRPA153至167和MALE95至109序列发生交叉反应。因此肠道微生物组发生改变,对PBC、PSC的发生/发展至关重要。越来越多的研究证明肠道微生物可能直接参与PBC、PSC发病机制。

3.3. 胆汁酸与肠道微生物相互作用

胆汁酸与肠道微生物不仅影响PBC、PSC的胆汁淤积,还能相互影响,相互作用。胆汁酸通过抑制某些胆汁敏感细菌的生长来塑造肠道微生物群落 [33]。有研究表明胆道阻塞阻碍胆汁流入肠道,导致小肠里细菌过度生长和易位 [34],但这种情况可以通过口服胆汁酸激活FXR来阻止 [35],如Ang1,iNos和II18这些FXR的激活诱导基因的表达基因可以防止细菌过度增殖,以防在远端小肠中产生有害影响。胆汁酸不仅具有直接的抗菌作用,胆汁酸可以通过NRs(如FXR)间接控制导管素的表达,以防止微生物侵入胆管上皮 [36]。因此胆汁酸也可以对肠道微生物产生作用。

肠道微生物通过控制远端小肠和结肠中初级胆汁酸的去结合、脱氢、脱羟基和差向异构化来调节胆汁酸的化学多样性,此微生物代谢过程产生了一个更疏水的胆汁酸池来促进胆汁酸的排泄 [37]。结合型胆汁酸在回肠末端和结肠上段肠道微生物和胆汁盐水解酶作用下去结合形成游离型胆汁酸。有研究表明功能性胆汁盐水解酶存在于人类肠道乳酸杆菌、双歧杆菌、梭状芽孢杆菌和拟杆菌属中 [38]。结肠中绝大多数的胆汁酸都通过7α-脱羟基作用生物转化为次级胆汁酸,然而约仅0.0001%的结肠细菌能够进行这种反应,迄今为止进行的16SrRNA序列分析已经在梭状芽孢杆菌(簇XIVa和XI)和厚壁菌门的真杆菌中鉴定出这些细菌 [24]。胆汁酸的差向异构化中的羟基类固醇脱氢酶,其存在于放线菌门、变形菌门、厚壁菌门和拟杆菌门中,是作用于胆汁酸的3-、7-和12-位羟基以催化差向异构化的细菌酶 [39],可改变胆汁酸的疏水性和毒性,并保护肝脏免受更具毒性、疏水性的胆汁酸的侵害。

据报道 [40] 肠道微生物群可以产生新的胆汁酸,如苯丙氨酸胆酸、酪氨酸胆酸和白胆酸。肠道微生物群作为胆汁酸合成的调节剂也具有重要作用,已知胆汁酸的合成受FXR的负反馈抑制调节,有报道称肠道微生物降低β-鼠胆酸(TβMCA)的水平并通过FXR-FGF15/19反馈机制调节胆汁酸合成 [11]。肠道微生物还通过FXR反馈机制运输胆汁酸,其与肠道和肝脏通过FXR介导维持胆汁酸稳态的观点一致。肠道微生物对胆汁酸库产生深远影响,肠道微生物组的扰动塑造了胆汁酸库并调节了胆汁酸激活受体的活性,从而参与胆汁淤积性肝病的发生和进展。尽管有学者认为目前该两种疾病可能存在“肠漏假说” [41]、“肠道淋巴细胞归巢假说” [42]、“分子模拟假说” [43] 等,但肠道微生物与PBC、PSC是如何互相影响的机制尚不明确。

综上所述肠道微生物与PBC、PSC之间的关系可能通过肠道微生物、胆汁酸、胆汁淤积三者相互影响、相互作用紧密相连。

3.4. 肠道微生物可能为自身免疫性淤积性肝病治疗提供新的思路

目前熊去氧胆酸(UDCA)是治疗PBC的主要药物,尽管Tang等 [31] 利用16S核糖体RNA基因测序比较了37名PBC患者的亚组经UDCA治疗后,6个相关肠道微生物属的丰度发生逆转。但部分PBC患者的UDCA治疗效果欠佳且PSC目前无有效的治疗药物。鉴于肠道微生物与PBC、PSC之间的密切联系,改善肠道微生物可能为这两种疾病的治疗提供新的思路。已知抗生素、益生菌和粪便菌群移植等是目前针对肠道微生物的主要治疗方法,已有研究 [44] 表明PBC或可以通过益生菌、益生元、粪便菌群移植治疗,但益生菌用于PSC的治疗效果目前存在一定争议 [45],粪便菌群移植治疗正在研究中。

4. 总结与展望

综上所述,AILD的肠道微生物组成成分发生变化,肠道微生物与AILD发生、发展及预后有密切的关系,甚至肠道微生物可以为AILD的诊断提供新标志物。尽管目前大多数肠道微生物研究于北美和欧洲等发达国家进行,一定程度上可能会影响国内学者对肠道微生物与AILD的认识 [46],但也具有不可小觑的参考意义。美中不足的是现阶段的研究多数处于动物试验阶段来解释肠道微生物与AILD之间的潜在联系,缺乏准确连贯的病理机制,未来需要更多的人类研究来验证这些潜在的机制。其次,因为肠道微生物易受遗传、环境、行为等因素的影响,需要大量学者进行多中心、长期、大数据的研究来探索肠道微生物与AILD的关联。

NOTES

*通讯作者。

参考文献

[1] Schwenger, K.J., Clermont-Dejean, N. and Allard, J.P. (2019) The Role of the Gut Microbiome in Chronic Liver Disease: The Clinical Evidence Revised. JHEP Reports, 1, 214-226.
https://doi.org/10.1016/j.jhepr.2019.04.004
[2] Miura, K. and Ohnishi, H. (2014) Role of Gut Microbiota and Toll-Like Receptors in Nonalcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, 7381-7391.
https://doi.org/10.3748/wjg.v20.i23.7381
[3] Rinninella, E., Raoul, P., Cintoni, M., et al. (2019) What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7, Article No. 14.
https://doi.org/10.3390/microorganisms7010014
[4] Tilg, H., Adolph, T.E. and Trauner, M. (2022) Gut-Liver Axis: Pathophysiological Concepts and Clinical Implications. Cell Metabolism, 34, 1700-1718.
https://doi.org/10.1016/j.cmet.2022.09.017
[5] Mack, C.L., Adams, D., Assis, D.N., et al. (2020) Diagnosis and Management of Autoimmune Hepatitis in Adults and Children: 2019 Practice Guidance and Guidelines from the American Association for the Study of Liver Diseases. Hepatology, 72, 671-722.
https://doi.org/10.1002/hep.31065
[6] Saccucci, M., Di Carlo, G., Bossu, M., et al. (2018) Autoimmune Diseases and Their Manifestations on Oral Cavity: Diagnosis and Clinical Management. Journal of Immunology Research, 2018, Article ID: 6061825.
https://doi.org/10.1155/2018/6061825
[7] Wei, Y., Li, Y., Yan, L., et al. (2020) Alterations of Gut Microbiome in Autoimmune Hepatitis. Gut, 69, 569-577.
https://doi.org/10.1136/gutjnl-2018-317836
[8] Liwinski, T., Casar, C., Ruehlemann, M.C., et al. (2020) A Dis-ease-Specific Decline of the Relative Abundance of Bifidobacterium in Patients with Autoimmune Hepatitis. Alimentary Pharmacology & Therapeutics, 51, 1417-1428.
https://doi.org/10.1111/apt.15754
[9] Elsherbiny, N.M., Rammadan, M., Hassan, E.A., et al. (2020) Autoimmune Hepatitis: Shifts in Gut Microbiota and Metabolic Pathways among Egyptian Patients. Microorganisms, 8, Article No. 1011.
https://doi.org/10.3390/microorganisms8071011
[10] Ma, L., et al. (2021) Fecal Microbiota Transplantation Controls Progression of Experimental Autoimmune Hepatitis in Mice by Modulating the TFR/TFH Immune Imbalance and Intestinal Microbiota Composition. Frontiers in Immunology, 12, Article ID: 728723.
https://doi.org/10.3389/fimmu.2021.728723
[11] Liu, Q., Tian, H., Kang, Y., et al. (2021) Probiotics Alleviate Autoimmune Hepatitis in Mice through Modulation of Gut Microbiota and Intestinal Permeability. The Journal of Nu-tritional Biochemistry, 98, Article ID: 108863.
https://doi.org/10.1016/j.jnutbio.2021.108863
[12] Zhang, H., Liu, M., Liu, X., et al. (2020) Bifidobacterium animalis ssp. Lactis 420 Mitigates Autoimmune Hepatitis through Regulating Intestinal Barrier and Liver Immune Cells. Frontiers in Immunology, 11, Article ID: 569104.
https://doi.org/10.3389/fimmu.2020.569104
[13] Dyson, J.K., Beuers, U., Jones, D.E.J., et al. (2018) Primary Sclerosing Cholangitis. The Lancet, 391, 2547-2559.
https://doi.org/10.1016/S0140-6736(18)30300-3
[14] Lin, R., Zhou, L., Zhang, J., et al. (2015) Abnormal Intestinal Permeability and Microbiota in Patients with Autoimmune Hepatitis. International Journal of Clinical and Experimental Pathology, 8, 5153-5160.
[15] Lou, J., Jiang, Y., Rao, B., et al. (2020) Fecal Microbiomes Distinguish Patients with Autoimmune Hepatitis from Healthy Individuals. Frontiers in Cellular and Infection Microbiology, 10, Article No. 342.
https://doi.org/10.3389/fcimb.2020.00342
[16] Guo, S., Nighot, M., Al-Sadi, R., et al. (2015) Lipopolysaccharide Regulation of Intestinal Tight Junction Permeability Is Mediated by TLR4 Signal Transduction Pathway Activation of FAK and MyD88. The Journal of Immunology, 195, 4999-5010.
https://doi.org/10.4049/jimmunol.1402598
[17] Kim, M.H., Kang, S.G., Park, J.H., et al. (2013) Short-Chain Fatty Acids Activate GPR41 and GPR43 on Intestinal Epithelial Cells to Promote Inflammatory Responses in Mice. Gastroenterology, 145, 396-406e1-10.
https://doi.org/10.1053/j.gastro.2013.04.056
[18] Liu, C., Wang, Y.L., Yang, Y.Y., et al. (2021) Novel Ap-proaches to Intervene Gut Microbiota in the Treatment of Chronic Liver Diseases. FASEB Journal, 35, e21871.
https://doi.org/10.1096/fj.202100939R
[19] Ma, L., Zhang, L., Zhuang, Y., et al. (2022) Lactobacillus Improves the Effects of Prednisone on Autoimmune Hepatitis via Gut Microbiota-Mediated Follicular Helper T Cells. Cell Communication and Signaling, 20, Article No. 83.
https://doi.org/10.1186/s12964-021-00819-7
[20] Yamaguchi, A., Teratani, T., Chu, P.S., et al. (2021) Hepatic Adenosine Triphosphate Reduction through the Short-Chain Fatty Acids-Peroxisome Proliferator-Activated Receptor gamma-Uncoupling Protein 2 Axis Alleviates Immune-Mediated Acute Hepatitis in Inulin-Supplemented Mice. Hepatology Communications, 5, 1555-1570.
https://doi.org/10.1002/hep4.1742
[21] Karlsen, T.H., Folseraas, T., Thorburn, D., et al. (2017) Primary Sclerosing Cholangitis—A Comprehensive Review. Journal of Hepatology, 67, 1298-1323.
https://doi.org/10.1016/j.jhep.2017.07.022
[22] Sabino, J., Vieira-Silva, S., Machiels, K., et al. (2016) Primary Sclerosing Cholangitis Is Characterised by Intestinal Dysbiosis Independent from IBD. Gut, 65, 1681-1689.
https://doi.org/10.1136/gutjnl-2015-311004
[23] Jansen, P.L., Ghallab, A., Vartak, N., et al. (2017) The Ascending Pathophysiology of Cholestatic Liver Disease. Hepatology, 65, 722-738.
https://doi.org/10.1002/hep.28965
[24] Liu, H.X., Keane, R., Sheng, L., et al. (2015) Implications of Microbiota and Bile Acid in Liver Injury and Regeneration. Journal of Hepatology, 63, 1502-1510.
https://doi.org/10.1016/j.jhep.2015.08.001
[25] Bleier, J.I., Katz, S.C., Chaudhry, U.I., et al. (2006) Biliary Ob-struction Selectively Expands and Activates Liver Myeloid Dendritic Cells. The Journal of Immunology, 176, 7189-7195.
https://doi.org/10.4049/jimmunol.176.12.7189
[26] Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., et al. (2004) Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis. Cell, 118, 229-241.
https://doi.org/10.1016/j.cell.2004.07.002
[27] Fukui, H. (2019) Role of Gut Dysbiosis in Liver Diseases: What Have We Learned So Far? Diseases, 7, Article No. 58.
https://doi.org/10.3390/diseases7040058
[28] Nakamoto, N., Sasaki, N., Aoki, R., et al. (2019) Gut Pathobionts Underlie Intestinal Barrier Dysfunction and Liver T Helper 17 Cell Immune Response in Primary Sclerosing Cholangitis. Nature Microbiology, 4, 492-503.
https://doi.org/10.1038/s41564-018-0333-1
[29] Bajer, L., Kverka, M., Kostovcik, M., et al. (2017) Distinct Gut Microbiota Profiles in Patients with Primary Sclerosing Cholangitis and Ulcerative Colitis. World Journal of Gastro-enterology, 23, 4548-4558.
https://doi.org/10.3748/wjg.v23.i25.4548
[30] Lv, L.X., Fang, D.Q., Shi, D., et al. (2016) Alterations and Corre-lations of the Gut Microbiome, Metabolism and Immunity in Patients with Primary Biliary Cirrhosis. Environmental Microbiology, 18, 2272-2286.
https://doi.org/10.1111/1462-2920.13401
[31] Tang, R., Wei, Y., Li, Y., et al. (2018) Gut Microbial Profile Is Altered in Primary Biliary Cholangitis and Partially Restored after UDCA Therapy. Gut, 67, 534-541.
https://doi.org/10.1136/gutjnl-2016-313332
[32] Suri, J., Patwardhan, V. and Bonder, A. (2019) Pharmacologic Management of Primary Sclerosing Cholangitis: What’s in the Pipeline? Expert Review of Gastroenterology & Hepatology, 13, 723-729.
https://doi.org/10.1080/17474124.2019.1636647
[33] Cremers, C.M., Knoefler, D., Vitvitsky, V., et al. (2014) Bile Salts Act as Effective Protein-Unfolding Agents and Instigators of Disulfide Stress in Vivo. Proceedings of the National Academy of Sciences of the United States of America, 111, E1610-E1619.
https://doi.org/10.1073/pnas.1401941111
[34] D’aldebert, E., Biyeyeme Bi Mve, M.J., Mergey, M., et al. (2009) Bile Salts Control the Antimicrobial Peptide Cathelicidin through Nuclear Receptors in the Human Biliary Epithelium. Gastroenterology, 136, 1435-1443.
https://doi.org/10.1053/j.gastro.2008.12.040
[35] Devkota, S. and Chang, E.B. (2015) Interactions between Diet, Bile Acid Metabolism, Gut Microbiota, and Inflammatory Bowel Diseases. Digital Distribution, 33, 351-356.
https://doi.org/10.1159/000371687
[36] Gahan, C.G. and Hill, C. (2014) Listeria Monocytogenes: Survival and Adaptation in the Gastrointestinal Tract. Frontiers in Cellular and Infection Microbiology, 4, Article No. 9.
https://doi.org/10.3389/fcimb.2014.00009
[37] Ridlon, J.M., Kang, D.J., Hylemon, P.B., et al. (2014) Bile Acids and the Gut Microbiome. Current Opinion in Gastroenterology, 30, 332-338.
https://doi.org/10.1097/MOG.0000000000000057
[38] Kisiela, M., Skarka, A., Ebert, B., et al. (2012) Hydroxysteroid Dehydrogenases (HSDs) in Bacteria: A Bioinformatic Perspective. The Journal of Steroid Biochemistry and Molecular Biology, 129, 31-46.
https://doi.org/10.1016/j.jsbmb.2011.08.002
[39] Sayin, S.I., Wahlstrom, A., Felin, J., et al. (2013) Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-Beta-Muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metabolism, 17, 225-235.
https://doi.org/10.1016/j.cmet.2013.01.003
[40] Quinn, R.A., Melnik, A.V., Vrbanac, A., et al. (2020) Global Chemical Effects of the Microbiome Include New Bile-Acid Conjugations. Nature, 579, 123-129.
https://doi.org/10.1038/s41586-020-2047-9
[41] Assis, D.N., Abdelghany, O., Cai, S.Y., et al. (2017) Combina-tion Therapy of All-Trans Retinoic Acid with Ursodeoxycholic Acid in Patients with Primary Sclerosing Cholangitis: A Human Pilot Study. Journal of Clinical Gastroenterology, 51, e11-e16.
https://doi.org/10.1097/MCG.0000000000000591
[42] Watanabe, M., Fukiya, S. and Yokota, A. (2017) Com-prehensive Evaluation of the Bactericidal Activities of Free Bile Acids in the Large Intestine of Humans and Rodents. Journal of Lipid Research, 58, 1143-1152.
https://doi.org/10.1194/jlr.M075143
[43] Mattner, J., Savage, P.B., Leung, P., et al. (2008) Liver Autoimmunity Triggered by Microbial Activation of Natural Killer T Cells. Cell Host & Microbe, 3, 304-315.
https://doi.org/10.1016/j.chom.2008.03.009
[44] Terziroli Beretta-Piccoli, B., Mieli-Vergani, G., Vergani, D., et al. (2019) The Challenges of Primary Biliary Cholangitis: What Is New and What Needs to Be Done. Journal of Au-toimmunity, 105, Article ID: 102328.
https://doi.org/10.1016/j.jaut.2019.102328
[45] Li, Y., Tang, R., Leung, P.S.C., et al. (2017) Bile Acids and In-testinal Microbiota in Autoimmune Cholestatic Liver Diseases. Autoimmunity Reviews, 16, 885-896.
https://doi.org/10.1016/j.autrev.2017.07.002
[46] Terziroli Beretta-Piccoli, B., Mieli-Vergani, G. and Vergani, D. (2022) HLA, Gut Microbiome and Hepatic Autoimmunity. Frontiers in Immunology, 13, Article ID: 980768.
https://doi.org/10.3389/fimmu.2022.980768