中药调节慢性心力衰竭心肌能量代谢的研究概况
Research Overview of Traditional Chinese Medicine Regulating Myocardial Energy Metabolism in Chronic Heart Failure
DOI: 10.12677/TCM.2022.112048, PDF, HTML, XML, 下载: 212  浏览: 576 
作者: 景 丹:上海中医药大学,上海;顼志兵:上海中医药大学,上海;上海中医药大学附属第七人民医院,上海;黄静聪:上海中医药大学附属第七人民医院,上海
关键词: 慢性心力衰竭心肌能量代谢心肌能量代谢障碍中药Chronic Heart Failure Myocardial Energy Metabolism Myocardial Energy Metabolism Disturbance Traditional Chinese Medicine
摘要: 慢性心力衰竭(Chronic Heart Failure,CHF,以下简称心衰)是一种复杂的临床症候群,具有发病率、患病率、死亡率高的特点。近年来,心肌能量代谢障碍对心衰的发生、发展的影响作用已经获得越来越多的承认,心肌能量代谢的有效调节在心衰的治疗方面具有巨大的潜力。中药在心肌能量代谢调节中已经显示出自己的独特优势,如整体治疗、多靶点、个体化、毒副作用小。本文就心衰的能量代谢机制和中药对其的调节作用作一综述。
Abstract: Chronic Heart Failure is a complex clinical syndrome characterized by high incidence rate, high morbidity rate and high mortality rate. In recent years, the influence of myocardial energy meta-bolism disorder on the occurrence and development of heart failure has been more and more recognized. The effective regulation of myocardial energy metabolism has great potential in the treatment of heart failure. Traditional Chinese medicine has shown its unique advantages in the regulation of myocardial energy metabolism, such as overall treatment, multi-target, individuali-zation and small toxic and side effects. This paper reviews the energy metabolism mechanism of heart failure and the regulatory effect of traditional Chinese medicine on it.
文章引用:景丹, 顼志兵, 黄静聪. 中药调节慢性心力衰竭心肌能量代谢的研究概况[J]. 中医学, 2022, 11(2): 323-330. https://doi.org/10.12677/TCM.2022.112048

1. 引言

心衰是各种心脏疾病的一个共同性终末阶段,是因心脏的收缩或舒张功能障碍而导致心室射血功能下降不能满足机体代谢需要的一组临床综合征 [1]。最近的“中国心衰流行病学调查”显示 [2],我国35~74岁成年人中约1370万心衰患者。令人担忧的是其发病的确切机制仍不清楚,药物治疗5年死亡率仍达到50%,其机制的研究是心脏病学领域面临的一个严峻挑战,亟待解决。据文献报道 [3] [4],在心衰的发展过程中,能量代谢障碍与之有着密切的联系,优化心肌能量代谢可能是心衰治疗的新靶点。目前,中药已被证明可以调节心肌能量代谢的多种过程 [5]。本文就心肌能量代谢及中药改善心肌能量代谢的简单概述如下。

2. 健康心脏心肌能量代谢

心脏有很大的能量需求来维持其正常的舒缩功能以泵出充足的血液满足机体代谢需要。三磷酸腺苷(Adenosine triphosphate, ATP)是心脏唯一可直接利用的能量形式。ATP的产生95%来自线粒体的氧化磷酸化,5%主要来自糖酵解途径 [6]。线粒体氧化磷酸化是指在呼吸链中电子传递偶联ATP形成的过程,电子传递链利用脂肪酸氧化(Fatty acid oxidation, FAO)、葡萄糖氧化(Glucose oxidase, GOX)、糖酵解和三羧酸循环产生的还原型烟酰胺腺嘌呤二核苷酸(NADH)和黄素腺嘌呤二核苷酸(FADH2)产生ATP。心肌能够灵活利用多种能量底物,以应对在各种条件下能够提供足够的ATP供心脏利用,心脏大约60%~90%的ATP由脂肪酸提供,10%~40%来源于葡萄糖、氨基酸、酮体、乳酸 [7],在正常的生理条件下乳酸、酮体、氨基酸被认为利用率很低 [8]。

FAO可简单概括为摄取、活化、转移、β-氧化、进入三羧酸循环氧化分解成CO2和水释放大量能量。游离脂肪酸(Free fatty acids, FFA)通过被动扩散或在转运蛋白CD36等的促进下进入细胞质 [9],在胞液中,在酶的作用下被活化成脂酰辅酶A,利于长链脂肪酸被线粒体外膜上的肉碱棕榈酰转移酶(Carnitine palmitoyltransferase, CPT)-1转化为长链酰基肉碱进入线粒体,在CPT-2的作用下长链酰基肉碱转化回脂酰辅酶A,在线粒体基质中进行β-氧化产生乙酰辅酶A进入三羧酸循环参与能量形成。

在成人心脏中,转运体GLUT4是葡萄糖进入的关键点,胰岛素和心肌收缩刺激可诱导GLUT4以囊泡的形式从细胞的膜隔区进入质膜,进行葡萄糖的摄取,过程涉及单磷酸腺苷活化蛋白酶(AMP-activated protein kinase, AMPK)、磷脂酰肌醇3激酶(Phosphoinositide 3 kinase, PI3K)等信号通路 [10]。糖酵解是葡萄糖有氧氧化和无氧氧化的共同途径,有氧条件下,葡萄糖经过糖酵解途径在多种酶的作用下形成丙酮酸,包括己糖激酶(Hexokinase, HK)、磷酸果糖激酶1 (Phosphohexose-1, PFK-1)、丙酮酸激酶(Pyruvate kinase, PK),在丙酮酸脱氢酶(Pyruvate dehydrogenase, PDH)作用下产生乙酰辅酶A进入三羧酸循环;缺氧时,丙酮酸分解产生乳酸释放ATP,产生能量较少。

3. 心衰患者心肌能量代谢

近年来,心肌能量代谢障碍在心衰的发生、发展的过程中起着重要作用的这一观点已广泛的得到认可,表现为能量底物喜好的转变、线粒体功能障碍、钙离子稳态失衡、磷酸(Phosphoric acid, PCr)与ATP能量转移受损等 [3]。

3.1. 能量底物喜好的转变

心衰初期,心肌优先利用脂肪酸受到明显的损害,变为优先利用葡萄糖。Doenst [11] 等发现,在心室重构的发展过程中,GOX与FAO比率呈增加趋势,能量的提供更加依赖于葡萄糖。Zhang L [12] 等在腹主动脉收缩(Abdominal aortic constriction, AAC)制备心衰小鼠模型的实验中观察到,假手术组在胰岛素刺激下测得的GOX及糖酵解增加明显,AAC模型小鼠则出现GOX及糖酵解减少、GLUT4易位受损、ATP总生成率下降等情况,证实心衰患者心肌细胞存在胰岛素抵抗,致葡萄糖利用率减少,在心衰严重时,糖酵解并不能保障能量供应,反而可能会引起乳酸堆积 [13],加快心衰的进展。

3.2. 线粒体氧化功能障碍

线粒体氧化磷酸化每天可为心脏活动提供约6公斤的ATP [14] [15]。近来赖氨酸残基乙酰化被认为是线粒体氧化磷酸化的重要调节因子,而抑制线粒体蛋白赖氨酸过度乙酰化则被认为是心衰的潜在治疗靶点。Julie L等认为 [16] 赖氨酸乙酰化是在乙酰辅酶A池扩大和NAD+水平降低的驱动下进行的。赖氨酸乙酰化的过度表达会导致长链、短链酰基辅酶A脱氢酶、PDH、ATP合成酶等蛋白的活性降低 [17],从而损害线粒体氧化能力,阻碍ATP产生。

机体正常代谢可以产生活性氧(Reactive oxygen species, ROS),起着信号传递作用,心肌细胞ROS主要来源于线粒体复合体中传递的电子漏出并还原氧分子形成 [15],可以被抗氧化防御系统中的超氧化物歧化酶(Superoxide dismutase, SOD)、谷胱甘肽过氧化物酶(Glutathione peroxidase, GSHPx)、过氧化氢酶等清除 [18]。在衰竭心脏中,ROS超载可导致线粒体mtDNA损害、脂质过氧化及电子传递链上复合酶活性降低引起线粒体氧化能力下降,线粒体功能障碍促进ROS产生,造成恶性循环 [19] [20]。

3.3. 钙离子稳态失衡

研究表明 [21] 心衰患者常表现为肌浆网钙含量降低,与肌浆网钙泵活性下降、肌膜Na-Ca交换(Sodium calcium exchanger, NCX)增强、肌浆网钙泄露相关,导致心肌收缩障碍,而胞质钙下降速度减慢,则导致舒张功能障碍。线粒体氧化功能对钙敏感,钙可直接或间接调节呼吸链相关蛋白和复合物、三羧酸循环关键酶、ATP合成酶等,参与调节ATP产生和消耗 [22]。线粒体中钙稳态主要通过线粒体Ca2+单转运蛋白复合体(Mitochondrial calcium uniporter, MCU)流入和NCX流出维持 [22],基质中高钙可造成线粒体结构的改变,如线粒体肿胀、塌陷。研究表明 [23],电子传递链中复合体I、III、IV相关NADH可随钙浓度升高而升高,使ATP产生增加。

3.4. PCr与ATP能量转移受损

肌酸激酶(Creatine kinase, CK)能可逆地催化肌酸和ATP生成PCr及ADP的反应,保证能量供应,在心衰患者中,CK反应明显受损,包括CK活性降低、反应底物PCr、ATP等减少 [24],导致心衰患者PCr/ATP稳态失衡,加速心衰进程。Ashish Gupta等人 [24] [25] 在CK-M过表达的(Transverse aortic constriction, TAC)小鼠中发现,CK-M过表达可以通过维持总体CK活性、提高肌纤维ATP输送率、改善PCr/ATP减少、增加心肌高能磷酸盐池大小以改善主动脉弓缩窄术诱导的TAC心衰小鼠心肌能量代谢和左心室收缩功能,并提高小鼠生存率。

4. 从中医角度了解心衰

心衰根据临床表现在中医上属于心水、心悸、痰饮、水肿等范畴,如在张仲景《金匮要略·水气病脉证并治》中对心水的描述“其身重而少气,不得卧,烦而燥,其人阴肿”与现代心衰的临床症状气短、乏力、不能平卧、烦躁、水肿接近 [26]。2016年慢性心力衰竭中西医结合诊疗专家共识 [27] 提出“心衰”属本虚标实之证,病机可用“虚”“瘀”“水”概括,以气虚、血瘀最多见,其次为阳虚、阴虚、水饮、痰浊,治疗当以“益气”、“活血”、“温阳”、“利水”为主,“心衰”前期(相当于前心衰阶段和NYHA心功能Ⅰ级)中医主要针对原发病辨证论治,消除危险因素,侧重于治未病,“心衰”后期(相当于NYHA心功能II~IV级)常以复合证型出现,最常见的气虚血瘀证、阳气亏虚血瘀证、气阴两虚血瘀证。中医认为“气”有温煦、推动、兴奋、宁静、凉润、抑制的作用,与能量调节心脏收缩、舒张功能有共通性 [28],因此通过中药直接或间接调理气机可改善心肌能量代谢障碍。中医辩证论治注重整体观,在临床治疗方面多强调“益气”、“活血”、“温阳”、“利水”等治疗方式相辅相成。

5. 中药对心肌能量代谢的调节

5.1. 单味中药

附子常应用于各种阳虚证,具有强心作用。研究表明 [29] 附子的主要生物碱成分苯甲酰乌头碱可能通过激活AMPK通路,促进了HepG2细胞线粒体mtDNA复制和呼吸链中复合物I-V表达进而增加ATP的产生。AMPK的激活还可以增加FAO、葡萄糖向膜内运动 [30],同时可以使过氧化物酶体增殖物受体(Peroxisome proliferator activated receptor, PPAR)-γ协激活因子-1α (Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, PGC-1α)表达增加,从而改善线粒体的结构和功能 [31] [32]。附子毒性剧烈在临床中使用时应当慎重,通过中药配伍可以减轻毒性,Xu等发现甘草、麻黄可以降低附子中乌头碱、次乌头碱等有毒成份的含量 [33],其中甘草通过抑制附子诱导的心律失常对心肌细胞起保护作用 [34]。

人参含有大量的活性成分,如人参皂苷、人参多糖等,其中人参皂苷作为主要活性成分影响心血管系统的生理功能 [35]。近来,Wang等发现人参皂苷Re可以改善异丙肾上腺素诱导的大鼠心肌纤维化和心衰 [36]。Zheng等的研究发现人参皂苷Rb1通过抑制转化生长因子-β1 (TGF-β1)/Smad通路、细胞外调节蛋白激酶通路,激活Akt通路,减轻心肌肥大、恢复线粒体功能、降低线粒体膜电位、促进GLUT4向质膜运动增加葡萄糖摄取 [37],改善能量代谢。研究表明 [38] 人参皂苷Rb3可通过激活PPARα通路,提高下游靶点CPT-1α、长链酰基辅酶A脱氢酶的表达,对心脏产生保护作用,包括改善FAO、抑制细胞凋亡、保护线粒体膜电位。

山茱萸具有补益肝肾,收敛止精止汗的作用。山茱萸中有多种化合物,其中萜类、黄酮类、单宁类和呋喃类含有多种生物活性化学成分,具有心脏保护、降血糖、肾保护等作用 [39]。一项研究表明 [40] 山茱萸的活性成分莫诺苷可提高细胞活力、抑制细胞死亡、减少ROS的产生改善大鼠心肌细胞的氧化应激及高糖诱导的心肌损伤,可能与Bcl-2/Bax/caspase-3信号通路受到调控相关,与薯蓣皂苷联用对心脏保护效果更佳。

黄芪多糖可从多方面参与能量代谢调节,如通过对PPARα的介导,使糖尿病心脏小鼠的心肌能量代谢正常化,减少脂肪酸的利用,增加葡萄糖氧化,改善心脏脂毒性 [41]。黄芪皂苷具有调节心肌能量代谢、恢复肌浆网Ca2+泵功能等作用,从而被认为能给心衰患者带来有益作用 [42]。研究表明,当归补血汤可调节H9C2心肌细胞线粒体生物能 [43],包括维持线粒体膜电位稳定、上调线粒体氧化磷酸化相关基因和其本身DNA复制表达、改变线粒体形态,增加线粒体呼吸能力及ATP的产生,其中黄芪皂苷被认为是改善能量代谢的主要活性成分。Dong [44] 等人发现黄芪皂苷可以上调PPARα及其作用靶向基因如CPT-1b等的表达,进而抑制TAC模型小鼠心脏糖酵解,刺激脂肪酸氧化;通过增加肌浆网钙泵表达参与钙稳态平衡,维持线粒体膜电位稳定,保护心脏收缩功能。

葛根素一种类黄酮物质,在我国已经广泛应用于心血管疾病、糖尿病及糖尿病并发症、癌症等,具有多种药理特性如心脏保护、血管扩张、抗氧化、抗炎、减轻胰岛素抵抗、神经保护 [45]。一项研究表明葛根素可增加心衰大鼠的体重、改善心功能、提高大鼠存活率,与PPARα通路表达抑制肿瘤坏死因子-α (TNF-α)、IL-1β和IL-6调节心肌凋亡和抗炎作用密切相关 [46]。实验发现葛根素可使GLUT4表达和转位增加、CD36表达和转位下降 [47],调节脂肪酸与葡萄糖的摄取。

一项研究证明红景天苷可以有效降低心肌梗死小鼠死亡率、改善心脏收缩功能、减轻心肌梗死所引起的心脏重构 [48]。研究发现红景天苷可显著减少力竭运动大鼠血清中心肌损伤酶水平,通过改善能量代谢保护心肌免受力竭运动所带来的损害,包括提高线粒体呼吸链复合物I、II、IV活性以改善呼吸功能,增强线粒体生物发生关键调控因子PGC-1α及下游呼吸因子NRF1、NRF2的表达 [49]。2020年Liao等人发现红景天苷对缺氧诱导的心肌损伤的拮抗作用可能与维持三羧酸循环平衡、促进长链脂肪酸的氧化及上调NAD+/NADH比值相关 [50]。

5.2. 中药复方

芪苈强心胶囊具有益气温阳、活血通络、利水消肿的作用,含有多种有效活性成分,如:人参皂苷Rb1、丹酚酸B、黄芪皂苷IV、丹参酮IIA、苯甲酰美沙拉秦、泽泻醇A等 [51],已经被证明可以降低心衰患者NT-proBNP水平、增加左室射血分数、改善NYHA心功能分级和患者生活质量 [52]。在能量代谢疗法方面,可通过激活AMPK/PGC-α轴优化糖脂底物代谢,上调CPT-1、GLUT4 mRNA表达减少游离脂肪酸和乳酸积累,提高心肌腺苷酸池储备,稳定线粒体膜电位,以达到保护心脏和线粒体呼吸功能的目的 [53]。

生脉注射液可通过激活AMPK信号通路来抑制血管紧张素II诱导的心肌细胞肥大和凋亡,被认为是治疗心衰的一种方式 [54]。Li [55] 等人认为生脉注射液可能通过激活AMPK/PI3K/Akt/GSK-3β通路抑制ROS产生、抑制线粒体完整性的破坏、改善线粒体呼吸功能降低阿奇霉素所致的心脏毒性。

6. 结语

综上,心肌能量代谢调节在心衰治疗中表现出巨大的潜力,在未来可能会给心衰患者带来较多好处,改善临床症状和预后,降低死亡率。近年来,随着中药在心衰领域的研究深入,发现中药可从多靶点、多途径治疗心衰,如:抗纤维化、消除炎症因子、参与血管生成、抗氧化、抑制细胞死亡、调节线粒体功能和能量代谢 [56]。但目前中药治疗心衰仍面临着许多的挑战:1) 中医对心衰证候本质研究不够,导致心衰的临床辩证论治缺乏规范和标准 [57];2) 中药种类繁多,其有效活性成分提取困难、含量少,且中药之间相互作用机理复杂,安全性有效性仍待进一步评估,使用途径(口服、静脉注射)的不同、使用个体的不同、药物使用剂量的不同也可能导致疗效差异;3) 目前以动物及细胞实验研究居多,实验方法设计单一、类似,研究内容不深入,中药对心肌能量代谢作用机制及作用途径不明确,缺乏随机对照、双盲、多中心的临床实验数据。

参考文献

[1] Baman, J.R. and Ahmad, F.S. (2020) Heart Failure. JAMA, 324, 1015.
https://doi.org/10.1001/jama.2020.13310
[2] Hao, G., Wang, X., Chen, Z., et al. (2019) Prevalence of Heart Failure and Left Ventricular Dysfunction in China: The China Hypertension Survey, 2012-2015. European Journal of Heart Failure, 21, 1329-1337.
https://doi.org/10.1002/ejhf.1629
[3] Castro, P., Gabrielli, L., Verdejo, H., et al. (2010) Heart Energy Metabolism and Its Role in the Treatment of Heart Failure. Revista Medica de Chile, 138, 1028-1039.
[4] Di Lorenzo, A., Iannuzzo, G., Parlato, A., et al. (2020) Clinical Evidence for Q10 Coenzyme Supplementation in Heart Failure: From Energetics to Functional Improvement. Journal of Clinical Medicine, 9, 1266.
https://doi.org/10.3390/jcm9051266
[5] Li, J., Guan, X.K. and Liu, R.X. (2019) Role of Chinese Herbal Medicines in Regulation of Energy Metabolism in Treating Cardiovascular Diseases. Chinese Journal of Integrative Medicine, 25, 307-315.
https://doi.org/10.1007/s11655-018-2943-5
[6] Doenst, T., Nguyen, T.D. and Abel, E.D. (2013) Cardiac Metabolism in Heart Failure: Implications beyond ATP Production. Circulation Research, 113, 709-724.
https://doi.org/10.1161/CIRCRESAHA.113.300376
[7] Abdurrachim, D., Luiken, J.J., Nicolay, K., et al. (2015) Good and Bad Consequences of Altered Fatty Acid Metabolism in Heart Failure: Evidence from Mouse Models. Cardiovascular Research, 106, 194-205.
https://doi.org/10.1093/cvr/cvv105
[8] Kolwicz, S.C., Purohit, S. and Tian, R. (2013) Cardiac Metabolism and Its Interactions with Contraction, Growth, and Survival of Cardiomyocytes. Circulation Research, 113, 603-616.
https://doi.org/10.1161/CIRCRESAHA.113.302095
[9] Schaffer, J.E. (2002) Fatty Acid Transport: The Roads Taken. American Journal of Physiology Endocrinology and Metabolism, 282, E239-246.
https://doi.org/10.1152/ajpendo.00462.2001
[10] 唐海双, 王清松, 焦炳华, 等. GLUT4在胰岛素调控葡萄糖转运中作用[J]. 生命的化学, 2014, 34(2): 285-290.
[11] Doenst, T., Pytel, G., Schrepper, A., et al. (2010) Decreased Rates of Substrate Oxidation ex Vivo Predict the Onset of Heart Failure and Contractile Dysfunction in Rats with Pressure Overload. Cardiovascular Research, 86, 461-470.
https://doi.org/10.1093/cvr/cvp414
[12] Zhang, L., Jaswal, J.S., Ussher, J.R., et al. (2013) Cardiac Insu-lin-Resistance and Decreased Mitochondrial Energy Production Precede the Development of Systolic Heart Failure after Pressure-Overload Hypertrophy. Circulation Heart Failure, 6, 1039-1048.
https://doi.org/10.1161/CIRCHEARTFAILURE.112.000228
[13] Aroor, A.R., Mandavia, C.H. and Sowers, J.R. (2012) Insulin Resistance and Heart Failure: Molecular Mechanisms. Heart Failure Clinics, 8, 609-617.
https://doi.org/10.1016/j.hfc.2012.06.005
[14] Nan, J., Zhu, W., Rahman, M.S., et al. (2017) Molecular Regulation of Mitochondrial Dynamics in Cardiac Disease. Biochimica et Biophysica Acta Molecular Cell Research, 1864, 1260-1273.
https://doi.org/10.1016/j.bbamcr.2017.03.006
[15] Cao, Y.P. and Zheng, M. (2019) Mitochondrial Dynamics and Inter-Mitochondrial Communication in the Heart. Archives of Biochemistry and Biophysics, 663, 214-219.
https://doi.org/10.1016/j.abb.2019.01.017
[16] Horton, J.L., Martin, O.J., Lai, L., et al. (2016) Mitochondrial Protein Hyperacetylation in the Failing Heart. JCI Insight, 2, e84897.
https://doi.org/10.1172/jci.insight.84897
[17] Zhou, B. and Tian, R. (2018) Mitochondrial Dysfunction in Pathophysiology of Heart Failure. The Journal of Clinical Investigation, 128, 3716-3726.
https://doi.org/10.1172/JCI120849
[18] Peoples, J.N., Saraf, A., Ghazal, N., et al. (2019) Mitochondrial Dysfunction and Oxidative Stress in Heart Disease. Experimental & Molecular Medicine, 51, 1-13.
https://doi.org/10.1038/s12276-019-0355-7
[19] Tsutsui, H., Kinugawa, S. and Matsushima, S. (2011) Oxidative Stress and Heart Failure. American Journal of Physiology Heart and Circulatory Physiology, 301, H2181-2190.
https://doi.org/10.1152/ajpheart.00554.2011
[20] Van Der Pol, A., Van Gilst, W.H., Voors, A.A., et al. (2019) Treating Oxidative Stress in Heart Failure: Past, Present and Future. European Journal of Heart Failure, 21, 425-435.
https://doi.org/10.1002/ejhf.1320
[21] Ke, H.Y., Yang, H.Y., Francis, A.J., et al. (2020) Changes in Cellular Ca(2+) and Na(+) Regulation during the Progression towards Heart Failure in the Guinea Pig. The Journal of Physiology, 598, 1339-1359.
https://doi.org/10.1113/JP277038
[22] Bers, D.M. (2006) Altered Cardiac Myocyte Ca Regulation in Heart Failure. Physiology (Bethesda, Md), 21, 380-387.
https://doi.org/10.1152/physiol.00019.2006
[23] Williams, G.S., Boyman, L. and Lederer, W.J. (2015) Mito-chondrial Calcium and the Regulation of Metabolism in the Heart. Journal of Molecular and Cellular Cardiology, 78, 35-45.
https://doi.org/10.1016/j.yjmcc.2014.10.019
[24] Gupta, A., Akki, A., Wang, Y., et al. (2012) Creatine Kinase-Mediated Improvement of Function in Failing Mouse Hearts Provides Causal Evidence the Failing Heart Is Energy Starved. The Journal of Clinical Investigation, 122, 291-302.
https://doi.org/10.1172/JCI57426
[25] Cao, F., Maguire, M.L., Mcandrew, D.J., et al. (2020) Overexpression of Mitochondrial Creatine Kinase Preserves Cardiac Energetics without Ameliorating Murine Chronic Heart Failure. Basic Research in Cardiology, 115, 12.
https://doi.org/10.1007/s00395-020-0777-3
[26] 周杰, 马占东, 李忠轩, 等. 心衰的中医古籍文献整理研究[J]. 中国医学创新, 2018, 15(31): 54-57.
[27] 陈可冀, 吴宗贵, 朱明军, 等. 慢性心力衰竭中西医结合诊疗专家共识[J]. 心脑血管病防治, 2016, 16(5): 340-347.
[28] 孙广仁. 中医学的阴气、阳气概念辨析[J]. 中华中医药杂志, 2005, 20(11): 6-8.
[29] Deng, X.H., Liu, J.J., Sun, X.J., et al. (2019) Benzoylaconine Induces Mitochondrial Biogenesis in Mice via Activating AMPK Signaling Cascade. Acta Pharmacologica Sinica, 40, 658-665.
https://doi.org/10.1038/s41401-018-0174-8
[30] 蒲科婷, 王志琪, 李耀伟, 等. 基于心肌细胞能量代谢及钙稳态探讨附子作用机制[J]. 湖南中医药大学学报, 2020, 40(10): 1293-1297.
[31] Mootha, V.K., Handschin, C., Arlow, D., et al. (2004) Erralpha and Gabpa/b Specify PGC-1alpha-Dependent Oxidative Phosphorylation Gene Expression That Is Altered in Diabetic Muscle. Proceedings of the National Academy of Sciences of the United States of America, 101, 6570-6575.
https://doi.org/10.1073/pnas.0401401101
[32] Jäger, S., Handschin, C., St-Pierre, J., et al. (2007) AMP-Activated Protein Kinase (AMPK) Action in Skeletal Muscle via Direct Phosphorylation of PGC-1alpha. Proceedings of the National Academy of Sciences of the United States of America, 104, 12017-12022.
https://doi.org/10.1073/pnas.0705070104
[33] Yan, Y., Zhang, A., Dong, H., et al. (2017) Toxicity and Detoxification Effects of Herbal Caowu via Ultra Performance Liquid Chromatography/Mass Spectrometry Metabolomics Analyzed Using Pattern Recognition Method. Pharmacognosy Magazine, 13, 683-692.
https://doi.org/10.4103/pm.pm_475_16
[34] 毛营营, 栗焕焕, 任晓亮, 等. 附子-甘草药对配伍研究进展[J]. 天津中医药大学学报, 2021, 40(1): 119-127.
[35] Jin, Y., Cui, R., Zhao, L., et al. (2019) Mechanisms of Panax Ginseng Action as an Antidepressant. Cell Proliferation, 52, e12696.
https://doi.org/10.1111/cpr.12696
[36] Wang, Q.W., Yu, X.F., Xu, H.L., et al. (2019) Ginsenoside Re Improves Isoproterenol-Induced Myocardial Fibrosis and Heart Failure in Rats. Evidence-Based Complementary and Alternative Medicine: eCAM, 2019, Article ID: 3714508.
https://doi.org/10.1155/2019/3714508
[37] Zheng, X., Wang, S., Zou, X., et al. (2017) Ginsenoside Rb1 Improves Cardiac Function and Remodeling in Heart Failure. Experimental Animals, 66, 217-228.
https://doi.org/10.1538/expanim.16-0121
[38] Chen, X., Wang, Q., Shao, M., et al. (2019) Ginsenoside Rb3 Regulates Energy Metabolism and Apoptosis in Cardiomyocytes via Activating PPARα Pathway. Biomedicine & Pharmacotherapy, 120, Article ID: 109487.
https://doi.org/10.1016/j.biopha.2019.109487
[39] Dong, Y., Feng, Z.L., Chen, H.B., et al. (2018) Corni Fructus: A Review of Chemical Constituents and Pharmacological Activities. Chinese Medicine, 13, 34.
https://doi.org/10.1186/s13020-018-0191-z
[40] Pi, W.X., Feng, X.P., Ye, L.H., et al. (2017) Combination of Morroniside and Diosgenin Prevents High Glucose-Induced Cardiomyocytes Apoptosis. Molecules (Basel, Switzer-land), 22, 163.
https://doi.org/10.3390/molecules22010163
[41] Chen, W., Xia, Y., Zhao, X., et al. (2012) The Critical Role of Astragalus Polysaccharides for the Improvement of PPARα [Correction of PPRAα]-Mediated Lipotoxicity in Diabetic Cardiomyopathy. PLoS ONE, 7, e45541.
https://doi.org/10.1371/journal.pone.0045541
[42] Zang, Y., Wan, J., Zhang, Z., et al. (2020) An Updated Role of Astragaloside IV in Heart Failure. Biomedicine & Pharmacotherapy, 126, Article ID: 110012.
https://doi.org/10.1016/j.biopha.2020.110012
[43] Kwan, K.K.L., Huang, Y., Leung, K.W., et al. (2019) Danggui Buxue Tang, a Chinese Herbal Decoction Containing Astragali Radix and Angelicae Sinensis Radix, Modulates Mitochondrial Bioenergetics in Cultured Cardiomyoblasts. Frontiers in Pharmacology, 10, Article No. 614.
https://doi.org/10.3389/fphar.2019.00614
[44] Dong, Z., Zhao, P., Xu, M., et al. (2017) Astragaloside IV Alleviates Heart Failure via Activating PPARα to Switch Glycolysis to Fatty Acid β-Oxidation. Scientific Reports, 7, Article No. 2691.
https://doi.org/10.1038/s41598-017-02360-5
[45] Zhou, Y.X., Zhang, H. and Peng, C. (2014) Puerarin: A Review of Pharmacological Effects. Phytotherapy Research: PTR, 28, 961-975.
https://doi.org/10.1002/ptr.5083
[46] He, L., Wang, T., Chen, B.W., et al. (2019) Puerarin Inhibits Apoptosis and Inflammation in Myocardial Cells via PPARα Expression in Rats with Chronic Heart Failure. Experimental and Therapeutic Medicine, 18, 3347-3356.
https://doi.org/10.3892/etm.2019.7984
[47] Cheng, W., Wu, P., Du, Y., et al. (2015) Puerarin Improves Cardiac Function through Regulation of Energy Metabolism in Streptozotocin-Nicotinamide Induced Diabetic Mice after Myocardial Infarction. Biochemical and Biophysical Research Communications, 463, 1108-1114.
https://doi.org/10.1016/j.bbrc.2015.06.067
[48] Chen, P., Liu, J., Ruan, H., et al. (2019) Protective Effects of Salidroside on Cardiac Function in Mice with Myocardial Infarction. Scientific Reports, 9, Article No. 18127.
https://doi.org/10.1038/s41598-019-54713-x
[49] Ping, Z., Zhang, L.F., Cui, Y.J., et al. (2015) The Protective Effects of Salidroside from Exhaustive Exercise-Induced Heart Injury by Enhancing the PGC-1 α-NRF1/NRF2 Pathway and Mitochondrial Respiratory Function in Rats. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 876825.
https://doi.org/10.1155/2015/876825
[50] Liao, W., Liu, J., Wang, S., et al. (2020) Metabolic Profiling Reveals That Salidroside Antagonizes Hypoxic Injury via Modulating Energy and Lipid Metabolism in Cardiomyocytes. Biomedicine & Pharmacotherapy, 122, Article ID: 109700.
https://doi.org/10.1016/j.biopha.2019.109700
[51] Yun, W.J., Yao, Z.H., Fan, C.L., et al. (2018) Systematic Screening and Characterization of Qi-Li-Qiang-Xin Capsule-Related Xenobiotics in Rats by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 1090, 56-64.
https://doi.org/10.1016/j.jchromb.2018.05.014
[52] Li, X., Zhang, J., Huang, J., et al. (2013) A Multicenter, Randomized, Double-Blind, Parallel-Group, Placebo-Controlled Study of the Effects of Qili Qiangxin Capsules in Patients with Chronic Heart Failure. Journal of the American College of Cardiology, 62, 1065-1072.
https://doi.org/10.1016/j.jacc.2013.05.035
[53] Zhang, J., Wei, C., Wang, H., et al. (2013) Protective Effect of Qiliqiangxin Capsule on Energy Metabolism and Myocardial Mitochondria in Pressure Overload Heart Failure Rats. Evidence-Based Complementary and Alternative Medicine: eCAM, 2013, Article ID: 378298.
https://doi.org/10.1155/2013/378298
[54] Li, Y., Ruan, X., Xu, X., et al. (2019) Shengmai Injection Suppresses Angiotensin II-Induced Cardiomyocyte Hypertrophy and Apoptosis via Activation of the AMPK Signaling Pathway through Energy-Dependent Mechanisms. Frontiers in Pharmacology, 10, Article No. 1095.
https://doi.org/10.3389/fphar.2019.01095
[55] Li, L., Li, J., Wang, Q., et al. (2020) Shenmai Injection Protects against Doxorubicin-Induced Cardiotoxicity via Maintaining Mitochondrial Homeostasis. Frontiers in Pharmacology, 11, Article No. 815.
https://doi.org/10.3389/fphar.2020.00815
[56] Wang, Y., Wang, Q., Li, C., et al. (2017) A Review of Chinese Herbal Medicine for the Treatment of Chronic Heart Failure. Current Pharmaceutical Design, 23, 5115-5124.
https://doi.org/10.2174/1381612823666170925163427
[57] Wang, H., Zhang, J., Shi, C.F., et al. (2020) Combination and Distribution Characteristics of Syndromes Related to Traditional Chinese Medicine in Patients with Chronic Heart Failure: Protocol for a Clinical Study. Medicine, 99, e21852.
https://doi.org/10.1097/MD.0000000000021852