DOI QR코드

DOI QR Code

Study on Pullout Behavior of Embedded Suction Anchors in Sand using ALE (Arbitrary Lagrangian Eulerian) Technique

ALE 기법을 이용한 모래지반에서 석션 매입 앵커의 인발 거동 분석

  • 나선홍 (한국해양과학기술원 연안개발에너지연구부) ;
  • 장인성 (한국해양과학기술원 연안개발에너지연구부) ;
  • 권오순 (한국해양과학기술원 연안개발에너지연구부) ;
  • 이승현 (선문대학교 공과대학 토목공학과)
  • Received : 2013.08.19
  • Accepted : 2013.11.04
  • Published : 2014.02.01

Abstract

The embedded suction anchor, ESA, is one type of mooring anchor systems which utilizes the suction pile or caisson to penetrate the anchor into the sea bed and develops its capacity under pullout load. In this study, the numerical analysis using ALE (Arbitrary Lagrangian Eulerian) Adaptive Meshing technique was performed to simulate the pullout behavior of the ESA, and the results were compared to those of the previous research, centrifuge model tests and the analytical method based on limit equilibrium theory. The pullout behaviors of the ESA under horizontal, vertical, and inclined loading were evaluated. The analysis results showed that the maximum horizontal pullout load was developed when the location of loading point was at the mid-point, and the each vertical pullout load gave the similar value regardless of the locations of the loading points. The pullout load decreased as the load inclination angle increased at the mid-point of the anchor.

석션 매입 앵커(Embedded Suction Anchor; ESA)는 석션 기초(Suction Pile or Caisson)을 이용하여 앵커를 지중에 매설한 후 인발에 저항하는 계류앵커형식이다. 본 연구에서는 ALE (Arbitrary Larangan Eulerian) Adpative Meshing 기법을 이용한 수치해석을 통해 석션 매입 앵커의 인발 거동을 모사하고, 그 결과를 기존 연구에서 수행된 원심모형 실험 및 한계 평형법을 이용한 해석적 방법의 결과와 비교 분석 하였다. 이를 통해 앵커의 수평 연직 경사 방향의 인발 거동을 평가하였으며, 수치 해석 결과, 수평 재하 시 중간 위치에서 가장 큰 저항력을 발휘하는 것으로 나타났다. 연직 재하의 경우 재하 위치와 무관하게 유사한 저항력이 발휘 되었으며, 수평 저항력이 가장 큰 중간 위치에서 경사 하중을 가한 결과 경사각이 증가할수록 인발 저항력이 감소하는 것으로 나타났다.

Keywords

References

  1. Benson, D. J. (1989). "An efficient, accurate, simple ale method for non-linear finite-element program." Computer Methods in Applied Mechanics and Engineering, Vol. 72, No. 3, pp. 305-350. https://doi.org/10.1016/0045-7825(89)90003-0
  2. Cho, I. H., Kwag, D. J., Bang, S. and Cho, Y. (2008). "Use of suction piles for temporary mooring of immersed tunnel element." Proceedings of 18th Int. Offshore and Polar Eng Conf & Exhibition, International Society of Offshore and Polar Engineers (ISOPE), Vancouver, Canada, pp. 665-669.
  3. Dassault Systems (2012). ABAQUS, Version 6.12 Documentation.
  4. Ghosh, S. and Kikuchi, N. (1991). "An Arbitrary Lagrangian- Eulerian finite element method for large deformation analysis of elastic-viscoplastic solids." Computer Methods in Applied Mechanics and Engineering, Vol. 86, No. 2, pp. 127-188. https://doi.org/10.1016/0045-7825(91)90126-Q
  5. Hu, Y. and Randolph, M. F. (1998). "A practical numerical approach for large deformation problems in soil." International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 22, No. 5, pp. 327-350. https://doi.org/10.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X
  6. Jones, K. D., Bang, S. and Cho, Y. (2007). "Pullout capacity of embedded suction anchors in sand." Ocean Engineering, Vol. 34, No. 16, pp. 2107-2114. https://doi.org/10.1016/j.oceaneng.2007.05.007
  7. Kim, K. O., Kim, Y. S., Kim, T. H. and Ko, B. H. (2005a). "Centrifuge model test on the pullout capacity of embedded suction anchor with flanges in sand layer." Proceedings of Korean Society of Civil Engineers Conference, Korean Society of Civil Engineers, KSCE, pp. 3427-3430 (in Korean).
  8. Kim, K. O., Kim, Y. S. and Ko, B. H. (2005b). "Centrifuge model tests on the pullout capacity of embedded suction anchor without flanges in sand layer." 2005 Joint Conference of Geotechnical Engineering, Korean Society of Civil Engineers, KSCE, Kyeonggi, Korea, pp. 517-520 (in Korean).
  9. Kim, S. M., Jung, Y. H. and Lee, J. (2013). "A numerical simulation of the installation of suction caissons via adaptive remeshing technique." KGS Spring National Conference 2013, Korea Geotechnical Society (KGS), Gyeongbuk, Korea, pp. 1451-1460 (in Korean).
  10. Song, Z., Hu, Y. and Randolph, M. F. (2008). "Numerical simulation of vertical pullout of plate anchors in clay." Journal of geotechnical and geoenvironmental engineering, ASCE, Vol. 136, No. 4, pp. 866-875.
  11. Van Leer, B. (1977). "Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection." Journal of computational physics, Vol. 23, No. 3, pp. 276-299. https://doi.org/10.1016/0021-9991(77)90095-X
  12. Wang, D. Hu, Y. and Randolph, M. F. (2010). "Three-dimensional large deformation finite-element analysis of plate anchors in uniform clay." Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 136, No. 2, pp. 355-365. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000210
  13. Yu, L., Liu, J., Kong, X. J. and Hu, Y. (2009). "Three dimensional numerical analysis of the keying of vertically installed plate anchors in clay." Computers and Geotechnics, Vol. 36, No. 4, pp. 558-567. https://doi.org/10.1016/j.compgeo.2008.10.008

Cited by

  1. Numerical Analysis of Group Suction Anchor of Parallel Arrangement Installed in Sand Subjected to Pullout Load vol.30, pp.11, 2014, https://doi.org/10.7843/kgs.2014.30.11.61
  2. An analytical FEM-based study of the drawing process of an ultra-high-pressure common-rail fuel tube vol.31, pp.7, 2017, https://doi.org/10.1007/s12206-017-0628-9
  3. An Analytical Study by Variation of Die and Plug Angle in Drawing Process for the Strength Optimization of Ultra High Pressure Common Rail Fuel Injection Tube Raw Material vol.24, pp.3, 2016, https://doi.org/10.7467/KSAE.2016.24.3.338