Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Effects of Oral Calcium Dosage and Timing on Ethanol-Induced Sensitization of Locomotion in DBA/2 Mice
Chikako Shimizu Yutaka MitaniYouichi TsuchiyaToshitaka Nabeshima
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2018 Volume 41 Issue 7 Pages 1049-1061

Details
Abstract

Ethanol (EtOH) dosage, frequency, and paired associative learning affect the risk of alcoholism. Recently, Spanagel et al. reported that acamprosate calcium (Acam Ca) prescribed for alcoholism exerts an anti-relapse effect via Ca. Ca is contained in foods, sometimes consumed with alcohol. Therefore, we investigated the association among oral Ca ingestion, EtOH-induced locomotor sensitization, and plasma Ca levels on how to consume Ca for moderate drinking. We used DBA/2 CrSlc mice, and CaCl2 as water-soluble Ca salts. For pre-administration, elemental Ca (50, 75, 100, or 150 mg/kg, per os (p.o.)) or water for control was administered 1 h before EtOH (2 g/kg, 20 v/v (%) EtOH in saline) administration intraperitoneal (i.p.) for locomotor sensitization or for plasma Ca level changes. For post-administration, elemental Ca (100 mg/kg) was administered 1 h after EtOH. Moreover, we employed bepridil and the dopamine D1 antagonist, SCH-23390 to further examine the mechanism of EtOH-induced sensitization. The locomotor sensitization segmentalized for 300 s had two peaks (0–90 s and 180–300 s). Pre-administration of Ca (50, 75, and 100 mg/kg) significantly reduced the 0–90-s peak, selectively blocked by SCH-23390, but “non-dose dependently” as Ca 150 mg/kg did not have this effect. Bepridil blocked the suppressive effect of pre-administration of Ca (100 mg/kg). The effective pre-doses of Ca (50–100 mg/kg) maintained plasma Ca basal levels against EtOH-induced decrease of Ca. On the contrary, post-administration of Ca inversely led to significant promotion of sensitization of both locomotor peaks. Oral Ca intake had diverse effects on EtOH-induced sensitization depending on Ca dosage and timing.

Graphical Abstract Fullsize Image
Content from these authors
© 2018 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top