Skip to main content

Advertisement

Log in

Patient-Derived Tumor Xenografts Plus Ex Vivo Models Enable Drug Validation for Tenosynovial Giant Cell Tumors

  • Translational Research
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Introduction

Tenosynovial giant cell tumor (TGCT) is a locally aggressive tumor with colony-stimulating factor 1 receptor (CSF1R) signal expression. However, there is a lack of better in vivo and ex vivo models for TGCT. This study aims to establish a favorable preclinical translational platform, which would enable the validation of efficient and personalized therapeutic candidates for TGCT.

Patients and Methods

Histological analyses were performed for the included patients. Fresh TGCT tumors were collected and sliced into 1.0–3.0 mm3 sections using a sterilized razor blade. The tumor grafts were surgically implanted into subrenal capsules of athymic mice to establish patient-derived tumor xenograft (PDTX) mouse models. Histological and response patterns to CSF1R inhibitors evaluations were analyzed. In addition, ex vivo cultures of patient-derived explants (PDEs) with endpoint analysis were used to validate TGCT graft response patterns to CSF1R inhibitors.

Results

The TGCT tumor grafts that were implanted into athymic mice subrenal capsules maintained their original morphological and histological features. The “take” rate of this model was 95% (19/20). Administration of CSF1R inhibitors (PLX3397, and a novel candidate, WXFL11420306) to TGCT-PDTX mice was shown to reduce tumor size while inducing intratumoral apoptosis. In addition, the CSF1R inhibitors suppressed circulating nonspecific monocyte levels and CD163-positive cells within tumors. These response patterns of engrafts to PDTX were validated by ex vivo PDE cultures.

Conclusions

Subrenal capsule supports the growth of TGCT tumor grafts, maintaining their original morphology and histology. This TGCT-PDTX model plus ex vivo explant cultures is a potential preclinical translational platform for locally aggressive tumors, such as TGCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gounder MM, Thomas DM, Tap WD. Locally aggressive connective tissue tumors. J Clin Oncol. 2018;36(2):202–9.

    Article  CAS  PubMed  Google Scholar 

  2. Alman B, Attia S, Baumgarten C, et al. The management of desmoid tumours: a joint global consensus-based guideline approach for adult and paediatric patients. Eur J Cancer (Oxford, England: 1990). 2020;127:96–107.

    Article  Google Scholar 

  3. Mastboom MJL, Palmerini E, Verspoor FGM, et al. Surgical outcomes of patients with diffuse-type tenosynovial giant-cell tumours: an international, retrospective, cohort study. Lancet Oncol. 2019;20(6):877–86.

    Article  PubMed  Google Scholar 

  4. van der Heijden L, Gibbons CL, Hassan AB, et al. A multidisciplinary approach to giant cell tumors of tendon sheath and synovium—a critical appraisal of literature and treatment proposal. J Surg Oncol. 2013;107(4):433–45.

    Article  PubMed  Google Scholar 

  5. Mastboom MJL, Verspoor FGM, Verschoor AJ, et al. Higher incidence rates than previously known in tenosynovial giant cell tumors. Acta Orthop. 2017;88(6):688–94.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mastboom MJL, Verspoor FGM, Uittenbogaard D, et al. Tenosynovial giant cell tumors in children: a similar entity compared with adults. Clin Orthop Relat Res. 2018;476(9):1803–12.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Staals EL, Ferrari S, Donati DM, Palmerini E. Diffuse-type tenosynovial giant cell tumour: Current treatment concepts and future perspectives. Eur J Cancer (Oxford, England: 1990). 2016;63:34–40.

    Article  Google Scholar 

  8. Brahmi M, Vinceneux A, Cassier PA. Current systemic treatment options for tenosynovial giant cell tumor/pigmented villonodular synovitis: targeting the CSF1/CSF1R axis. Curr Treat Options Oncol. 2016;17(2):10.

    Article  PubMed  Google Scholar 

  9. van der Heijden L, Gibbons CL, Dijkstra PD, et al. The management of diffuse-type giant cell tumour (pigmented villonodular synovitis) and giant cell tumour of tendon sheath (nodular tenosynovitis). J Bone Joint Surg British volume. 2012;94(7):882–8.

    Article  Google Scholar 

  10. Cassier PA, Gelderblom H, Stacchiotti S, et al. Efficacy of imatinib mesylate for the treatment of locally advanced and/or metastatic tenosynovial giant cell tumor/pigmented villonodular synovitis. Cancer. 2012;118(6):1649–55.

    Article  CAS  PubMed  Google Scholar 

  11. Cupp JS, Miller MA, Montgomery KD, et al. Translocation and expression of CSF1 in pigmented villonodular synovitis, tenosynovial giant cell tumor, rheumatoid arthritis and other reactive synovitides. Am J Surg Pathol. 2007;31(6):970–6.

    Article  PubMed  Google Scholar 

  12. Noguchi R, Yoshimatsu Y, Ono T, et al. Establishment and characterization of a novel cell line, NCC-TGCT1-C1, derived from a patient with tenosynovial giant cell tumor. Human Cell. 2021;34(1):254–9.

    Article  CAS  PubMed  Google Scholar 

  13. Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol. 2020;13(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Read M, Liu D, Duong CP, et al. Intramuscular transplantation improves engraftment rates for esophageal patient-derived tumor xenografts. Ann Surg Oncol. 2016;23(1):305–11.

    Article  PubMed  Google Scholar 

  15. Newhook TE, Lindberg JM, Adair SJ, et al. Adjuvant trametinib delays the outgrowth of occult pancreatic cancer in a mouse model of patient-derived liver metastasis. Ann Surg Oncol. 2016;23(6):1993–2000.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cheng H, Clarkson PW, Gao D, Pacheco M, Wang Y, Nielsen TO. Therapeutic antibodies targeting csf1 impede macrophage recruitment in a xenograft model of tenosynovial giant cell tumor. Sarcoma. 2010;2010:174528.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Powley IR, Patel M, Miles G, et al. Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Br J Cancer. 2020;122(6):735–44.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Collins A, Miles GJ, Wood J, MacFarlane M, Pritchard C, Moss E. Patient-derived explants, xenografts and organoids: 3-dimensional patient-relevant pre-clinical models in endometrial cancer. Gynecol Oncol. 2020;156(1):251–9.

    Article  CAS  PubMed  Google Scholar 

  19. Bainbridge A, Walker S, Smith J, et al. IKBKE activity enhances AR levels in advanced prostate cancer via modulation of the Hippo pathway. Nucleic Acids Res. 2020;48(10):5366–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuan X, Nie W, He Z, et al. Carbon black nanoparticles induce cell necrosis through lysosomal membrane permeabilization and cause subsequent inflammatory response. Theranostics. 2020;10(10):4589–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tie Y, Zheng H, He Z, et al. Targeting folate receptor β positive tumor-associated macrophages in lung cancer with a folate-modified liposomal complex. Signal Transduc Target Ther. 2020;5(1):6.

    Article  CAS  Google Scholar 

  22. Wei YQ, Zhao X, Kariya Y, Fukata H, Teshigawara K, Uchida A. Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Res. 1994;54(18):4952–7.

    CAS  PubMed  Google Scholar 

  23. Palmerini E, Staals EL, Maki RG, et al. Tenosynovial giant cell tumour/pigmented villonodular synovitis: outcome of 294 patients before the era of kinase inhibitors. Eur J Cancer (Oxford, England: 1990). 2015;51(2):210–7.

    Article  Google Scholar 

  24. Fiocco U, Sfriso P, Lunardi F, et al. Molecular pathways involved in synovial cell inflammation and tumoral proliferation in diffuse pigmented villonodular synovitis. Autoimmun Rev. 2010;9(11):780–4.

    Article  CAS  PubMed  Google Scholar 

  25. Gelderblom H, Cropet C, Chevreau C, et al. Nilotinib in locally advanced pigmented villonodular synovitis: a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2018;19(5):639–48.

    Article  CAS  PubMed  Google Scholar 

  26. Lamb YN. Pexidartinib: First approval. Drugs. 2019;79(16):1805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gelderblom H, Wagner AJ, Tap WD, et al. Long-term outcomes of pexidartinib in tenosynovial giant cell tumors. Cancer. 2020.

  28. Autio KA, Klebanoff CA, Schaer D, et al. Immunomodulatory activity of a colony-stimulating factor-1 receptor inhibitor in patients with advanced refractory breast or prostate cancer: a phase I study. Clin Cancer Res. 2020;26(21):5609–20.

    Article  CAS  PubMed  Google Scholar 

  29. Akkari L, Bowman RL, Tessier J, et al. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci Transl Med. 2020;12(552):eaaw7843. https://doi.org/10.1126/scitranslmed.aaw7843.

  30. Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Rüttinger D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017;5(1):53.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Murga-Zamalloa C, Rolland DCM, Polk A, et al. Colony-stimulating factor 1 receptor (CSF1R) activates akt/mtor signaling and promotes t-cell lymphoma viability. Clin Cancer Res. 2020;26(3):690–703.

    Article  CAS  PubMed  Google Scholar 

  32. Patwardhan PP, Surriga O, Beckman MJ, et al. Sustained inhibition of receptor tyrosine kinases and macrophage depletion by PLX3397 and rapamycin as a potential new approach for the treatment of MPNSTs. Clin Cancer Res. 2014;20(12):3146–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boal LH, Glod J, Spencer M, et al. Pediatric PK/PD phase I trial of pexidartinib in relapsed and refractory leukemias and solid tumors including neurofibromatosis type I-related plexiform neurofibromas. Clin Cancer Res. 2020;26(23):6112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Israely T, Dafni H, Granot D, Nevo N, Tsafriri A, Neeman M. Vascular remodeling and angiogenesis in ectopic ovarian transplants: a crucial role of pericytes and vascular smooth muscle cells in maintenance of ovarian grafts. Biol Reproduct. 2003;68(6):2055–64.

    Article  CAS  Google Scholar 

  35. Wang Y, Revelo MP, Sudilovsky D, et al. Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate. 2005;64(2):149–59.

    Article  CAS  PubMed  Google Scholar 

  36. Votanopoulos KI, Mazzocchi A, Sivakumar H, et al. Appendiceal cancer patient-specific tumor organoid model for predicting chemotherapy efficacy prior to initiation of treatment: a feasibility study. Ann Surg Oncol. 2019;26(1):139–47.

    Article  PubMed  Google Scholar 

  37. Yin S, Xi R, Wu A, et al. Patient-derived tumor-like cell clusters for drug testing in cancer therapy. Sci Transl Med. 2020;12(549):eaaz1723. https://doi.org/10.1126/scitranslmed.aaz1723.

  38. Tieu T, Irani S, Bremert KL, et al. Patient-derived prostate cancer explants: a clinically relevant model to assess siRNA-based nanomedicines. Adv Healthc Mater. 2020:e2001594. https://doi.org/10.1002/adhm.202001594.

  39. Collins A, Miles GJ, Powley IR, et al. Development of a patient-derived explant model for prediction of drug responses in endometrial cancer. Gynecol Oncol. 2020;160(2):557–67.

  40. Miles GJ, Powley I, Mohammed S, et al. Evaluating and comparing immunostaining and computational methods for spatial profiling of drug response in patient-derived explants. Lab Invest. 2020;101(3):396–407.

  41. Versluis JM, Thommen DS, Blank CU. Rationalizing the pathway to personalized neoadjuvant immunotherapy: the Lombard Street Approach. J Immunother Cancer. 2020;8(2):e001352. https://doi.org/10.1136/jitc-2020-001352.

  42. Ben-David U, Ha G, Tseng YY, et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Gen. 2017;49(11):1567–75.

    Article  CAS  Google Scholar 

  43. Woo XY, Giordano J, Srivastava A, et al. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat Gen. 2021;53(1):86–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Major Scientific and Technological Special Project for “Significant New Drugs Development” (No. 2018ZX09733001, China), the Excellent Youth Foundation of Sichuan Scientific Committee Grant in China (No. 2019JDJQ008), the Key Programs of Sichuan Scientific Committee Grant in China (No.2020YFS0144), the Special Program of China Postdoctoral Science Foundation (No. 2020T130447), and the National Natural Science Foundation of China (No. 82002847).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia-Wei Wei PhD or Chong-Qi Tu MD.

Ethics declarations

Disclosure

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, F., Tie, Y., Hong, WQ. et al. Patient-Derived Tumor Xenografts Plus Ex Vivo Models Enable Drug Validation for Tenosynovial Giant Cell Tumors. Ann Surg Oncol 28, 6453–6463 (2021). https://doi.org/10.1245/s10434-021-09836-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-021-09836-9

Navigation