Skip to main content

Advertisement

Log in

Adjuvant Trametinib Delays the Outgrowth of Occult Pancreatic Cancer in a Mouse Model of Patient-Derived Liver Metastasis

  • Pancreatic Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Most patients with pancreatic ductal adenocarcinoma (PDAC) die within 5 years following resection plus adjuvant gemcitabine (Gem) from outgrowth of occult metastases. We hypothesized that inhibition of the KRAS pathway with the MEK inhibitor trametinib would inhibit the outgrowth of occult liver metastases in a preclinical model.

Methods

Liver metastases harvested from two patients with PDAC (Tumors 608, 366) were implanted orthotopically in mice. Tumor cell lines were derived and transduced with lentiviruses encoding luciferase and injected into spleens of mice generating microscopic liver metastases. Growth kinetics of liver metastases were measured with bioluminescent imaging and time-to-progression (TTP), progression-free survival (PFS), and overall survival (OS) were determined.

Results

Trametinib (0.3 mg/kg BID) significantly prolonged OS versus control (Tumor 608: 114 vs. 43 days, p < 0.001; Tumor 366: not reached vs. 167 days, p = 0.0488). In vivo target validation demonstrated trametinib significantly reduced phosphorylated-ERK and expression of the ERK-responsive gene DUSP6. In a randomized, preclinical trial, mice were randomized to: (1) control, (2) adjuvant Gem (100 mg/kg IP, Q3 days) × 7 days followed by surveillance, or (3) adjuvant Gem followed by trametinib. Sequential Gem-trametinib significantly decreased metastatic cell outgrowth and increased TTP and PFS.

Conclusions

Treatment of mice bearing micrometastases with trametinib significantly delayed tumor outgrowth by effectively inhibiting KRAS-MEK-ERK signaling. In a randomized, preclinical, murine trial adjuvant sequential Gem followed by trametinib inhibited occult metastatic cell outgrowth in the liver and increased PFS versus adjuvant Gem alone. An adjuvant trial of sequential Gem-trametinib is being planned in patients with resected PDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Herman JM, Swartz MJ, Hsu CC, et al. Analysis of fluorouracil-based adjuvant chemotherapy and radiation after pancreaticoduodenectomy for ductal adenocarcinoma of the pancreas: results of a large, prospectively collected database at the Johns Hopkins Hospital. J Clin Oncol. 2008;26(21):3503–10.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Neoptolemos JP, Stocken DD, Friess H, et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med. 2004;350(12):1200–10.

    Article  CAS  PubMed  Google Scholar 

  3. Paez D, Labonte MJ, Bohanes P, et al. Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin Cancer Res. 2012;18(3):645–53.

    Article  PubMed  Google Scholar 

  4. Caldas C, Kern SE. K-ras mutation and pancreatic adenocarcinoma. Int J Pancreatol. 1995;18(1):1–6.

    CAS  PubMed  Google Scholar 

  5. Shibata D, Capella G, Perucho M. Mutational activation of the c-K-ras gene in human pancreatic carcinoma. Baillieres Clin Gastroenterol. 1990;4(1):151–69.

    Article  CAS  PubMed  Google Scholar 

  6. Smit VT, Boot AJ, Smits AM, Fleuren GJ, Cornelisse CJ, Bos JL. KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res. 1988;16(16):7773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hingorani SR, Wang L, Multani AS, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell. 2005;7(5):469–83.

    Article  CAS  PubMed  Google Scholar 

  8. Philip PA, Mooney M, Jaffe D, et al. Consensus report of the national cancer institute clinical trials planning meeting on pancreas cancer treatment. J Clin Oncol. 2009;27(33):5660–9.

    Article  PubMed  Google Scholar 

  9. Maurer G, Tarkowski B, Baccarini M. Raf kinases in cancer-roles and therapeutic opportunities. Oncogene. 2011;30(32):3477–88.

    Article  CAS  PubMed  Google Scholar 

  10. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochimica et biophysica acta. 2010;1802(4):396–405.

    Article  CAS  PubMed  Google Scholar 

  11. McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta. 2007;1773(8):1263–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schafer R, Sers C. RAS oncogene-mediated deregulation of the transcriptome: from molecular signature to function. Adv Enzym Regul. 2011;51(1):126–36.

    Article  Google Scholar 

  13. Walters DM, Lindberg JM, Adair SJ, et al. Inhibition of the growth of patient-derived pancreatic cancer xenografts with the MEK inhibitor trametinib is augmented by combined treatment with the epidermal growth factor receptor/HER2 inhibitor lapatinib. Neoplasia. 2013;15(2):143–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lindberg JM, Newhook TE, Adair SJ, et al. Co-treatment with panitumumab and trastuzumab augments response to the MEK inhibitor trametinib in a patient-derived xenograft model of pancreatic cancer. Neoplasia. 2014;16(7):562–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilmartin AG, Bleam MR, Groy A, et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res. 2011;17(5):989–1000.

    Article  CAS  PubMed  Google Scholar 

  16. Yamaguchi T, Kakefuda R, Tajima N, Sowa Y, Sakai T. Antitumor activities of JTP-74057 (GSK1120212), a novel MEK1/2 inhibitor, on colorectal cancer cell lines in vitro and in vivo. Int J Oncol. 2011;39(1):23–31.

    CAS  PubMed  Google Scholar 

  17. Yamaguchi T, Yoshida T, Kurachi R, et al. Identification of JTP-70902, a p15(INK4b)-inductive compound, as a novel MEK1/2 inhibitor. Cancer Sci. 2007;98(11):1809–16.

    Article  CAS  PubMed  Google Scholar 

  18. Stokes JB, Adair SJ, Slack-Davis JK, et al. Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Mol Cancer Ther. 2011;10(11):2135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Walters DM, Stokes JB, Adair SJ, et al. Clinical, molecular and genetic validation of a murine orthotopic xenograft model of pancreatic adenocarcinoma using fresh human specimens. PLoS One. 2013;8(10):e77065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rajendran S, Salwa S, Gao X, et al. Murine bioluminescent hepatic tumour model. J Vis Exp. 2010(41).

  21. Edinger M, Cao YA, Hornig YS, et al. Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer. 2002;38(16):2128–36.

    Article  CAS  PubMed  Google Scholar 

  22. Jing J, Greshock J, Holbrook JD, et al. Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212. Mol. Cancer Ther. 2012;11(3):720–9.

    Article  CAS  PubMed  Google Scholar 

  23. Oettle H, Neuhaus P, Hochhaus A, et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA. 2013;310(14):1473–81.

    Article  CAS  PubMed  Google Scholar 

  24. Rinehart J, Adjei AA, Lorusso PM, et al. Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol. 2004;22(22):4456–62.

    Article  CAS  PubMed  Google Scholar 

  25. Bodoky G, Timcheva C, Spigel DR, et al. A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Invest New Drugs. 2012;30(3):1216–23.

    Article  CAS  PubMed  Google Scholar 

  26. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.

    Article  PubMed  Google Scholar 

  27. Little EC, Wang C, Watson PM, Watson DK, Cole DJ, Camp ER. Novel immunocompetent murine models representing advanced local and metastatic pancreatic cancer. J Surg Res. 2012;176(2):359–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291–310.

    Article  CAS  PubMed  Google Scholar 

  29. Neuzillet C, Hammel P, Tijeras-Raballand A, Couvelard A, Raymond E. Targeting the Ras-ERK pathway in pancreatic adenocarcinoma. Cancer Metastasis Rev. 2013;32(1-2):147–62.

    Article  CAS  PubMed  Google Scholar 

  30. Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367(18):1694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Infante JR, Somer BG, Park JO, et al. A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. Eur J Cancer. 2014;50(12):2072–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial Support: NIH T32 CA163177 (TEN, JML), Virginia M. Kincaid Foundation Grant (TWB). The data described were gathered on Caliper IVIS Spectrum funded by the National Institutes of Health Grant (1S10RR025694-01).

Disclosure

The authors disclose no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd W. Bauer MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newhook, T.E., Lindberg, J.M., Adair, S.J. et al. Adjuvant Trametinib Delays the Outgrowth of Occult Pancreatic Cancer in a Mouse Model of Patient-Derived Liver Metastasis. Ann Surg Oncol 23, 1993–2000 (2016). https://doi.org/10.1245/s10434-016-5116-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-016-5116-4

Keywords

Navigation