Skip to main content

Advertisement

Log in

Nuclear PROX1 is Associated with Hypoxia-Inducible Factor 1α Expression and Cancer Progression in Esophageal Squamous Cell Carcinoma

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Transcription factor prospero homeobox 1 (PROX1) has been identified as a master regulator of lymphangiogenesis associated with metastasis. Although PROX1 expression has been investigated in several cancers, its clinical significance remains controversial and needs further validation. In this study, we investigated the clinical and functional significance of PROX1 and PROX1 regulator hypoxia-inducible factor 1α (HIF1α) in esophageal squamous cell carcinoma (ESCC).

Methods

A total of 117 samples from ESCC patients were analyzed for PROX1, HIF1α, and E-cadherin expression by immunohistochemistry; correlation with clinicopathological characteristics was determined. PROX1 function was evaluated in PROX1 small interfering RNA (siRNA)-transfected human ESCC cells in vitro by assessing cell proliferation and migration.

Results

PROX1 expression was higher in ESCC than in normal tissues. Patients with higher PROX1 expression (n = 26) had increased nuclear accumulation of HIF1α (p = 0.004) and more advanced metastasis, both lymph node (N factor; p = 0.09) and hematogenous (M factor; p = 0.04), than those with lower PROX1 expression (n = 91). In addition, high PROX1 and HIF1α expression correlated with low levels of E-cadherin, an epithelial cell marker. Analysis of overall and cancer-specific survival indicated that elevated PROX1 expression was significantly correlated with poor prognosis (p = 0.0064). PROX1 downregulation in ESCC cells inhibited cellular proliferation and migration (p < 0.05). Hypoxia restored PROX1 levels that were reduced by PROX1-specific siRNA.

Conclusion

Our data suggest that high expression of PROX1 in ESCC could be used as an indicator of poor prognosis, and that PROX1 is a promising candidate molecular target for ESCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Napier KJ, Scheerer M, Misra S. Esophageal cancer: a review of epidemiology, pathogenesis, staging workup and treatment modalities. World J Gastrointest Oncol. 2014;6(5):112–20.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kato H, Fukuchi M, Miyazaki T, et al. Surgical treatment for esophageal cancer. Current issues. Dig Surg. 2007;24(2):88–95.

    Article  PubMed  Google Scholar 

  3. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med. 2003;349(23):2241–52.

    Article  PubMed  CAS  Google Scholar 

  4. Karatzanis AD, Koudounarakis E, Papadakis I, Velegrakis G. Molecular pathways of lymphangiogenesis and lymph node metastasis in head and neck cancer. Eur Arch Otorhinolaryngol. 2012;269(3):731–7.

    Article  PubMed  CAS  Google Scholar 

  5. Nishida N, Mimori K, Yokobori T, et al. FOXC2 is a novel prognostic factor in human esophageal squamous cell carcinoma. Ann Surg Oncol. 2011;18(2):535–42.

    Article  PubMed  Google Scholar 

  6. He Y, Karpanen T, Alitalo K. Role of lymphangiogenic factors in tumor metastasis. Biochim Biophys Acta. 2004;1654(1):3–12.

    PubMed  CAS  Google Scholar 

  7. Harada K, Yamazaki T, Iwata C, et al. Identification of targets of Prox1 during in vitro vascular differentiation from embryonic stem cells: functional roles of HoxD8 in lymphangiogenesis. J Cell Sci. 2009;122(Pt 21):3923–30.

    Article  PubMed  CAS  Google Scholar 

  8. Hong YK, Harvey N, Noh YH, et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn. 2002;225(3):351–7.

    Article  PubMed  CAS  Google Scholar 

  9. Liu Y, Zhang JB, Qin Y, et al. PROX1 promotes hepatocellular carcinoma metastasis by way of up-regulating hypoxia-inducible factor 1alpha expression and protein stability. Hepatology. 2013;58(2):692–705.

    Article  PubMed  CAS  Google Scholar 

  10. Petrova TV, Nykanen A, Norrmen C, et al. Transcription factor PROX1 induces colon cancer progression by promoting the transition from benign to highly dysplastic phenotype. Cancer Cell. 2008;13(5):407–19.

    Article  PubMed  CAS  Google Scholar 

  11. Lu MH, Huang CC, Pan MR, Chen HH, Hung WC. Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res. 2012;18(23):6416–25.

    Article  PubMed  CAS  Google Scholar 

  12. Elsir T, Eriksson A, Orrego A, Lindstrom MS, Nister M. Expression of PROX1 Is a common feature of high-grade malignant astrocytic gliomas. J Neuropathol Exp Neurol. 2010;69(2):129–38.

    Article  PubMed  CAS  Google Scholar 

  13. Shimoda M, Takahashi M, Yoshimoto T, Kono T, Ikai I, Kubo H. A homeobox protein, prox1, is involved in the differentiation, proliferation, and prognosis in hepatocellular carcinoma. Clin Cancer Res. 2006;12(20 Pt 1):6005–11.

    Article  PubMed  CAS  Google Scholar 

  14. Foskolou IP, Stellas D, Rozani I, Lavigne MD, Politis PK. Prox1 suppresses the proliferation of neuroblastoma cells via a dual action in p27-Kip1 and Cdc25A. Oncogene. 2013;32(8):947–60.

    Article  PubMed  CAS  Google Scholar 

  15. Versmold B, Felsberg J, Mikeska T, et al. Epigenetic silencing of the candidate tumor suppressor gene PROX1 in sporadic breast cancer. Int J Cancer. 2007;121(3):547–54.

    Article  PubMed  CAS  Google Scholar 

  16. Schneider M, Buchler P, Giese N, et al. Role of lymphangiogenesis and lymphangiogenic factors during pancreatic cancer progression and lymphatic spread. Int J Oncol. 2006;28(4):883–90.

    PubMed  CAS  Google Scholar 

  17. Yoshimoto T, Takahashi M, Nagayama S, et al. RNA mutations of prox1 detected in human esophageal cancer cells by the shifted termination assay. Biochem Biophys Res Commun. 2007;359(2):258–62.

    Article  PubMed  CAS  Google Scholar 

  18. Akagami M, Kawada K, Kubo H, et al. Transcriptional factor Prox1 plays an essential role in the antiproliferative action of interferon-gamma in esophageal cancer cells. Ann Surg Oncol. 2011;18(13):3868–77.

    Article  PubMed  Google Scholar 

  19. Zhou B, Si W, Su Z, Deng W, Tu X, Wang Q. Transcriptional activation of the Prox1 gene by HIF-1alpha and HIF-2alpha in response to hypoxia. FEBS Lett. 2013;587(6):724–31.

    Article  PubMed  CAS  Google Scholar 

  20. Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2012;12(1):9–22.

    CAS  Google Scholar 

  21. Shimada Y, Imamura M, Wagata T, Yamaguchi N, Tobe T. Characterization of 21 newly established esophageal cancer cell lines. Cancer. 1992;69(2):277–84.

    Article  PubMed  CAS  Google Scholar 

  22. Yokobori T, Yokoyama Y, Mogi A, et al. FBXW7 mediates chemotherapeutic sensitivity and prognosis in NSCLCs. Mol Cancer Res. 2014;12(1):32–37.

    Article  PubMed  CAS  Google Scholar 

  23. Aranguren XL, Beerens M, Coppiello G, et al. COUP-TFII orchestrates venous and lymphatic endothelial identity by homo- or hetero-dimerisation with PROX1. J Cell Sci. 2013;126(Pt 5):1164–75.

    Article  PubMed  CAS  Google Scholar 

  24. Flister MJ, Wilber A, Hall KL, et al. Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Blood. 2010;115(2):418–29.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Francois M, Caprini A, Hosking B, et al. Sox18 induces development of the lymphatic vasculature in mice. Nature. 2008;456(7222):643–7.

    Article  PubMed  CAS  Google Scholar 

  26. Yoo J, Lee HN, Choi I, et al. Opposing regulation of PROX1 by interleukin-3 receptor and NOTCH directs differential host cell fate reprogramming by Kaposi sarcoma herpes virus. PLoS Pathog. 2012;8(6):e1002770.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Kurokawa T, Miyamoto M, Kato K, et al. Overexpression of hypoxia-inducible-factor 1alpha(HIF-1alpha) in oesophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Br J Cancer. 2003;89(6):1042–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Izzo JG, Malhotra U, Wu TT, et al. Association of activated transcription factor nuclear factor kappab with chemoradiation resistance and poor outcome in esophageal carcinoma. J Clin Oncol. 2006;24(5):748–54.

    Article  PubMed  CAS  Google Scholar 

  29. Wigle JT, Harvey N, Detmar M, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002;21(7):1505–13.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Pan MR, Chang TM, Chang HC, Su JL, Wang HW, Hung WC. Sumoylation of Prox1 controls its ability to induce VEGFR3 expression and lymphatic phenotypes in endothelial cells. J Cell Sci. 2009;122(Pt 18):3358–64.

    Article  PubMed  CAS  Google Scholar 

  31. Lv T, Liu Y, Zhang J, et al. Impact of an altered PROX1 expression on clinicopathology, prognosis and progression in renal cell carcinoma. PloS One. 2014;9(5):e95996.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Taban O, Cimpean AM, Raica M, Olariu S. PROX1 expression in gastric cancer: from hypothesis to evidence. Anticancer Res. 2014;34(7):3439–46.

    PubMed  Google Scholar 

  33. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.

    Article  PubMed  CAS  Google Scholar 

  34. Bellovin DI, Bates RC, Muzikansky A, Rimm DL, Mercurio AM. Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res. 2005;65(23):10938–45.

    Article  PubMed  CAS  Google Scholar 

  35. Bellovin DI, Simpson KJ, Danilov T, et al. Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma. Oncogene. 2006;25(52):6959–67.

    Article  PubMed  CAS  Google Scholar 

  36. Hollier BG, Tinnirello AA, Werden SJ, et al. FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer. Cancer Res. 2013;73(6):1981–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Sun S, Ning X, Zhang Y, et al. Hypoxia-inducible factor-1alpha induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney Int. 2009;75(12):1278–87.

    Article  PubMed  CAS  Google Scholar 

  38. Sun X, Fa P, Cui Z, et al. The EDA-containing cellular fibronectin induces epithelial-mesenchymal transition in lung cancer cells through integrin alpha9beta1-mediated activation of PI3-K/AKT and Erk1/2. Carcinogenesis. 2014;35(1):184–91.

    Article  PubMed  CAS  Google Scholar 

  39. Mishima K, Watabe T, Saito A, et al. Prox1 induces lymphatic endothelial differentiation via integrin alpha9 and other signaling cascades. Mol Biol Cell. 2007;18(4):1421–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Chang TM, Hung WC. The homeobox transcription factor Prox1 inhibits proliferation of hepatocellular carcinoma cells by inducing p53-dependent senescence-like phenotype. Cancer Biol Ther. 2013;14(3):222–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Agrawal N, Jiao Y, Bettegowda C, et al. Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discov. 2012;2(10):899–905.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Guichard C, Amaddeo G, Imbeaud S, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44(6):694–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Pugh TJ, Morozova O, Attiyeh EF, et al. The genetic landscape of high-risk neuroblastoma. Nat Genet. 2013;45(3):279–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the Promotion Plan for the platform of Human Resource Development for Cancer and New Paradigms–Establishing Centers for Fostering Medical Researchers of the Future; programs of the Ministry of Education, Culture, Sports, Science and Technology of Japan; Gunma University Initiative for Advanced Research (GIAR); and Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS; Grant Numbers 21591690, 22591450, 23591857, 15K10085, and 15K20902).

Disclosure

Masahiko Nishiyama has received a research Grant from Yakult Honsha Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takehiko Yokobori MD, PhD or Minoru Fukuchi MD, PhD.

Additional information

Takehiko Yokobori and Pinjie Bao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokobori, T., Bao, P., Fukuchi, M. et al. Nuclear PROX1 is Associated with Hypoxia-Inducible Factor 1α Expression and Cancer Progression in Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 22 (Suppl 3), 1566–1573 (2015). https://doi.org/10.1245/s10434-015-4831-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-015-4831-6

Keywords

Navigation