Skip to main content
Log in

TGF Beta1 Expression Correlates with Survival and Tumor Aggressiveness of Prostate Cancer

  • Urologic Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Although biopsy Gleason score and clinical stage can be used to inform treatment decisions for prostate cancer, identifying molecular markers of tumor aggressiveness could lead to a more tailored approaches to therapy. In the present study, we investigated the association of transforming growth factor (TGF)-β1 levels and various markers of tumor aggressiveness and explore some potential mechanisms underlying the associations.

Methods

We used human and murine prostate cancer cell lines and their respective hormone resistance sub-lines, in vitro and in vivo to examine the changes in tumor aggressiveness, as well as the pathway responsible for these changes. Furthermore, 105 prostate cancer biopsy specimens were analyzed to correlate the level of TGF-β1 with the clinical characteristics of patients.

Results

Our data revealed that activated TGF-β1 signaling resulted in more aggressive tumor growth and augmented the epithelial–mesenchymal transition. Activated IL-6 signaling was associated with TGF-β1 levels and the aggressive tumor features noted in TGF-β1-positive prostate cancers in vitro and in vivo. Furthermore, the TGF-β1 levels significantly correlated with Tregs accumulation in vivo. The clinical data indicated that TGF-β1 immunoreactivity had a moderate positive correlation with IL-6 staining, advanced clinical stage, higher Gleason score, and pretreatment PSA in patients with prostate cancer.

Conclusions

TGF-β1 levels are significantly associated with aggressive prostate features. In vitro and in vivo alternations of TGF-β1 expression impacts tumor invasiveness, tumor growth rate and recruitment of immunosuppressive Treg cells in the tumor microenvironment. TGF-β1 expression may represent a clinical useful biomarker to guide prostate cancer treatment decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Murray NP, Reyes E, Tapia P, et al. Redefining micrometastasis in prostate cancer: a comparison of circulating prostate cells, bone marrow disseminated tumor cells and micrometastasis: implications in determining local or systemic treatment for biochemical failure after radical prostatectomy. Int J Mol Med. 2012;30:896–904.

    PubMed  CAS  Google Scholar 

  2. National Comprehensive Cancer Network. Prostate Cancer (Version 1.2015). http://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed 23 June 2015.

  3. Schroder FH, Hugosson J, Roobol MJ, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360:1320–8.

    Article  PubMed  Google Scholar 

  4. Twillie DA, Eisenberger MA, Carducci MA, et al. Interleukin-6: a candidate mediator of human prostate cancer morbidity. Urology. 1995;45:542–9.

    Article  PubMed  CAS  Google Scholar 

  5. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Drabsch Y, ten Dijke P. TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 2012;31:553–68.

    Article  PubMed  CAS  Google Scholar 

  7. Katsuno Y, Lamouille S, Derynck R. TGF-beta signaling and epithelial–mesenchymal transition in cancer progression. Curr Opin Oncol. 2013;25:76–84.

    Article  PubMed  CAS  Google Scholar 

  8. Schroten C, Dits NF, Steyerberg EW, et al. The additional value of TGFbeta1 and IL-7 to predict the course of prostate cancer progression. Cancer Immunol Immunother. 2012;61:905–10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Reis ST, Pontes-Júnior J, Antunes AA, et al. Tgf-β1 expression as a biomarker of poor prognosis in prostate cancer. Clinics (Sao Paulo). 2011;66:1143–7.

    PubMed  PubMed Central  Google Scholar 

  10. Cho KH, Jeong KJ, Shin SC, et al. STAT3 mediates TGF-beta1-induced TWIST1 expression and prostate cancer invasion. Cancer Lett. 2013;336:167–73.

    Article  PubMed  CAS  Google Scholar 

  11. Shariat SF, Kattan MW, Traxel E, et al. Association of pre-and postoperative plasma levels of transforming growth factor beta(1) and interleukin 6 and its soluble receptor with prostate cancer progression. Clin Cancer Res. 2004;10:1992–9.

    Article  PubMed  CAS  Google Scholar 

  12. Ivanovic V, Melman A, Davis-Joseph B, et al. Elevated plasma levels of TGF beta 1 in patients with invasive prostate cancer. Nat Med. 1995;1:282–4.

    Article  PubMed  CAS  Google Scholar 

  13. Oleinika K, Nibbs RJ, Graham GJ, et al. Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol. 2013;171:36–45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Tran DQ. TGF-beta: the sword, the wand, and the shield of FOXP3(+) regulatory T cells. J Mol Cell Biol. 2012;4:29–37.

    Article  PubMed  CAS  Google Scholar 

  15. Wu CT, Chen MF, Chen WC, et al. The role of IL-6 in the radiation response of prostate cancer. Radiat Oncol. 2013;8:159.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19:128–39.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Yao Z, Fenoglio S, Gao DC, et al. TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc Natl Acad Sci USA. 2010;107:15535–40.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Chen MF, Wang WH, Lin PY, et al. Significance of the TGF-beta1/IL-6 axis in oral cancer. Clin Sci (Lond). 2012;122:459–72.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Wu CT, Hsieh CC, Lin CC, et al. Significance of IL-6 in the transition of hormone-resistant prostate cancer and the induction of myeloid-derived suppressor cells. J Mol Med (Berl). 2012;90:1343–55.

    Article  PubMed  CAS  Google Scholar 

  20. Wu CT, Chen WC, Liao SK, et al. The radiation response of hormone-resistant prostate cancer induced by long-term hormone therapy. Endocr Relat Cancer. 2007;14:633–43.

    Article  PubMed  CAS  Google Scholar 

  21. Hurwitz AA, Foster BA, Allison JP, et al. The TRAMP mouse as a model for prostate cancer. Curr Protoc Immunol. 2001;Chapter 20:Unit 20.5.

  22. Miller AM, Lundberg K, Ozenci V, et al. CD4 + CD25 high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol. 2006;177:7398–405.

    Article  PubMed  CAS  Google Scholar 

  23. Flammiger A, Weisbach L, Huland H, et al. High tissue density of FOXP3 + T cells is associated with clinical outcome in prostate cancer. Eur J Cancer. 2013;49:1273–9.

    Article  PubMed  CAS  Google Scholar 

  24. Cretney E, Kallies A, Nutt SL. Differentiation and function of Foxp3(+) effector regulatory T cells. Trends Immunol. 2013;34:74–80.

    Article  PubMed  CAS  Google Scholar 

  25. Li MO, Flavell RA. TGF-beta, T-cell tolerance and immunotherapy of autoimmune diseases and cancer. Expert Rev Clin Immunol. 2006;2:257–65.

    Article  PubMed  CAS  Google Scholar 

  26. Fuxe J, Karlsson MC. TGF-beta-induced epithelial–mesenchymal transition: a link between cancer and inflammation. Semin Cancer Biol. 2012;22:455–61.

    Article  PubMed  CAS  Google Scholar 

  27. Thompson TC, Truong LD, Timme TL, et al. Transforming growth factor beta 1 as a biomarker for prostate cancer. J Cell Biochem Suppl. 1992;16H:54–61.

    Article  PubMed  CAS  Google Scholar 

  28. Adler HL, McCurdy MA, Kattan MW, et al. Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J Urol. 1999;161:182–7.

    Article  PubMed  CAS  Google Scholar 

  29. Smith AL, Robin TP, Ford HL. Molecular pathways: targeting the TGF-beta pathway for cancer therapy. Clin Cancer Res. 2012;18:4514–21.

    Article  PubMed  CAS  Google Scholar 

  30. Thiery JP, Acloque H, Huang RY, et al. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  PubMed  CAS  Google Scholar 

  31. Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    Article  PubMed  CAS  Google Scholar 

  32. Shiota M, Zardan A, Takeuchi A, et al. Clusterin mediates TGF-beta-induced epithelial–mesenchymal transition and metastasis via Twist1 in prostate cancer cells. Cancer Res. 2012;72:5261–72.

    Article  PubMed  CAS  Google Scholar 

  33. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927–39.

    Article  PubMed  CAS  Google Scholar 

  34. Sharma S, Sharma MC, Sarkar C. Morphology of angiogenesis in human cancer: a conceptual overview, histoprognostic perspective and significance of neoangiogenesis. Histopathology. 2005;46:481–9.

    Article  PubMed  CAS  Google Scholar 

  35. Whiteside TL. What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol. 2012;22:327–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4 + CD25-naive T cells to CD4 + CD25 + regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198:1875–86.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Chiaverotti T, Couto SS, Donjacour A, et al. Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Am J Pathol. 2008;172:236–46.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The study was supported by National Science Council, Taiwan. Grant 101-2314-B-182-062-MY3.

Disclosure

There is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao-Fen Chen MD, PhD.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CT., Chang, YH., Lin, WY. et al. TGF Beta1 Expression Correlates with Survival and Tumor Aggressiveness of Prostate Cancer. Ann Surg Oncol 22 (Suppl 3), 1587–1593 (2015). https://doi.org/10.1245/s10434-015-4804-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-015-4804-9

Keywords

Navigation