Skip to main content

Advertisement

Log in

Prognostic and Predictive Biomarkers in Colorectal Cancer: Implications for the Clinical Surgeon

  • Colorectal Cancer
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer is a heterogeneous disease with a wide range of long-term outcomes and responses to treatment. Recent advances in the genetic and molecular characterization of tumors has yielded a set of prognostic and predictive biomarkers that aid the identification of patients at higher risk for disease recurrence and progression, and in some cases indicate the likelihood of response to a specific treatment. Increasingly, these biomarkers have become integral to the treatment algorithm for managing patients with colorectal cancer. Prognostic and predictive factors in colorectal cancer can broadly be categorized into treatment impact, clinicopathologic factors, and molecular markers. This review will focus primarily on molecular markers, which are foundational to the paradigmatic shift toward personalized cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64:104–17.

    Article  PubMed  Google Scholar 

  2. Twelves C, Wong A, Nowacki MP, et al. Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med. 2005;352:2696–704.

    Article  CAS  PubMed  Google Scholar 

  3. Andre T, Boni C, Mounedji-Boudiaf L, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. Jun 3 2004;350:2343–51.

    Article  CAS  PubMed  Google Scholar 

  4. Compton CC. Colorectal carcinoma: diagnostic, prognostic, and molecular features. Mod Pathol. 2003;16:376–88.

    Article  PubMed  Google Scholar 

  5. Loupakis F, Cremolini C, Masi G, et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med. 2014;371:1609–18.

    Article  PubMed  CAS  Google Scholar 

  6. McCormack PM, Burt ME, Bains MS, Martini N, Rusch VW, Ginsberg RJ. Lung resection for colorectal metastases. 10-year results. Arch Surg. 1992;127:1403–6.

    Article  CAS  PubMed  Google Scholar 

  7. Weber SM, Jarnagin WR, DeMatteo RP, Blumgart LH, Fong Y. Survival after resection of multiple hepatic colorectal metastases. Ann Surg Oncol. 2000;7:643–50.

    Article  CAS  PubMed  Google Scholar 

  8. Verwaal VJ, van Ruth S, de Bree E, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol. 2003;21:3737–43.

    Article  PubMed  Google Scholar 

  9. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17:1471–4.

    Article  PubMed  Google Scholar 

  10. Staib L, Link KH, Blatz A, Beger HG. Surgery of colorectal cancer: surgical morbidity and five-and ten-year results in 2400 patients—monoinstitutional experience. World J Surg. 2002;26:59–66.

    Article  PubMed  Google Scholar 

  11. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    Article  CAS  PubMed  Google Scholar 

  12. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–32.

    Article  CAS  PubMed  Google Scholar 

  13. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    Article  CAS  PubMed  Google Scholar 

  14. Fearon ER, Cho KR, Nigro JM, et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science. 1990;247(4938):49–56.

    Article  CAS  PubMed  Google Scholar 

  15. Takagi Y, Koumura H, Futamura M, et al. Somatic alterations of the SMAD-2 gene in human colorectal cancers. Br J Cancer. 1998;78:1152–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wood LD, Parsons DW, Jones S, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1108–13.

    Article  CAS  PubMed  Google Scholar 

  17. Petersen GM. Knowledge of the adenomatous polyposis coli gene and its clinical application. Ann Med. 1994;26:205–8.

    Article  CAS  PubMed  Google Scholar 

  18. Walther A, Houlston R, Tomlinson I. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut. 2008;57:941–50.

    Article  CAS  PubMed  Google Scholar 

  19. Araujo SE, Bernardo WM, Habr-Gama A, Kiss DR, Cecconello I. DNA ploidy status and prognosis in colorectal cancer: a meta-analysis of published data. Dis Colon Rectum. 2007;50:1800–10.

    Article  PubMed  Google Scholar 

  20. Kokal W, Sheibani K, Terz J, Harada JR. Tumor DNA content in the prognosis of colorectal carcinoma. J Am Med Assoc. 1986;255:3123–7.

    Article  CAS  Google Scholar 

  21. Kouri M, Pyrhonen S, Mecklin JP, et al. The prognostic value of DNA-ploidy in colorectal carcinoma: a prospective study. Br J Cancer. 1990;62:976–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hveem TS, Merok MA, Pretorius ME, et al. Prognostic impact of genomic instability in colorectal cancer. Br J Cancer. 2014;110:2159–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sheffer M, Bacolod MD, Zuk O, et al. Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer. Proc Natl Acad Sci USA. 2009;106:7131–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Thorstensen L, Lind GE, Lovig T, et al. Genetic and epigenetic changes of components affecting the WNT pathway in colorectal carcinomas stratified by microsatellite instability. Neoplasia. 2005;7:99–108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Diep CB, Thorstensen L, Meling GI, Skovlund E, Rognum TO, Lothe RA. Genetic tumor markers with prognostic impact in Dukes’ stages B and C colorectal cancer patients. J Clin Oncol. 2003;21:820–9.

    Article  PubMed  Google Scholar 

  26. De Oliveira LP, Lopez I, Dos Santos EM, et al. Association of the p53 codon 72 polymorphism with clinicopathological characteristics of colorectal cancer through mRNA analysis. Oncol Rep. 2014;31:1396–406.

    PubMed  Google Scholar 

  27. Sarasqueta AF, Forte G, Corver WE, et al. Integral analysis of p53 and its value as prognostic factor in sporadic colon cancer. BMC Cancer. 2013;13:277.

    Article  CAS  PubMed  Google Scholar 

  28. Zirbes TK, Baldus SE, Moenig SP, et al. Prognostic impact of p21/waf1/cip1 in colorectal cancer. Int J Cancer. 2000;89:14–8.

    Article  CAS  PubMed  Google Scholar 

  29. Sulzyc-Bielicka V, Domagala P, Bielicki D, Safranow K, Domagala W. Thymidylate synthase expression and p21(WAF1)/p53 phenotype of colon cancers identify patients who may benefit from 5-fluorouracil based therapy. Cell Oncol (Dordr). 2014;37:17–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sogawa N, Takiguchi N, Koda K, et al. Value of expression of p21WAF1/CIP1 as a prognostic factor in advanced middle and lower rectal cancer patients treated with preoperative radio-chemotherapy. Int J Oncol. 2002;21:787–93.

    PubMed  Google Scholar 

  31. Holland TA, Elder J, McCloud JM, et al. Subcellular localisation of cyclin D1 protein in colorectal tumours is associated with p21(WAF1/CIP1) expression and correlates with patient survival. Int J Cancer. 2001;95:302–6.

    Article  CAS  PubMed  Google Scholar 

  32. Li J, Yin LL, Su KL, Zhang GF, Wang J. Concomitant depletion of PTEN and p27 and overexpression of cyclin D1 may predict a worse prognosis for patients with post-operative stage II and III colorectal cancer. Oncol Lett. 2014;8:1543–50.

    PubMed Central  PubMed  Google Scholar 

  33. Saito M, Yamaguchi A, Goi T, et al. Expression of DCC protein in colorectal tumors and its relationship to tumor progression and metastasis. Oncology. 1999;56:134–41.

    Article  CAS  PubMed  Google Scholar 

  34. Xu J, Attisano L. Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA. 2000;97:4820–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Xie W, Rimm DL, Lin Y, Shih WJ, Reiss M. Loss of Smad signaling in human colorectal cancer is associated with advanced disease and poor prognosis. Cancer J. 2003;9:302–12.

    Article  CAS  PubMed  Google Scholar 

  36. Alazzouzi H, Alhopuro P, Salovaara R, et al. SMAD4 as a prognostic marker in colorectal cancer. Clin Cancer Res. 2005;11:2606–11.

    Article  CAS  PubMed  Google Scholar 

  37. Boulay JL, Mild G, Lowy A, et al. SMAD7 is a prognostic marker in patients with colorectal cancer. Int J Cancer. 2003;104:446–9.

    Article  CAS  PubMed  Google Scholar 

  38. Aaltonen LA, Peltomaki P, Leach FS, et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993;260(5109):812–6.

    Article  CAS  PubMed  Google Scholar 

  39. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363(6429):558–61.

    Article  CAS  PubMed  Google Scholar 

  40. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260(5109):816–9.

    Article  CAS  PubMed  Google Scholar 

  41. Bhattacharyya NP, Skandalis A, Ganesh A, Groden J, Meuth M. Mutator phenotypes in human colorectal carcinoma cell lines. Proc Natl Acad Sci USA. 1994;91:6319–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Marra G, Boland CR. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J Natl Cancer Inst. 1995;87:1114–25.

    Article  CAS  PubMed  Google Scholar 

  43. Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116:1453–6.

    Article  CAS  PubMed  Google Scholar 

  44. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–57.

    CAS  PubMed  Google Scholar 

  45. Hutchins G, Southward K, Handley K, et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol. 2011;29:1261–70.

    Article  PubMed  Google Scholar 

  46. Sinicrope FA, Mahoney MR, Smyrk TC, et al. Prognostic impact of deficient DNA mismatch repair in patients with stage III colon cancer from a randomized trial of FOLFOX-based adjuvant chemotherapy. J Clin Oncol. 2013;31:3664–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Pogue-Geile K, Yothers G, Taniyama Y, et al. Defective mismatch repair and benefit from bevacizumab for colon cancer: findings from NSABP C-08. J Natl Cancer Inst. 2013;105:989–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Alexander J, Watanabe T, Wu TT, Rashid A, Li S, Hamilton SR. Histopathological identification of colon cancer with microsatellite instability. Am J Pathol. 2001;158:527–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Ward R, Meagher A, Tomlinson I, et al. Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut. 2001;48:821–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Liang JT, Huang KC, Cheng AL, Jeng YM, Wu MS, Wang SM. Clinicopathological and molecular biological features of colorectal cancer in patients less than 40 years of age. Br J Surg. 2003;90:205–14.

    Article  CAS  PubMed  Google Scholar 

  51. Lin CC, Lin JK, Lin TC, et al. The prognostic role of microsatellite instability, codon-specific KRAS, and BRAF mutations in colon cancer. J Surg Oncol. 2014;110:451–7.

    Article  CAS  PubMed  Google Scholar 

  52. Gryfe R, Kim H, Hsieh ET, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 2000;342:69–77.

    Article  CAS  PubMed  Google Scholar 

  53. Samowitz WS, Curtin K, Ma KN, et al. Microsatellite instability in sporadic colon cancer is associated with an improved prognosis at the population level. Cancer Epidemiol Biomarkers Prev. 2001;10:917–23.

    CAS  PubMed  Google Scholar 

  54. Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349:247–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Ahuja N, Mohan AL, Li Q, et al. Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res. 1997;57:3370–4.

    CAS  PubMed  Google Scholar 

  56. Yamashita K, Dai T, Dai Y, Yamamoto F, Perucho M. Genetics supersedes epigenetics in colon cancer phenotype. Cancer Cell. 2003;4:121–31.

    Article  CAS  PubMed  Google Scholar 

  57. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321(6067):209–13.

    Article  CAS  PubMed  Google Scholar 

  58. Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93.

    Article  CAS  PubMed  Google Scholar 

  59. Toyota M, Ohe-Toyota M, Ahuja N, Issa JP. Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc Natl Acad Sci USA. 2000;97:710–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999;96:8681–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Samowitz WS, Albertsen H, Herrick J, et al. Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology. 2005;129:837–45.

    Article  CAS  PubMed  Google Scholar 

  62. Herman JG, Umar A, Polyak K, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA. 1998;95:6870–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Nagasaka T, Koi M, Kloor M, et al. Mutations in both KRAS and BRAF may contribute to the methylator phenotype in colon cancer. Gastroenterology. 2008;134:1950–60, 1960.e1951.

  64. O’Connell MJ, Lavery I, Yothers G, et al. Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. J Clin Oncol. 2010;28:3937–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Gray RG, Quirke P, Handley K, et al. Validation study of a quantitative multigene reverse transcriptase-polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer. J Clin Oncol. 2011;29:4611–9.

    Article  PubMed  Google Scholar 

  66. Yothers G, O’Connell MJ, Lee M, et al. Validation of the 12-gene colon cancer recurrence score in NSABP C-07 as a predictor of recurrence in patients with stage II and III colon cancer treated with fluorouracil and leucovorin (FU/LV) and FU/LV plus oxaliplatin. J Clin Oncol. 2013;31:4512–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Venook AP, Niedzwiecki D, Lopatin M, et al. Biologic determinants of tumor recurrence in stage II colon cancer: validation study of the 12-gene recurrence score in cancer and leukemia group B (CALGB) 9581. J Clin Oncol. 2013;31:1775–81.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Salazar R, Roepman P, Capella G, et al. Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol. 2011;29:17–24.

    Article  PubMed  Google Scholar 

  69. Maak M, Simon I, Nitsche U, et al. Independent validation of a prognostic genomic signature (ColoPrint) for patients with stage II colon cancer. Ann Surg. 2013;257:1053–8.

    Article  PubMed  Google Scholar 

  70. Juo YY, Johnston FM, Zhang DY, et al. Prognostic value of CpG island methylator phenotype among colorectal cancer patients: a systematic review and meta-analysis. Ann Oncol. 2014;25:2314–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sakamoto E, Tsukioka S, Oie S, et al. Folylpolyglutamate synthase and gamma-glutamyl hydrolase regulate leucovorin-enhanced 5-fluorouracil anticancer activity. Biochem Biophys Res Commun. 2008;365:801–7.

    Article  CAS  PubMed  Google Scholar 

  72. Shiovitz S, Bertagnolli MM, Renfro LA, et al. CpG island methylator phenotype is associated with response to adjuvant irinotecan-based therapy for stage III colon cancer. Gastroenterology. 2014;147:637–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Petrelli F, Coinu A, Cabiddu M, Ghilardi M, Barni S. KRAS as prognostic biomarker in metastatic colorectal cancer patients treated with bevacizumab: a pooled analysis of 12 published trials. Med Oncol. 2013;30:650.

    Article  PubMed  CAS  Google Scholar 

  74. Newbold R. Cancer: mutant ras proteins and cell transformation. Nature. 1984;310(5979):628–9.

    Article  CAS  PubMed  Google Scholar 

  75. Rui YY, Zhang D, Zhou ZG, et al. Can K-ras gene mutation be utilized as prognostic biomarker for colorectal cancer patients receiving chemotherapy? A meta-analysis and systematic review. PLoS ONE. 2013;8:e77901.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Andreyev HJ, Norman AR, Cunningham D, et al. Kirsten ras mutations in patients with colorectal cancer: the “RASCAL II” study. Br J Cancer. 2001;85:692–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Tejpar S, Celik I, Schlichting M, Sartorius U, Bokemeyer C, Van Cutsem E. Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol. 2012;30:3570–7.

    Article  CAS  PubMed  Google Scholar 

  78. Lievre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–5.

    Article  CAS  PubMed  Google Scholar 

  79. Douillard JY, Oliner KS, Siena S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369:1023–34.

    Article  CAS  PubMed  Google Scholar 

  80. Schweiger T, Hegedus B, Nikolowsky C, et al. EGFR, BRAF and KRAS status in patients undergoing pulmonary metastasectomy from primary colorectal carcinoma: a prospective follow-up study. Ann Surg Oncol. 2014;21:946–54.

    Article  PubMed  Google Scholar 

  81. Irahara N, Baba Y, Nosho K, et al. NRAS mutations are rare in colorectal cancer. Diagn Mol Pathol. 2010;19:157–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Wang Y, Velho S, Vakiani E, et al. Mutant N-RAS protects colorectal cancer cells from stress-induced apoptosis and contributes to cancer development and progression. Cancer Discov. 2013;3:294–307.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Benson AB 3rd, Venook AP, Bekaii-Saab T, et al. Colon cancer, version 3.2014. J Natl Compr Cancer Netw. 2014;12:1028–59.

    CAS  Google Scholar 

  84. Kyriakis JM, App H, Zhang XF, et al. Raf-1 activates MAP kinase-kinase. Nature. 1992;358(6385):417–21.

    Article  CAS  PubMed  Google Scholar 

  85. Safaee Ardekani G, Jafarnejad SM, Tan L, Saeedi A, Li G. The prognostic value of BRAF mutation in colorectal cancer and melanoma: a systematic review and meta-analysis. PLoS ONE. 2012;7:e47054.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855–67.

    Article  CAS  PubMed  Google Scholar 

  87. Chen D, Huang JF, Liu K, et al. BRAF V600E mutation and its association with clinicopathological features of colorectal cancer: a systematic review and meta-analysis. PLoS ONE. 2014;9:e90607.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Leary RJ, Sausen M, Kinde I, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4(162):162ra154.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Price TJ, Hardingham JE, Lee CK, et al. Impact of KRAS and BRAF gene mutation status on outcomes from the phase III AGITG MAX trial of capecitabine alone or in combination with bevacizumab and mitomycin in advanced colorectal cancer. J Clin Oncol. 2011;29:2675–82.

    Article  CAS  PubMed  Google Scholar 

  90. Yuan ZX, Wang XY, Qin QY, et al. The prognostic role of BRAF mutation in metastatic colorectal cancer receiving anti-EGFR monoclonal antibodies: a meta-analysis. PLoS ONE. 2013;8:e65995.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Cui D, Cao D, Yang Y, Qiu M, Huang Y, Yi C. Effect of BRAF V600E mutation on tumor response of anti-EGFR monoclonal antibodies for first-line metastatic colorectal cancer treatment: a meta-analysis of randomized studies. Mol Biol Rep. 2014;41:1291–8.

    Article  CAS  PubMed  Google Scholar 

  92. Mao C, Liao RY, Qiu LX, Wang XW, Ding H, Chen Q. BRAF V600E mutation and resistance to anti-EGFR monoclonal antibodies in patients with metastatic colorectal cancer: a meta-analysis. Mol Biol Rep. 2011;38:2219–23.

    Article  CAS  PubMed  Google Scholar 

  93. Memorial Sloan Kettering Cancer Center G. Vemurafenib and panitumumab combination therapy in patients with BRAF V600E mutated metastatic colorectal cancer. http://clinicaltrials.gov/show/NCT01791309. Accessed 4 Dec 2014.

  94. Ogino S, Lochhead P, Giovannucci E, Meyerhardt JA, Fuchs CS, Chan AT. Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker: power and promise of molecular pathological epidemiology. Oncogene. 2014;33:2949–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Ogino S, Liao X, Imamura Y, et al. Predictive and prognostic analysis of PIK3CA mutation in stage III colon cancer intergroup trial. J Natl Cancer Inst. 2013;105:1789–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. He Y, Van’t Veer LJ, Mikolajewska-Hanclich I, et al. PIK3CA mutations predict local recurrences in rectal cancer patients. Clin Cancer Res. 2009;15:6956–62.

    Article  CAS  PubMed  Google Scholar 

  97. Liao X, Lochhead P, Nishihara R, et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med. 2012;367:1596–606.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Ogino S, Nosho K, Kirkner GJ, et al. PIK3CA mutation is associated with poor prognosis among patients with curatively resected colon cancer. J Clin Oncol. 2009;27:1477–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Iida S, Kato S, Ishiguro M, et al. PIK3CA mutation and methylation influences the outcome of colorectal cancer. Oncol Lett. 2012;3:565–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Eklof V, Wikberg ML, Edin S, et al. The prognostic role of KRAS, BRAF, PIK3CA and PTEN in colorectal cancer. Br J Cancer. 2013;108:2153–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Mouradov D, Domingo E, Gibbs P, et al. Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations. Am J Gastroenterol. 2013;108:1785–93.

    Article  CAS  PubMed  Google Scholar 

  102. Sartore-Bianchi A, Martini M, Molinari F, et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 2009;69:1851–7.

    Article  CAS  PubMed  Google Scholar 

  103. De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11:753–62.

    Article  PubMed  CAS  Google Scholar 

  104. Liao X, Morikawa T, Lochhead P, et al. Prognostic role of PIK3CA mutation in colorectal cancer: cohort study and literature review. Clin Cancer Res. 2012;18:2257–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Altomare I, Hurwitz H. Everolimus in colorectal cancer. Expert Opin Pharmacother. 2013;14:505–13.

    Article  CAS  PubMed  Google Scholar 

  106. Stambolic V, Suzuki A, de la Pompa JL, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95:29–39.

    Article  CAS  PubMed  Google Scholar 

  107. Wang ZH, Gao QY, Fang JY. Loss of PTEN expression as a predictor of resistance to anti-EGFR monoclonal therapy in metastatic colorectal cancer: evidence from retrospective studies. Cancer Chemother Pharmacol. 2012;69:1647–55.

    Article  CAS  PubMed  Google Scholar 

  108. Chong ML, Loh M, Thakkar B, Pang B, Iacopetta B, Soong R. Phosphatidylinositol-3-kinase pathway aberrations in gastric and colorectal cancer: meta-analysis, co-occurrence and ethnic variation. Int J Cancer. 2014;134:1232–8.

    Article  CAS  PubMed  Google Scholar 

  109. Therkildsen C, Bergmann TK, Henrichsen-Schnack T, Ladelund S, Nilbert M. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: a systematic review and meta-analysis. Acta Oncol. 2014;53:852–64.

    Article  CAS  PubMed  Google Scholar 

  110. Shen WD, Chen HL, Liu PF. EGFR gene copy number as a predictive biomarker for resistance to anti-EGFR monoclonal antibodies in metastatic colorectal cancer treatment: a meta-analysis. Chin J Cancer Res. 2014;26:59–71.

    PubMed Central  PubMed  Google Scholar 

  111. Moroni M, Veronese S, Benvenuti S, et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol. 2005;6:279–86.

    Article  CAS  PubMed  Google Scholar 

  112. Jiang Z, Li C, Li F, Wang X. EGFR gene copy number as a prognostic marker in colorectal cancer patients treated with cetuximab or panitumumab: a systematic review and meta analysis. PLoS ONE. 2013;8:e56205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Allegra CJ, Jessup JM, Somerfield MR, et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol. 2009;27:2091–6.

    Article  PubMed  Google Scholar 

  114. Barber TD, Vogelstein B, Kinzler KW, Velculescu VE. Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med. 2004;351:2883.

    Article  CAS  PubMed  Google Scholar 

  115. Jacobs B, De Roock W, Piessevaux H, et al. Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab. J Clin Oncol. 2009;27:5068–74.

    Article  CAS  PubMed  Google Scholar 

  116. Cui H, Cruz-Correa M, Giardiello FM, et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science. Mar 14 2003;299(5613):1753–5.

    Article  CAS  PubMed  Google Scholar 

  117. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

    Article  CAS  Google Scholar 

  118. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306–9.

    Article  CAS  PubMed  Google Scholar 

  119. Wang Y, Yao X, Ge J, Hu F, Zhao Y. Can vascular endothelial growth factor and microvessel density be used as prognostic biomarkers for colorectal cancer? A systematic review and meta-analysis. Sci World J. 2014;2014:102736.

    Google Scholar 

  120. Bestas R, Kaplan MA, Isikdogan A. The correlation between serum VEGF levels and known prognostic risk factors in colorectal carcinoma. Hepatogastroenterology. 2014;61:267–71.

    CAS  PubMed  Google Scholar 

  121. Bruhn MA, Townsend AR, Khoon Lee C, et al. Proangiogenic tumor proteins as potential predictive or prognostic biomarkers for bevacizumab therapy in metastatic colorectal cancer. Int J Cancer. 2014;135:731–41.

    Article  CAS  PubMed  Google Scholar 

  122. Sinicrope FA, Rego RL, Halling KC, et al. Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients. Gastroenterology. 2006;131:729–37.

    Article  CAS  PubMed  Google Scholar 

  123. Hicks GG, Egan SE, Greenberg AH, Mowat M. Mutant p53 tumor suppressor alleles release ras-induced cell cycle growth arrest. Mol Cell Biol. 1991;11:1344–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Williams AC, Miller JC, Collard TJ, Bracey TS, Cosulich S, Paraskeva C. Mutant p53 is not fully dominant over endogenous wild type p53 in a colorectal adenoma cell line as demonstrated by induction of MDM2 protein and retention of a p53 dependent G1 arrest after gamma irradiation. Oncogene. 1995;11:141–9.

    CAS  PubMed  Google Scholar 

  125. Hinds P, Finlay C, Levine AJ. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol. 1989;63:739–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Esteller M, Sparks A, Toyota M, et al. Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res. 2000;60:4366–71.

    CAS  PubMed  Google Scholar 

  127. Samowitz WS, Powers MD, Spirio LN, Nollet F, van Roy F, Slattery ML. Beta-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. Cancer Res. 1999;59:1442–4.

    CAS  PubMed  Google Scholar 

  128. Murtaza M, Dawson SJ, Tsui DW, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013;497(7447):108–12.

    Article  CAS  PubMed  Google Scholar 

  129. Spindler KG, Appelt AL, Pallisgaard N, Andersen RF, Jakobsen A. KRAS-mutated plasma DNA as predictor of outcome from irinotecan monotherapy in metastatic colorectal cancer. Br J Cancer. 2013;109:3067–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Lichtenstein P, Holm NV, Verkasalo PK, et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78–85.

    Article  CAS  PubMed  Google Scholar 

  131. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.

    Article  CAS  PubMed  Google Scholar 

  132. Wang R, Wen H, Xu Y, et al. Circulating microRNAs as a novel class of diagnostic biomarkers in gastrointestinal tumors detection: a meta-analysis based on 42 articles. PLoS ONE. 2014;9:e113401.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  133. Yamada A, Cox MA, Gaffney KA, Moreland A, Boland CR, Goel A. Technical factors involved in the measurement of circulating microRNA biomarkers for the detection of colorectal neoplasia. PLoS ONE. 2014;9:e112481.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  134. Lo HW, Hung MC. Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer. 30 2006;94:184–8.

    Article  CAS  Google Scholar 

  135. Goldstein DA, Shaib WL, Flowers CR. Costs and effectiveness of genomic testing in the management of colorectal cancer. Oncology (Williston Park). 2015;29:175–83.

    PubMed  Google Scholar 

  136. Reimers MS, Kuppen PJ, Lee M, et al. Validation of the 12-gene colon cancer recurrence score as a predictor of recurrence risk in stage II and III rectal cancer patients. J Natl Cancer Inst. 2014;106(11):dju269.

    Article  PubMed  Google Scholar 

  137. Losi L, Ponti G, Gregorio CD, et al. Prognostic significance of histological features and biological parameters in stage I (pT1 and pT2) colorectal adenocarcinoma. Pathol Res Pract. 2006;202:663–70.

    Article  PubMed  Google Scholar 

  138. Dresen RC, Peters EE, Rutten HJ, et al. Local recurrence in rectal cancer can be predicted by histopathological factors. Eur J Surg Oncol. 2009;35:1071–7.

    Article  CAS  PubMed  Google Scholar 

  139. Compton CC, Fielding LP, Burgart LJ, et al. Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement, 1999. Arch Pathol Lab Med. 2000;124:979–94.

    CAS  PubMed  Google Scholar 

  140. Nagashima I, Oka T, Hamada C, Naruse K, Osada T, Muto T. Histopathological prognostic factors influencing long-term prognosis after surgical resection for hepatic metastases from colorectal cancer. Am J Gastroenterol. 1999;94:739–43.

    Article  CAS  PubMed  Google Scholar 

  141. Chambers WM, Khan U, Gagliano A, Smith RD, Sheffield J, Nicholls RJ. Tumour morphology as a predictor of outcome after local excision of rectal cancer. Br J Surg. 2004;91:457–9.

    Article  CAS  PubMed  Google Scholar 

  142. Mulder JW, Baas IO, Polak MM, Goodman SN, Offerhaus GJ. Evaluation of p53 protein expression as a marker for long-term prognosis in colorectal carcinoma. Br J Cancer. 1995;71:1257–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Ianosi G, Mercut D, Neagoe D, et al. Histopathological factors as predictors for survival in colon and rectal cancers. Rom J Morphol Embryol. 2008;49:365–9.

    CAS  PubMed  Google Scholar 

  144. de Bruine AP, Wiggers T, Beek C, et al. Endocrine cells in colorectal adenocarcinomas: incidence, hormone profile and prognostic relevance. Int J Cancer. 1993;54:765–71.

    Article  PubMed  Google Scholar 

  145. Chew MH, Yeo SA, Ng ZP, et al. Critical analysis of mucin and signet ring cell as prognostic factors in an Asian population of 2,764 sporadic colorectal cancers. Int J Colorectal Dis. 2010;25:1221–9.

    Article  PubMed  Google Scholar 

  146. Lanza G, Gafa R, Matteuzzi M, Santini A. Medullary-type poorly differentiated adenocarcinoma of the large bowel: a distinct clinicopathologic entity characterized by microsatellite instability and improved survival. J Clin Oncol. 1999;17:2429–38.

    CAS  PubMed  Google Scholar 

  147. Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50:113–30.

    Article  CAS  PubMed  Google Scholar 

  148. Deschoolmeester V, Baay M, Van Marck E, et al. Tumor infiltrating lymphocytes: an intriguing player in the survival of colorectal cancer patients. BMC Immunol. 2010;11:19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  149. Krasna MJ, Flancbaum L, Cody RP, Shneibaum S, Ben Ari G. Vascular and neural invasion in colorectal carcinoma. Incidence and prognostic significance. Cancer. 1988;61:1018–23.

    Article  CAS  PubMed  Google Scholar 

  150. Onate-Ocana LF, Montesdeoca R, Lopez-Graniel CM, et al. Identification of patients with high-risk lymph node-negative colorectal cancer and potential benefit from adjuvant chemotherapy. Jpn J Clin Oncol. 2004;34:323–8.

    Article  PubMed  Google Scholar 

  151. Hase K, Shatney C, Johnson D, Trollope M, Vierra M. Prognostic value of tumor “budding” in patients with colorectal cancer. Dis Colon Rectum. 1993;36:627–35.

    Article  CAS  PubMed  Google Scholar 

  152. Ueno H, Price AB, Wilkinson KH, Jass JR, Mochizuki H, Talbot IC. A new prognostic staging system for rectal cancer. Ann Surg. 2004;240:832–9.

    Article  PubMed Central  PubMed  Google Scholar 

  153. Zlobec I, Molinari F, Martin V, et al. Tumor budding predicts response to anti-EGFR therapies in metastatic colorectal cancer patients. World J Gastroenterol. 2010;16:4823–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Kayser K, Zink S, Andre S, et al. Primary colorectal carcinomas and their intrapulmonary metastases: clinical, glyco-, immuno-and lectin histochemical, nuclear and syntactic structure analysis with emphasis on correlation with period of occurrence of metastases and survival. APMIS. 2002;110:435–46.

    Article  PubMed  Google Scholar 

  155. Des Guetz G, Uzzan B, Nicolas P, et al. Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br J Cancer. 2006;94:1823–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Murray GI, Duncan ME, O’Neil P, Melvin WT, Fothergill JE. Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat Med. 1996;2:461–2.

    Article  CAS  PubMed  Google Scholar 

  157. Langers AM, Verspaget HW, Hawinkels LJ, et al. MMP-2 and MMP-9 in normal mucosa are independently associated with outcome of colorectal cancer patients. Br J Cancer. 2012;106:1495–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  158. Zhu X, Han Y, Yuan C, et al. Overexpression of Reg4, alone or combined with MMP-7 overexpression, is predictive of poor prognosis in colorectal cancer. Oncol Rep. 2015;33:320–8.

    CAS  PubMed  Google Scholar 

  159. Li CY, Yuan P, Lin SS, et al. Matrix metalloproteinase 9 expression and prognosis in colorectal cancer: a meta-analysis. Tumour Biol. 2013;34:735–41.

    Article  CAS  PubMed  Google Scholar 

  160. Gomis-Ruth FX, Maskos K, Betz M, et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature. 1997;389(6646):77–81.

    Article  CAS  PubMed  Google Scholar 

  161. Will H, Atkinson SJ, Butler GS, Smith B, Murphy G. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J Biol Chem. 1996;271:17119–23.

    Article  CAS  PubMed  Google Scholar 

  162. Seubert B, Grunwald B, Kobuch J, et al. Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology. 2015;61: 238-248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kushlinskii NE, Gershtein ES, Korotkova EA, Prorokov VV. Prognostic role of tumor-associated proteases in colorectal cancer. Bull Exp Biol Med. 2013;154:365–9.

    Article  CAS  PubMed  Google Scholar 

  164. Inagaki D, Oshima T, Yoshihara K, et al. Overexpression of tissue inhibitor of metalloproteinase-1 gene correlates with poor outcomes in colorectal cancer. Anticancer Res. 2010;30:4127–30.

    PubMed  Google Scholar 

  165. Varghese S, Burness M, Xu H, Beresnev T, Pingpank J, Alexander HR. Site-specific gene expression profiles and novel molecular prognostic factors in patients with lower gastrointestinal adenocarcinoma diffusely metastatic to liver or peritoneum. Ann Surg Oncol. 2007;14:3460–71.

    Article  PubMed  Google Scholar 

  166. Mohr A, Buneker C, Gough RP, Zwacka RM. MnSOD protects colorectal cancer cells from TRAIL-induced apoptosis by inhibition of Smac/DIABLO release. Oncogene. 2008;27:763–74.

    Article  CAS  PubMed  Google Scholar 

  167. Nozoe T, Honda M, Inutsuka S, Yasuda M, Korenaga D. Significance of immunohistochemical expression of manganese superoxide dismutase as a marker of malignant potential in colorectal carcinoma. Oncol Rep. 2003;10:39–43.

    CAS  PubMed  Google Scholar 

  168. Mulder JW, Kruyt PM, Sewnath M, et al. Colorectal cancer prognosis and expression of exon-v6-containing CD44 proteins. Lancet. 1994;344(8935):1470–2.

    Article  CAS  PubMed  Google Scholar 

  169. Galizia G, Gemei M, Del Vecchio L, et al. Combined CD133/CD44 expression as a prognostic indicator of disease-free survival in patients with colorectal cancer. Arch Surg. 2012;147:18–24.

    Article  CAS  PubMed  Google Scholar 

  170. Bhatavdekar JM, Patel DD, Chikhlikar PR, et al. Overexpression of CD44: a useful independent predictor of prognosis in patients with colorectal carcinomas. Ann Surg Oncol. 1998;5:495–501.

    Article  CAS  PubMed  Google Scholar 

  171. Berger SH, Jenh CH, Johnson LF, Berger FG. Thymidylate synthase overproduction and gene amplification in fluorodeoxyuridine-resistant human cells. Mol Pharmacol. 1985;28:461–7.

    CAS  PubMed  Google Scholar 

  172. Popat S, Matakidou A, Houlston RS. Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J Clin Oncol. 2004;22:529–36.

    Article  CAS  PubMed  Google Scholar 

  173. Soong R, Shah N, Salto-Tellez M, et al. Prognostic significance of thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase protein expression in colorectal cancer patients treated with or without 5-fluorouracil-based chemotherapy. Ann Oncol. 2008;19:915–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  174. Dotan E, Meropol NJ, Zhu F, et al. Relationship of increased aurora kinase A gene copy number, prognosis and response to chemotherapy in patients with metastatic colorectal cancer. Br J Cancer. 2012;106:748–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  175. Gormley JA, Hegarty SM, O’Grady A, et al. The role of Cathepsin S as a marker of prognosis and predictor of chemotherapy benefit in adjuvant CRC: a pilot study. Br J Cancer. 2011;105:1487–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  176. Pietrantonio F, Biondani P, Milione M, et al. Lack of Bax expression is associated with irinotecan-based treatment activity in advanced colorectal cancer patients. Clin Transl Oncol. 2013;15:582–6.

    Article  CAS  PubMed  Google Scholar 

  177. Sarela AI, Scott N, Ramsdale J, Markham AF, Guillou PJ. Immunohistochemical detection of the anti-apoptosis protein, survivin, predicts survival after curative resection of stage II colorectal carcinomas. Ann Surg Oncol. 2001;8:305–10.

    Article  CAS  PubMed  Google Scholar 

  178. Langenskiold M, Holmdahl L, Falk P, Angenete E, Ivarsson ML. Increased TGF-beta 1 protein expression in patients with advanced colorectal cancer. J Surg Oncol. 2008;97:409–15.

    Article  PubMed  CAS  Google Scholar 

  179. Kakisako K, Miyahara M, Uchino S, Adachi Y, Kitano S. Prognostic significance of c-myc mRNA expression assessed by semi-quantitative RT-PCR in patients with colorectal cancer. Oncol Rep. 1998;5:441–5.

    CAS  PubMed  Google Scholar 

  180. Halamkova J, Kiss I, Pavlovsky Z, et al. Clinical significance of the plasminogen activator system in relation to grade of tumor and treatment response in colorectal carcinoma patients. Neoplasma. 2011;58:377–85.

    Article  CAS  PubMed  Google Scholar 

  181. Boonstra MC, Verbeek FP, Mazar AP, et al. Expression of uPAR in tumor-associated stromal cells is associated with colorectal cancer patient prognosis: a TMA study. BMC Cancer. 2014;14:269.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  182. Stephens RW, Nielsen HJ, Christensen IJ, et al. Plasma urokinase receptor levels in patients with colorectal cancer: relationship to prognosis. J Natl Cancer Inst. 1999;91:869–74.

    Article  CAS  PubMed  Google Scholar 

  183. Harbaum L, Pollheimer MJ, Bauernhofer T, et al. Clinicopathological significance of prolactin receptor expression in colorectal carcinoma and corresponding metastases. Mod Pathol. 2010;23:961–71.

    Article  CAS  PubMed  Google Scholar 

  184. Nakae S, Nakamura T, Shirono J, et al. Analysis of proliferative activity using antiproliferating cell nuclear antigen antibody in colorectal cancer. J Surg Oncol. 1995;60:149–53.

    Article  CAS  PubMed  Google Scholar 

  185. Lynch PM. When and how to perform genetic testing for inherited colorectal cancer syndromes. J Natl Compr Canc Netw. 2013;11:1577–83.

    Google Scholar 

  186. Theodoratou E, Montazeri Z, Hawken S, et al. Systematic meta-analyses and field synopsis of genetic association studies in colorectal cancer. J Natl Cancer Inst. 2012;104:1433–57.

    Article  CAS  PubMed  Google Scholar 

  187. Zhang B, Jia WH, Matsuda K, et al. Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk. Nat Genet. 2014;46:533–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  188. Kinnersley B, Migliorini G, Broderick P, et al. The TERT variant rs2736100 is associated with colorectal cancer risk. Br J Cancer. 2012;107:1001–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  189. Jia WH, Zhang B, Matsuo K, et al. Genome-wide association analyses in East Asians identify new susceptibility loci for colorectal cancer. Nat Genet. 2013;45:191–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  190. Cheng I, Kocarnik JM, Dumitrescu L, et al. Pleiotropic effects of genetic risk variants for other cancers on colorectal cancer risk: PAGE, GECCO and CCFR consortia. Gut. 2014;63:800–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  191. Tomlinson I, Webb E, Carvajal-Carmona L, et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet. 2007;39:984–8.

    Article  CAS  PubMed  Google Scholar 

  192. Schmit SL, Schumacher FR, Edlund CK, et al. A novel colorectal cancer risk locus at 4q32.2 identified from an international genome-wide association study. Carcinogenesis. 2014;35:2512–9.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Qin Q, Liu L, Zhong R, et al. The genetic variant on chromosome 10p14 is associated with risk of colorectal cancer: results from a case–control study and a meta-analysis. PLoS ONE. 2013;8:e64310.

    Article  PubMed Central  PubMed  Google Scholar 

  194. Peters U, Jiao S, Schumacher FR, et al. Identification of genetic susceptibility loci for colorectal tumors in a genome-wide meta-analysis. Gastroenterology. 2013;144:799–807.e724.

    Google Scholar 

  195. Kocarnik JD, Hutter CM, Slattery ML, et al. Characterization of 9p24 risk locus and colorectal adenoma and cancer: gene-environment interaction and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2010;19:3131–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Houlston RS, Cheadle J, Dobbins SE, et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet. 2010;42:973–7.

    Article  CAS  PubMed  Google Scholar 

  197. Ma Y, Zhang P, Yang J, Liu Z, Yang Z, Qin H. Candidate microRNA biomarkers in human colorectal cancer: systematic review profiling studies and experimental validation. Int J Cancer. 2012;130:2077–87.

    Article  CAS  PubMed  Google Scholar 

  198. Yang X, Zeng Z, Hou Y, et al. MicroRNA-92a as a potential biomarker in diagnosis of colorectal cancer: a systematic review and meta-analysis. PLoS ONE. 2014;9:e88745.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  199. Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease. Cell. 2008;133:217–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Li HG, Zhao LH, Bao XB, Sun PC, Zhai BP. Meta-analysis of the differentially expressed colorectal cancer-related microRNA expression profiles. Eur Rev Med Pharmacol Sci. 2014;18:2048–57.

    PubMed  Google Scholar 

  201. Pu XX, Huang GL, Guo HQ, et al. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol. 2010;25:1674–80.

    Article  CAS  PubMed  Google Scholar 

  202. Ng EK, Chong WW, Jin H, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58:1375–81.

    Article  CAS  PubMed  Google Scholar 

  203. Xi Y, Formentini A, Chien M, et al. Prognostic values of microRNAs in colorectal cancer. Biomark Insights. 2006;2:113–21.

    PubMed  Google Scholar 

  204. Reid JF, Sokolova V, Zoni E, et al. miRNA profiling in colorectal cancer highlights miR-1 involvement in MET-dependent proliferation. Mol Cancer Res. 2012;10:504–15.

    Article  CAS  PubMed  Google Scholar 

  205. Li XM, Wang AM, Zhang J, Yi H. Down-regulation of miR-126 expression in colorectal cancer and its clinical significance. Med Oncol. 2011;28:1054–7.

    Article  PubMed  CAS  Google Scholar 

  206. Wang Q, Huang Z, Ni S, et al. Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer. PLoS ONE. 2012;7:e44398.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  207. Xu X, Yang X, Ru G, et al. miR-146a gene polymorphism rs2910164 and the risk of digestive tumors: a meta-analysis of 21 case–control studies. Oncol Rep. 2014;31:472–9.

    CAS  PubMed  Google Scholar 

  208. Li L, Sheng Y, Lv L, Gao J. The association between two microRNA variants (miR-499, miR-149) and gastrointestinal cancer risk: a meta-analysis. PLoS ONE. 2013;8:e81967.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  209. Wang Z, Sun X, Wang Y, Liu X, Xuan Y, Hu S. Association between miR-27a genetic variants and susceptibility to colorectal cancer. Diagn Pathol. 2014;9:146.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  210. Wang FJ, Ding Y, Mao YY, et al. Associations between hsa-miR-603 polymorphism, lifestyle-related factors and colorectal cancer risk. Cancer Biomark. 2014;14:225–31.

    PubMed  Google Scholar 

  211. Shi KQ, Lin Z, Li DW, et al. Meta-analysis of the association between a polymorphism in microRNA-196a2 and susceptibility to colorectal cancer. Onkologie. 2013;36:560–5.

    Article  CAS  PubMed  Google Scholar 

  212. Gao LB, Li LJ, Pan XM, et al. A genetic variant in the promoter region of miR-34b/c is associated with a reduced risk of colorectal cancer. Biol Chem. 2013;394:415–20.

    Article  CAS  PubMed  Google Scholar 

  213. Xia X, Yang B, Zhai X, et al. Prognostic role of microRNA-21 in colorectal cancer: a meta-analysis. PLoS ONE. 2013;8:e80426.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  214. Ueda R, Kohanbash G, Sasaki K, et al. Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci USA. 2009;106:10746–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  215. Xu XM, Qian JC, Deng ZL, et al. Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical parameters of colorectal cancer. Oncol Lett. 2012;4:339–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  216. Wang CJ, Zhou ZG, Wang L, et al. Clinicopathological significance of microRNA-31,-143 and-145 expression in colorectal cancer. Dis Markers. 2009;26:27–34.

    Article  PubMed Central  PubMed  Google Scholar 

  217. Nishida N, Yokobori T, Mimori K, et al. MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int J Oncol. 2011;38:1437–43.

    Article  CAS  PubMed  Google Scholar 

  218. Cheng H, Zhang L, Cogdell DE, et al. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS ONE. 2011;6:e17745.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  219. Akcakaya P, Ekelund S, Kolosenko I, et al. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol. 2011;39:311–8.

    PubMed  Google Scholar 

  220. Karaayvaz M, Pal T, Song B, et al. Prognostic significance of miR-215 in colon cancer. Clin Colorectal Cancer. 2011;10:340–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  221. Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010;12:247–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  222. Song B, Wang Y, Xi Y, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. 2009;28:4065–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  223. Nishida N, Yamashita S, Mimori K, et al. MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. Ann Surg Oncol. 2012;19:3065–71.

    Article  PubMed  Google Scholar 

  224. Chen HY, Lin YM, Chung HC, et al. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res. 2012;72:3631–41.

    Article  CAS  PubMed  Google Scholar 

  225. Zhou T, Zhang G, Liu Z, Xia S, Tian H. Overexpression of miR-92a correlates with tumor metastasis and poor prognosis in patients with colorectal cancer. Int J Colorectal Dis. 2013;28:19–24.

    Article  CAS  PubMed  Google Scholar 

  226. Nishimura J, Handa R, Yamamoto H, et al. microRNA-181a is associated with poor prognosis of colorectal cancer. Oncol Rep. 2012;28:2221–6.

    CAS  PubMed  Google Scholar 

  227. Pichler M, Winter E, Ress AL, et al. miR-181a is associated with poor clinical outcome in patients with colorectal cancer treated with EGFR inhibitor. J Clin Pathol. 2014;67:198–203.

    Article  CAS  PubMed  Google Scholar 

  228. Li J, Du L, Yang Y, et al. MiR-429 is an independent prognostic factor in colorectal cancer and exerts its anti-apoptotic function by targeting SOX2. Cancer Lett. 2013;329:84–90.

    Article  CAS  PubMed  Google Scholar 

  229. Ma Y, Zhang P, Wang F, et al. Elevated oncofoetal miR-17-5p expression regulates colorectal cancer progression by repressing its target gene P130. Nat Commun. 2012;3:1291.

    Article  PubMed  CAS  Google Scholar 

  230. Wu CW, Dong YJ, Liang QY, et al. MicroRNA-18a attenuates DNA damage repair through suppressing the expression of ataxia telangiectasia mutated in colorectal cancer. PLoS ONE. 2013;8:e57036.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  231. Takahashi Y, Iwaya T, Sawada G, et al. Up-regulation of NEK2 by microRNA-128 methylation is associated with poor prognosis in colorectal cancer. Ann Surg Oncol. 2014;21:205–12.

    Article  PubMed  Google Scholar 

  232. Qin S, Zhu Y, Ai F, et al. MicroRNA-191 correlates with poor prognosis of colorectal carcinoma and plays multiple roles by targeting tissue inhibitor of metalloprotease 3. Neoplasma. 2014;61:27–34.

    Article  CAS  PubMed  Google Scholar 

  233. Colangelo T, Fucci A, Votino C, et al. MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer. Neoplasia. 2013;15:1086–99.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  234. Chen Q, Xia HW, Ge XJ, Zhang YC, Tang QL, Bi F. Serum miR-19a predicts resistance to FOLFOX chemotherapy in advanced colorectal cancer cases. Asian Pac J Cancer Prev. 2013;14:7421–6.

    Article  PubMed  Google Scholar 

  235. Sun HB, Chen X, Ji H, et al. miR494 is an independent prognostic factor and promotes cell migration and invasion in colorectal cancer by directly targeting PTEN. Int J Oncol. 2014;45:2486–94.

    CAS  PubMed  Google Scholar 

  236. Kuo TY, Hsi E, Yang IP, Tsai PC, Wang JY, Juo SH. Computational analysis of mRNA expression profiles identifies microRNA-29a/c as predictor of colorectal cancer early recurrence. PLoS ONE. 2012;7:e31587.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  237. Mo ZH, Wu XD, Li S, Fei BY, Zhang B. Expression and clinical significance of microRNA-376a in colorectal cancer. Asian Pac J Cancer Prev. 2014;15:9523–7.

    Article  PubMed  Google Scholar 

  238. Wang X, Wang J, Ma H, Zhang J, Zhou X. Downregulation of miR-195 correlates with lymph node metastasis and poor prognosis in colorectal cancer. Med Oncol. 2012;29:919–27.

    Article  CAS  PubMed  Google Scholar 

  239. Ma Y, Zhang P, Wang F, et al. miR-150 as a potential biomarker associated with prognosis and therapeutic outcome in colorectal cancer. Gut. 2012;61:1447–53.

    Article  PubMed  Google Scholar 

  240. Zhai H, Ju J. Implications of microRNAs in colorectal cancer development, diagnosis, prognosis, and therapeutics. Front Genet. 2011;2:78.

    Article  PubMed Central  Google Scholar 

  241. Diaz R, Silva J, Garcia JM, et al. Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer. 2008;47:794–802.

    Article  CAS  PubMed  Google Scholar 

  242. Zhang Y, He X, Liu Y, et al. microRNA-320a inhibits tumor invasion by targeting neuropilin 1 and is associated with liver metastasis in colorectal cancer. Oncol Rep. 2012;27:685–94.

    CAS  PubMed  Google Scholar 

  243. Pichler M, Winter E, Stotz M, et al. Down-regulation of KRAS-interacting miRNA-143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer. Br J Cancer. 2012;106:1826–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  244. Zhang J, Lu Y, Yue X, et al. MiR-124 suppresses growth of human colorectal cancer by inhibiting STAT3. PLoS ONE. 2013;8:e70300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  245. Sun Y, Zhao X, Zhou Y, Hu Y. miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncol Rep. 2012;28:1346–52.

    CAS  PubMed  Google Scholar 

  246. Iwaya T, Yokobori T, Nishida N, et al. Downregulation of miR-144 is associated with colorectal cancer progression via activation of mTOR signaling pathway. Carcinogenesis. 2012;33:2391–7.

    Article  CAS  PubMed  Google Scholar 

  247. Takahashi M, Cuatrecasas M, Balaguer F, et al. The clinical significance of MiR-148a as a predictive biomarker in patients with advanced colorectal cancer. PLoS ONE. 2012;7:e46684.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  248. Lou X, Qi X, Zhang Y, Long H, Yang J. Decreased expression of microRNA-625 is associated with tumor metastasis and poor prognosis in patients with colorectal cancer. J Surg Oncol. 2013;108:230–5.

    Article  CAS  PubMed  Google Scholar 

  249. Li H, Dai S, Zhen T, et al. Clinical and biological significance of miR-378a-3p and miR-378a-5p in colorectal cancer. Eur J Cancer. 2014;50:1207–21.

    Article  CAS  PubMed  Google Scholar 

  250. Chen DL, Wang ZQ, Zeng ZL, et al. Identification of microRNA-214 as a negative regulator of colorectal cancer liver metastasis by way of regulation of fibroblast growth factor receptor 1 expression. Hepatology. 2014;60:598–609.

    Article  CAS  PubMed  Google Scholar 

  251. Song M, Yin Y, Zhang J, et al. MiR-139-5p inhibits migration and invasion of colorectal cancer by downregulating AMFR and NOTCH1. Protein Cell. 2014;5:851–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  252. Zhang C, Liu J, Wang X, et al. MicroRNA-339-5p inhibits colorectal tumorigenesis through regulation of the MDM2/p53 signaling. Oncotarget. 2014;5:9106–17.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Disclosures

No financial disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Cusack Jr. MD.

Additional information

Acknowledgement: This educational review series, “Genomic Markers in the Multidisciplinary Treatment of Cancer” is supported by an independent educational grant from Genomic Health, Inc. The Society of Surgical Oncology offers CME/MOC for this educational review series. Visit moc.surgonc.org for additional information.

Annals of Surgical Oncology educational reviews represent the journal’s commitment to the peer review and publication of high quality research necessary to define the safety, toxicity, or effectiveness of potential therapeutic agents compared with conventional alternatives.

This Educational Review Series may include information regarding the use of medications that may be outside the approved labeling for these products. Physicians should consult the current prescribing information for these products. Authors of Annals of Surgical Oncology educational reviews are provided at the time of article solicitation with this statement regarding off-label pharmaceutical information and research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erstad, D.J., Tumusiime, G. & Cusack, J.C. Prognostic and Predictive Biomarkers in Colorectal Cancer: Implications for the Clinical Surgeon. Ann Surg Oncol 22, 3433–3450 (2015). https://doi.org/10.1245/s10434-015-4706-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-015-4706-x

Keywords

Navigation