Skip to main content

Advertisement

Log in

SMO Expression in Colorectal Cancer: Associations with Clinical, Pathological, and Molecular Features

  • Colorectal Cancer
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Smoothened, frizzled family receptor (SMO) is an important component of the hedgehog signaling pathway, which has been implicated in various human carcinomas. However, clinical, molecular, and prognostic associations of SMO expression in colorectal cancer remain unclear.

Methods

Using a database of 735 colon and rectal cancers in the Nurse’s Health Study and the Health Professionals Follow-up Study, we examined the relationship of tumor SMO expression (assessed by immunohistochemistry) to prognosis, and to clinical, pathological, and tumor molecular features, including mutations of KRAS, BRAF, and PIK3CA, microsatellite instability, CpG island methylator phenotype (CIMP), LINE-1 methylation, and expression of phosphorylated AKT and CTNNB1.

Results

SMO expression was detected in 370 tumors (50 %). In multivariate logistic regression analysis, SMO expression was independently inversely associated with phosphorylated AKT expression [odds ratio (OR) 0.48; 95 % confidence interval (CI) 0.34–0.67] and CTNNB1 nuclear localization (OR 0.48; 95 % CI 0.35–0.67). SMO expression was not significantly associated with colorectal cancer-specific or overall survival. However, in CIMP-high tumors, but not CIMP-low/0 tumors, SMO expression was significantly associated with better colorectal cancer-specific survival (log-rank P = 0.012; multivariate hazard ratio, 0.36; 95 % CI 0.13–0.95; P interaction = 0.035, for SMO and CIMP status).

Conclusions

Our data reveal novel potential associations between the hedgehog, the WNT/CTNNB1, and the PI3K (phosphatidylinositol-4,5-bisphosphonate 3-kinase)/AKT pathways, supporting pivotal roles of SMO and hedgehog signaling in pathway networking. SMO expression in colorectal cancer may interact with tumor CIMP status to affect patient prognosis, although confirmation by future studies is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ogino S, Fuchs CS, Giovannucci E. How many molecular subtypes? Implications of the unique tumor principle in personalized medicine. Expert Rev Mol Diagn. 2012;12:621–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Funkhouser WK Jr, Lubin IM, Monzon FA, et al. Relevance, pathogenesis, and testing algorithm for mismatch repair-defective colorectal carcinomas: a report of the association for molecular pathology. J Mol Diagn. 2012;14:91–103.

    Article  CAS  PubMed  Google Scholar 

  3. Colussi D, Brandi G, Bazzoli F, Ricciardiello L. Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int J Mol Sci. 2013;14:16365–85.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bardhan K, Liu K. Epigenetics and colorectal cancer pathogenesis. Cancers. 2013;5:676–713.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kim JH, Kang GH. Molecular and prognostic heterogeneity of microsatellite-unstable colorectal cancer. World J Gastroenterol. 2014;20:4230–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement for hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 2003;425:846–51.

    Article  CAS  PubMed  Google Scholar 

  7. Kolterud A, Grosse AS, Zacharias WJ, et al. Paracrine hedgehog signaling in stomach and intestine: new roles for hedgehog in gastrointestinal patterning. Gastroenterology. 2009;137:618–28.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Fendrich V, Oh E, Bang S, et al. Ectopic overexpression of sonic hedgehog (Shh) induces stromal expansion and metaplasia in the adult murine pancreas. Neoplasia. 2011;13:923–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Ng JM, Curran T. The hedgehog’s tale: developing strategies for targeting cancer. Nat Rev Cancer. 2011;11:493–501.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Teglund S, Toftgard R. Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta. 2010;1805:181–208.

    CAS  PubMed  Google Scholar 

  11. Michael LE, Westerman BA, Ermilov AN, et al. Bmi1 is required for hedgehog pathway-driven medulloblastoma expansion. Neoplasia. 2008;10:1343–9.

    PubMed Central  PubMed  Google Scholar 

  12. Zhang Y, Laterra J, Pomper MG. Hedgehog pathway inhibitor HhAntag691 is a potent inhibitor of ABCG2/BCRP and ABCB1/Pgp. Neoplasia. 2009;11:96–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Chatel G, Ganeff C, Boussif N, et al. Hedgehog signaling pathway is inactive in colorectal cancer cell lines. Int J Cancer. 2007;121:2622–7.

    Article  CAS  PubMed  Google Scholar 

  14. Oniscu A, James RM, Morris RG, Bader S, Malcomson RD, Harrison DJ. Expression of sonic hedgehog pathway genes is altered in colonic neoplasia. J Pathol. 2004;203:909–17.

    Article  CAS  PubMed  Google Scholar 

  15. Qualtrough D, Buda A, Gaffield W, Williams AC, Paraskeva C. Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment. Int J Cancer. 2004;110:831–7.

    Article  CAS  PubMed  Google Scholar 

  16. Alinger B, Kiesslich T, Datz C, et al. Hedgehog signaling is involved in differentiation of normal colonic tissue rather than in tumor proliferation. Virchows Arch. 2009;454:369–79.

    Article  CAS  PubMed  Google Scholar 

  17. Mazumdar T, DeVecchio J, Shi T, Jones J, Agyeman A, Houghton JA. Hedgehog signaling drives cellular survival in human colon carcinoma cells. Cancer Res. 2011;71:1092–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Varnat F, Duquet A, Malerba M, et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med. 2009;1:338–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Saqui-Salces M, Merchant JL. Hedgehog signaling and gastrointestinal cancer. Biochim Biophys Acta. 2010;1803:786–95.

    Article  CAS  PubMed  Google Scholar 

  20. Akiyoshi T, Nakamura M, Koga K, et al. Gli1, downregulated in colorectal cancers, inhibits proliferation of colon cancer cells involving Wnt signalling activation. Gut. 2006;55:991–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ding YL, Wang QS, Zhao WM, Xiang L. Expression of smoothened protein in colon cancer and its prognostic value for postoperative liver metastasis. Asian Pac J Cancer Prev. 2012;13:4001–5.

    Article  PubMed  Google Scholar 

  22. Arimura S, Matsunaga A, Kitamura T, Aoki K, Aoki M, Taketo MM. Reduced level of smoothened suppresses intestinal tumorigenesis by down-regulation of Wnt signaling. Gastroenterology. 2009;137:629–38.

    Article  CAS  PubMed  Google Scholar 

  23. Morris JPT, Wang SC, Hebrok M. KRAS, hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer. 2010;10:683–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Riobo NA, Lu K, Ai X, Haines GM, Emerson CP Jr. Phosphoinositide 3-kinase and Akt are essential for sonic hedgehog signaling. Proc Natl Acad Sci USA. 2006;103:4505–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Madhala-Levy D, Williams VC, Hughes SM, Reshef R, Halevy O. Cooperation between Shh and IGF-I in promoting myogenic proliferation and differentiation via the MAPK/ERK and PI3K/Akt pathways requires Smo activity. J Cell Physiol. 2012;227:1455–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Yoo YA, Kang MH, Lee HJ, et al. Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer Res. 2011;71:7061–70.

    Article  CAS  PubMed  Google Scholar 

  27. Ogino S, Stampfer M. Lifestyle factors and microsatellite instability in colorectal cancer: the evolving field of molecular pathological epidemiology. J Natl Cancer Inst. 2010;102:365–7.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ogino S, Chan AT, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut. 2011;60:397–411.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Liao X, Lochhead P, Nishihara R, et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med. 2012;367:1596–606.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yamauchi M, Morikawa T, Kuchiba A, et al. Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut. 2012;61:847–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Chan AT, Ogino S, Fuchs CS. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med. 2007;356:2131–42.

    Article  CAS  PubMed  Google Scholar 

  32. Kawasaki T, Nosho K, Ohnishi M, et al. IGFBP3 promoter methylation in colorectal cancer: relationship with microsatellite instability, CpG island methylator phenotype, and p53. Neoplasia. 2007;9:1091–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Baba Y, Nosho K, Shima K, et al. Phosphorylated AKT expression is associated with PIK3CA mutation, low stage, and favorable outcome in 717 colorectal cancers. Cancer. 2011;117:1399–408.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Morikawa T, Kuchiba A, Yamauchi M, et al. Association of CTNNB1 (beta-catenin) alterations, body mass index, and physical activity with survival in patients with colorectal cancer. JAMA. 2011;305:1685–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Dierks C, Grbic J, Zirlik K, et al. Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med. 2007;13:944–51.

    Article  CAS  PubMed  Google Scholar 

  36. Riobo NA, Saucy B, Dilizio C, Manning DR. Activation of heterotrimeric G proteins by smoothened. Proc Natl Acad Sci USA. 2006;103:12607–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Gerber AN, Wilson CW, Li YJ, Chuang PT. The hedgehog regulated oncogenes Gli1 and Gli2 block myoblast differentiation by inhibiting MyoD-mediated transcriptional activation. Oncogene. 2007;26:1122–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Liao X, Siu MK, Au CW, et al. Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis. 2009;30:131–40.

    Article  CAS  PubMed  Google Scholar 

  39. Imamura Y, Morikawa T, Liao X, et al. Specific mutations in KRAS codons 12 and 13, and patient prognosis in 1075 BRAF wild-type colorectal cancers. Clin Cancer Res. 2012;18:4753–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ogino S, Kawasaki T, Kirkner GJ, Loda M, Fuchs CS. CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations. J Mol Diagn. 2006;8:582–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Ogino S, Nosho K, Kirkner GJ, et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2009;58:90–6.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Liao X, Morikawa T, Lochhead P, et al. Prognostic role of PIK3CA mutation in colorectal cancer: cohort study and literature review. Clin Cancer Res. 2012;18:2257–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Hinoue T, Weisenberger DJ, Lange CP, et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 2012;22:271–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ogino S, Kawasaki T, Brahmandam M, et al. Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn. 2006;8:209–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Ogino S, Kawasaki T, Nosho K, et al. LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer. 2008;122:2767–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ogino S, Nosho K, Kirkner GJ, et al. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst. 2008;100:1734–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Ogino S, Goel A. Molecular classification and correlates in colorectal cancer. J Mol Diagn. 2008;10:13–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  Google Scholar 

  49. Wang D, Xia D, Dubois RN. The crosstalk of PTGS2 and EGF signaling pathways in colorectal cancer. Cancers. 2011;3:3894–908.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Bertrand FE, Angus CW, Partis WJ, Sigounas G. Developmental pathways in colon cancer: crosstalk between WNT, BMP, hedgehog and Notch. Cell Cycle. 2012;11:4344–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology. 2010;138:2088–100.

    Article  CAS  PubMed  Google Scholar 

  52. Rosty C, Hewett DG, Brown IS, Leggett BA, Whitehall VL. Serrated polyps of the large intestine: current understanding of diagnosis, pathogenesis, and clinical management. J Gastroenterol. 2013;48:287–302.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Domingo E, Ramamoorthy R, Oukrif D, et al. Use of multivariate analysis to suggest a new molecular classification of colorectal cancer. J Pathol. 2013;229:441–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Hayashi Y, Molina JR, Hamilton SR, Georgescu MM. NHERF1/EBP50 is a new marker in colorectal cancer. Neoplasia. 2010;12:1013–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Soerjomataram I, Thong MS, Korfage IJ, et al. Excess weight among colorectal cancer survivors: target for intervention. J Gastroenterol. 2012;47:999–1005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Wu KL, Huang EY, Jhu EW, et al. Overexpression of galectin-3 enhances migration of colon cancer cells related to activation of the K-Ras-Raf-Erk1/2 pathway. J Gastroenterol. 2013;48:350–9.

    Article  CAS  PubMed  Google Scholar 

  57. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–62.

    Article  CAS  PubMed  Google Scholar 

  58. van den Brink GR, Bleuming SA, Hardwick JC, et al. Indian hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet. 2004;36:277–82.

    Article  PubMed  Google Scholar 

  59. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999;96:8681–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Beggs AD, Jones A, El-Bahrawy M, Abulafi M, Hodgson SV, Tomlinson IP. Whole-genome methylation analysis of benign and malignant colorectal tumours. J Pathol. 2013;229:697–704.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Yang Q, Dong Y, Wu W, et al. Detection and differential diagnosis of colon cancer by a cumulative analysis of promoter methylation. Nat Commun. 2012;3:1206.

    Article  PubMed  Google Scholar 

  62. Dahlin AM, Palmqvist R, Henriksson ML, et al. The role of the CpG island methylator phenotype in colorectal cancer prognosis depends on microsatellite instability screening status. Clin Cancer Res. 2010;16:1845–55.

    Article  CAS  PubMed  Google Scholar 

  63. Zlobec I, Bihl M, Foerster A, Rufle A, Lugli A. Comprehensive analysis of CpG island methylator phenotype (CIMP)-high, -low, and -negative colorectal cancers based on protein marker expression and molecular features. J Pathol. 2011;225:336–43.

    Article  CAS  PubMed  Google Scholar 

  64. Lao VV, Grady WM. Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol. 2011;8:686–700.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Hughes LA, Bakker CA, Smits KM, et al. The CpG island methylator phenotype in colorectal cancer: progress and problems. Biochim Biophys Acta. 2012;1825:77–85.

    CAS  PubMed  Google Scholar 

  66. Price TJ, Hardingham JE, Lee CK, et al. Impact of KRAS and BRAF gene mutation status on outcomes from the phase III AGITG MAX trial of capecitabine alone or in combination with bevacizumab and mitomycin in advanced colorectal cancer. J Clin Oncol. 2011;29:2675–82.

    Article  CAS  PubMed  Google Scholar 

  67. Ogino S, Shima K, Meyerhardt JA, et al. Predictive and prognostic roles of BRAF mutation in stage III colon cancer: results from intergroup trial CALGB 89803. Clin Cancer Res. 2012;18:890–900.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Samowitz WS, Sweeney C, Herrick J, et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005;65:6063–9.

    Article  CAS  PubMed  Google Scholar 

  69. Lochhead P, Kuchiba A, Imamura Y, et al. Microsatellite instability and BRAF mutation testing in colorectal cancer prognostication. J Natl Cancer Inst. 2013;105:1151–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

Supported in part by USA National Institute of Health (NIH) [P01 CA87969 (to S. E. Hankinson), UM1 CA167552 and P01 CA55075 (to W. C. Willett), R01 CA137178 (to A.T.C.), P50 CA127003 (to C.S.F.), and R01 CA151993 (to S.O.)]; the Bennett Family Fund for Targeted Therapies Research; and the Entertainment Industry Foundation through National Colorectal Cancer Research Alliance. PL was supported by a Harvard University Frank Knox Memorial Fellowship and a fellowship from the Chief Scientist Office, Scotland. A.T.C is a Damon Runyon Clinical Investigator. We would like to thank the participants and staff of the Nurses’ Health Study and the Health Professionals Follow-Up Study for their valuable contributions, as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR PA, RI, SC, TN, TX, VA, WA, and WY. In addition, this study was approved by the Connecticut Department of Public Health (DPH) Human Investigations Committee. Certain data used in this publication were obtained from the DPH. The authors assume full responsibility for analyses and interpretation of these data. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH. Funding agencies did not have any role in the design of the study; the collection, analysis, or interpretation of the data; the decision to submit the article for publication; or the writing of the article.

Disclosure

No potential conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuji Ogino MD, PhD, MS or Zhi Rong Qian MD, PhD.

Additional information

Tingting Li, Xiaoyun Liao, Paul Lochhead, Teppei Morikawa, Shuji Ogino, and Zhi Rong Qian contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Liao, X., Lochhead, P. et al. SMO Expression in Colorectal Cancer: Associations with Clinical, Pathological, and Molecular Features. Ann Surg Oncol 21, 4164–4173 (2014). https://doi.org/10.1245/s10434-014-3888-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-3888-y

Keywords

Navigation