Skip to main content

Advertisement

Log in

Laparoscopic Narrow-Band Imaging for the Diagnosis of Peritoneal Metastasis in Gastric Cancer

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Staging laparoscopy (SL) is often used to diagnose peritoneal metastasis in patients with advanced gastric cancer, but accurate detection of metastasis can be difficult. We evaluated the usefulness of laparoscopic narrow-band imaging (NBI) versus conventional laparoscopic white-light imaging (WLI) for the diagnosis of peritoneal metastasis.

Methods

We excised 37 white nodules from the parietal peritoneum of 26 patients with gastric cancer and suspected peritoneal metastasis. The WLI and NBI findings were compared with the pathological findings. All the peritoneal lesions examined were observed as white nodules on WLI. Intranodular vessels were evaluated by WLI and NBI for (1) vessel dilatation, (2) vessel tortuousness, (3) vessel heterogeneity, and (4) brown spots.

Results

Each individual abnormal finding had a diagnostic accuracy of less than 79 % with or without NBI. Detection of any one abnormal finding had a sensitivity, specificity, and accuracy of 47.8, 85.7, and 62.2 %, respectively, on WLI and 91.3, 71.4, and 83.8 %, respectively, on NBI, for detection of peritoneal metastasis. Detection of any one abnormal finding on NBI plus clear demarcation of the nodule on WLI had a sensitivity of 91.3 %, specificity of 92.9 %, and accuracy of 91.9 % for detection of peritoneal metastasis. Pathological examination showed that a brown spot detected on NBI correlated with dilated vessels around cancer cells. Vascular endothelial growth factor was expressed in 76.2 % of peritoneal metastases.

Conclusions

NBI was more sensitive for the detection of dilated vessels than WLI. NBI could be a useful tool for the diagnosis of peritoneal metastasis during SL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Broll R, Weschta M, Windhoevel U, et al. Prognostic significance of free gastrointestinal tumor cells in peritoneal lavage detected by immunocytochemistry and polymerase chain reaction. Langenbecks Arch Surg. 2001;386:285–92.

    Article  PubMed  CAS  Google Scholar 

  2. Sugarbaker PH, Yonemura Y. Clinical pathway for the management of resectable gastric cancer with peritoneal seeding: best palliation with a ray of hope for cure. Oncology. 2000;58:96–107.

    Article  PubMed  CAS  Google Scholar 

  3. Lee CC, Lo SS, Wu CW, et al. Peritoneal recurrence of gastric adenocarcinoma after curative resection. Hepatogastroenterology. 2003;50:1720–2.

    PubMed  Google Scholar 

  4. Ina K, Kataoka T, Takeuchi Y, et al. Pathological complete response induced by the combination therapy of S-1 and 24-h infusion of cisplatin in two cases initially diagnosed as inoperable advanced gastric cancer. Oncol Rep. 2008;20:259–64.

    PubMed  CAS  Google Scholar 

  5. Ishizone S, Maruta F, Saito H, et al. Efficacy of S-1 for patients with peritoneal metastasis of gastric cancer. Chemotherapy. 2006;52:301–7.

    Article  PubMed  CAS  Google Scholar 

  6. Okabe H, Ueda S, Obama K, Hosogi H, Sakai Y. Induction chemotherapy with S-1 plus cisplatin followed by surgery for treatment of gastric cancer with peritoneal dissemination. Ann Surg Oncol. 2009;16:3227–36.

    Article  PubMed  Google Scholar 

  7. Tamura S, Miki H, Okada K, et al. Pilot study of intraperitoneal administration of paclitaxel and oral S-1 for patients with peritoneal metastasis due to advanced gastric cancer. Int J Clin Oncol. 2008;13:536–40.

    Article  PubMed  CAS  Google Scholar 

  8. Soma D, Kitayama J, Konno T, et al. Intraperitoneal administration of paclitaxel solubilized with poly(2-methacryloxyethyl phosphorylcholine-co n-butyl methacrylate) for peritoneal dissemination of gastric cancer. Cancer Sci. 2009;100:1979–85.

    Article  PubMed  CAS  Google Scholar 

  9. Ishigami H, Kitayama J, Otani K, et al. Phase I pharmacokinetic study of weekly intravenous and intraperitoneal paclitaxel combined with S-1 for advanced gastric cancer. Oncology. 2009;76:311–4.

    Article  PubMed  CAS  Google Scholar 

  10. Ishigami H, Kitayama J, Kaisaki S, et al. Phase I study of biweekly intravenous paclitaxel plus intraperitoneal cisplatin and paclitaxel for gastric cancer with peritoneal metastasis. Oncology. 2010;79:269–72.

    Article  PubMed  CAS  Google Scholar 

  11. Ishigami H, Kitayama J, Kaisaki S, et al. Phase II study of weekly intravenous and intraperitoneal paclitaxel combined with S-1 for advanced gastric cancer with peritoneal metastasis. Ann Oncol. 2010;21:67–70.

    Article  PubMed  CAS  Google Scholar 

  12. Zhu ZG, Tang R, Yan M, et al. Efficacy and safety of intraoperative peritoneal hyperthermic chemotherapy for advanced gastric cancer patients with serosal invasion: a long-term follow-up study. Dig Surg. 2006;23:93–102.

    Article  PubMed  Google Scholar 

  13. Glockzin G, Schlitt HJ, Piso P. Peritoneal carcinomatosis: patients selection, perioperative complications and quality of life related to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. World J Surg Oncol. 2009;7:5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Smyth EC, Shah MA. Role of (1)(8)F 2-fluoro-2-deoxyglucose positron emission tomography in upper gastrointestinal malignancies. World J Gastroenterol. 2011;17:5059–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Contreras CM, Stanelle EJ, Mansour J, et al. Staging laparoscopy enhances the detection of occult metastases in patients with pancreatic adenocarcinoma. J Surg Oncol. 2009;100:663–9.

    Article  PubMed  Google Scholar 

  16. Chang L, Stefanidis D, Richardson WS, Earle DB, Fanelli RD. The role of staging laparoscopy for intraabdominal cancers: an evidence-based review. Surg Endosc. 2009;23:231–41.

    Article  PubMed  CAS  Google Scholar 

  17. Shim JH, Yoo HM, Lee HH, et al. Use of laparoscopy as an alternative to computed tomography (CT) and positron emission tomography (PET) scans for the detection of recurrence in patients with gastric cancer: a pilot study. Surg Endosc. 2011;25:3338–44.

    Article  PubMed  Google Scholar 

  18. Jerby BL, Milsom JW. Role of laparoscopy in the staging of gastrointestinal cancer. Oncology (Williston Park). 1998;12:1353–60.

    PubMed  CAS  Google Scholar 

  19. Lehnert T, Rudek B, Kienle P, Buhl K, Herfarth C. Impact of diagnostic laparoscopy on the management of gastric cancer: prospective study of 120 consecutive patients with primary gastric adenocarcinoma. Br J Surg. 2002;89:471–5.

    Article  PubMed  CAS  Google Scholar 

  20. Gono K, Obi T, Yamaguchi M, et al. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt. 2004;9:568–77.

    Article  PubMed  Google Scholar 

  21. Muto M, Horimatsu T, Ezoe Y, et al. Narrow-band imaging of the gastrointestinal tract. J Gastroenterol. 2009;44:13–25.

    Article  PubMed  Google Scholar 

  22. Kaise M, Kato M, Urashima M, et al. Magnifying endoscopy combined with narrow-band imaging for differential diagnosis of superficial depressed gastric lesions. Endoscopy. 2009;41:310–5.

    Article  PubMed  CAS  Google Scholar 

  23. Goda K, Tajiri H, Ikegami M, Urashima M, Nakayoshi T, Kaise M. Usefulness of magnifying endoscopy with narrow band imaging for the detection of specialized intestinal metaplasia in columnar-lined esophagus and Barrett’s adenocarcinoma. Gastrointest Endosc. 2007;65:36–46.

    Article  PubMed  Google Scholar 

  24. Nakayoshi T, Tajiri H, Matsuda K, Kaise M, Ikegami M, Sasaki H. Magnifying endoscopy combined with narrow band imaging system for early gastric cancer: correlation of vascular pattern with histopathology (including video). Endoscopy. 2004;36:1080–4.

    Article  PubMed  CAS  Google Scholar 

  25. Yoshida T, Inoue H, Usui S, Satodate H, Fukami N, Kudo SE. Narrow-band imaging system with magnifying endoscopy for superficial esophageal lesions. Gastrointest Endosc. 2004;59:288–95.

    Article  PubMed  Google Scholar 

  26. Hirata M, Tanaka S, Oka S, et al. Magnifying endoscopy with narrow band imaging for diagnosis of colorectal tumors. Gastrointest Endosc. 2007;65:988–95.

    Article  PubMed  Google Scholar 

  27. Kondo K, Kaneko T, Baba M, Konno H. VEGF-C and VEGF-A synergistically enhance lymph node metastasis of gastric cancer. Biol Pharm Bull. 2007;30:633–7.

    Article  PubMed  CAS  Google Scholar 

  28. Kim SJ, Kim HH, Kim YH, et al. Peritoneal metastasis: detection with 16- or 64-detector row CT in patients undergoing surgery for gastric cancer. Radiology. 2009;253:407–15.

    Article  PubMed  Google Scholar 

  29. Kitayama J, Ishigami H, Yamaguchi H, Yamashita H, Emoto S, Kaisaki S. S-1 plus intravenous and intraperitoneal Paclitaxel for gastric cancer with peritoneal metastasis. Gastrointest Cancer Res. 2012;5:S10–3.

    PubMed  PubMed Central  Google Scholar 

  30. Nekarda H, Gess C, Stark M, et al. Immunocytochemically detected free peritoneal tumour cells (FPTC) are a strong prognostic factor in gastric carcinoma. Br J Cancer. 1999;79:611–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Kodera Y, Nakanishi H, Ito S, et al. Quantitative detection of disseminated free cancer cells in peritoneal washes with real-time reverse transcriptase-polymerase chain reaction: a sensitive predictor of outcome for patients with gastric carcinoma. Ann Surg. 2002;235:499–506.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sakakura C, Takemura M, Hagiwara A, et al. Overexpression of dopa decarboxylase in peritoneal dissemination of gastric cancer and its potential as a novel marker for the detection of peritoneal micrometastases with real-time RT-PCR. Br J Cancer. 2004;90:665–71.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Watanabe A, Taniguchi M, Tsujie H, Hosokawa M, Fujita M, Sasaki S. The value of narrow band imaging endoscope for early head and neck cancers. Otolaryngol Head Neck Surg. 2008;138:446–51.

    Article  PubMed  Google Scholar 

  34. Watanabe A, Taniguchi M, Tsujie H, Hosokawa M, Fujita M, Sasaki S. The value of narrow band imaging for early detection of laryngeal cancer. Eur Arch Otorhinolaryngol. 2009;266:1017–23.

    Article  PubMed  Google Scholar 

  35. Muto M, Nakane M, Katada C, et al. Squamous cell carcinoma in situ at oropharyngeal and hypopharyngeal mucosal sites. Cancer. 2004;101:1375–81.

    Article  PubMed  Google Scholar 

  36. Kumagai Y, Inoue H, Nagai K, Kawano T, Iwai T. Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma. Endoscopy. 2002;34:369–75.

    Article  PubMed  CAS  Google Scholar 

  37. Yao K, Oishi T, Matsui T, Yao T, Iwashita A. Novel magnified endoscopic findings of microvascular architecture in intramucosal gastric cancer. Gastrointest Endosc. 2002;56:279–84.

    Article  PubMed  Google Scholar 

  38. Chiu HM, Chang CY, Chen CC, et al. A prospective comparative study of narrow-band imaging, chromoendoscopy, and conventional colonoscopy in the diagnosis of colorectal neoplasia. Gut. 2007;56:373–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Su MY, Hsu CM, Ho YP, Chen PC, Lin CJ, Chiu CT. Comparative study of conventional colonoscopy, chromoendoscopy, and narrow-band imaging systems in differential diagnosis of neoplastic and nonneoplastic colonic polyps. Am J Gastroenterol. 2006;101:2711–6.

    Article  PubMed  Google Scholar 

  40. Machida H, Sano Y, Hamamoto Y, et al. Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study. Endoscopy. 2004;36:1094–8.

    Article  PubMed  CAS  Google Scholar 

  41. Fushida S, Oyama K, Kinoshita J, et al. VEGF is a target molecule for peritoneal metastasis and malignant ascites in gastric cancer: prognostic significance of VEGF in ascites and efficacy of anti-VEGF monoclonal antibody. Oncotargets Ther. 2013;6:1445–51.

    Article  CAS  Google Scholar 

  42. Yoshikawa T, Tsuburaya A, Miyagi Y, et al. Up-regulation of hypoxia-inducible factor-1 alpha and VEGF mRNAs in peritoneal dissemination of patients with gastric cancer. Anticancer Res. 2006;26:3849–53.

    PubMed  CAS  Google Scholar 

Download references

DISCLOSURES

Hirotoshi Kikuchi, Kinji Kamiya, Yoshihiro Hiramatsu, Shinichiro Miyazaki, Masayoshi Yamamoto, Manabu Ohta, Satoshi Baba, and Hiroyuki Konno have no conflicts of interest or funding to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotoshi Kikuchi MD, PhD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 kb)

Supplementary material 2 (PDF 1107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, H., Kamiya, K., Hiramatsu, Y. et al. Laparoscopic Narrow-Band Imaging for the Diagnosis of Peritoneal Metastasis in Gastric Cancer. Ann Surg Oncol 21, 3954–3962 (2014). https://doi.org/10.1245/s10434-014-3781-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-3781-8

Keywords

Navigation