Skip to main content

Advertisement

Log in

Utility of 111Indium-pentetreotide Scintigraphy in Patients with Neuroendocrine Tumors

  • Endocrine Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Neuroendocrine (NE) tumors pose a diagnostic challenge with the need to utilize a combination of biochemical analysis, standard cross-sectional imaging, and more recently, nuclear medicine scans such as 111indium–pentetreotide scintigraphy (somatostatin receptor scintigraphy, SRS; OctreoScan, Covidien Imaging Solutions, Hazelwood, MO). In this study we sought to evaluate the clinical utility of scintigraphy in the diagnosis and management of patients with NE tumors at a major university hospital.

Methods

A retrospective chart review was performed on all patients who underwent both 111indium–pentetreotide scintigraphy and computed tomography/magnetic resonance imaging (CT/MRI) at a single institution between February 2001 and July 2008. Charts were reviewed for patient demographics, symptoms of NE disease, and results of biochemical testing, imaging studies, histopathologic diagnosis, and medical and/or surgical management.

Results

One hundred forty-five patients received 111indium–pentetreotide scintigraphy (SRS) and concurrent cross-sectional imaging (CT/MRI) over the 7-year period studied. In the evaluation of primary disease, 60 % of tumors were localized by anatomic imaging, significantly greater than the 15 % detection rate achieved by SRS. In the evaluation of recurrent disease, 61 % of NE tumors were localized by cross-sectional imaging, significantly greater than the 31 % detection rate of SRS. Scintigraphy identified disease foci not seen on CT/MRI in just 8 of 74 of the cohort with evidence of disease and only altered the surgical management in 3 of 74 cases.

Conclusions

Cross-sectional CT/MRI imaging is sufficient for the localization of NE tumors. 111Indium–pentetreotide scintigraphy does not significantly alter the surgical management of patients with NE tumors, and we suggest that it be selectively reserved for patients with disease that is occult to cross-sectional imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooper W, Thourani V, Gal A, et al. The surgical spectrum of pulmonary neuroendocrine neoplasms. Chest. 2001;119:14–8.

    Article  PubMed  CAS  Google Scholar 

  2. Rindi G, Capella C, Solcia E. Introduction to a revised clinicopathological classification of neuroendocrine tumors of the gastroenteropancreatic tract. Q J Nucl Med. 2000;44:13–21.

    PubMed  CAS  Google Scholar 

  3. Heymann M, Joubert M, Nemeth J, et al. Prognostic and immunohistochemical validation of the capella classification of pancreatic neuroendocrine tumours: an analysis of 82 sporadic cases. Histopathology. 2000;36:421–32.

    Article  PubMed  CAS  Google Scholar 

  4. Norton J, Doppman J, Jensen R. Curative resection in Zollinger–Ellison syndrome. Results of a 10-year prospective study. Ann Surg. 1992;215:8–18.

    Article  PubMed  CAS  Google Scholar 

  5. Mignon M, Bonfils S. Diagnosis and treatment of Zollinger–Ellison syndrome. Baillieres Clin Gastroenterol. 1988;2:677–98.

    Article  PubMed  CAS  Google Scholar 

  6. Woodside K, Townsend CJ, Mark Evers B. Current management of gastrointestinal carcinoid tumors. J Gastrointest Surg. 2004;8:742–56.

    Article  PubMed  Google Scholar 

  7. Boudreaux J, Putty B, Frey D, et al. Surgical treatment of advanced-stage carcinoid tumors: lessons learned. Ann Surg. 2005;241:839–45.

    Article  PubMed  Google Scholar 

  8. Que F, Sarmiento J, Nagorney D. Hepatic surgery for metastatic gastrointestinal neuroendocrine tumors. Adv Exp Med Biol. 2006;574:43–56.

    Article  PubMed  Google Scholar 

  9. Maroun J, Kocha W, Kvols L, et al. Guidelines for the diagnosis and management of carcinoid tumours. Part 1: the gastrointestinal tract. A statement from a Canadian National Carcinoid Expert Group. Curr Oncol. 2006;13:67–76.

    PubMed  CAS  Google Scholar 

  10. Olsen JO, Pozderac RV, Hinkle G, et al. Somatostatin receptor imaging of neuroendocrine tumors with indium-111 pentetreotide (OctreoScan). Semin Nucl Med. 1995;25:251–61.

    Article  PubMed  CAS  Google Scholar 

  11. Chiti A, van Graafeiland BJ, Savelli G, et al. Imaging of neuroendocrine gastro-entero-pancreatic tumours using radiolabelled somatostatin analogues. Ital J Gastroenterol Hepatol. 1999;31(Suppl. 2):S190–4.

    PubMed  Google Scholar 

  12. Tamm E, Kim E, Ng C. Imaging of neuroendocrine tumors. Hematol Oncol Clin North Am. 2007;21:409–32, vii.

    Google Scholar 

  13. Lebtahi R, Cadiot G, Srada L, et al. Clinical impact of somatostatin receptor scintigraphy in the management of patients with neuroendocrine gastroenteropancreatic tumors. J Nucl Med. 1997;38:853–8.

    PubMed  CAS  Google Scholar 

  14. Torpy DJ, Chen N, Mullen JL, et al. Lack of tility of 111In-pentetreotide scintigraphy in localizing ectopic ACTH producing tumors: follow-up of 18 patients. J Clin Endocrinol Metab. 1999;84:1186–92.

    Article  PubMed  CAS  Google Scholar 

  15. Saga T, Shimatsu A, Koizumi K, et al. Morphological imaging in the localization of neuroendocrine gastroenteropancreatic tumors found by somatostatin receptor scintigraphy. Acta Radiol. 2005;46:227–32.

    Article  PubMed  CAS  Google Scholar 

  16. Krishbom PM, Kerani Ar, Onaitis MW, et al. Carcinoids of unknown origin: comparative analysis with foregut, midgut, and hindgut carcinoids. Surgery. 1998;124:1063–70.

    Article  Google Scholar 

  17. Savelli G, Lucignani G, Sergeni E, et al. Feasibility of somatostatin receptor scintigraphy in the detection of occult primary gastro-entero-pancreatic (GEP) neuroendocrine tumors. Nucl Med Commun. 2004;25:445–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Chen MD, FACS.

Additional information

Presented as a poster at the 2009 Annual Meeting of the Society of Surgical Oncology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaverdian, N., Pinchot, S.N., Zarebczan, B. et al. Utility of 111Indium-pentetreotide Scintigraphy in Patients with Neuroendocrine Tumors. Ann Surg Oncol 20, 640–645 (2013). https://doi.org/10.1245/s10434-012-2617-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-012-2617-7

Keywords

Navigation