Skip to main content

Advertisement

Log in

Glucose-Regulated Protein 78 Is a Novel Contributor to Acquisition of Resistance to Sorafenib in Hepatocellular Carcinoma

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Sorafenib is a newly established cancer drug found to be an effective systemic treatment for advanced hepatocellular carcinoma (HCC). However, little is known about any potential effectors that modify tumor cell sensitivity towards sorafenib. Here, we present the first evidence that glucose-regulated protein 78 (GRP78) is intimately associated with acquisition of resistance towards sorafenib.

Methods

The role of GRP78 in acquisition of resistance towards sorafenib was determined using HepJ5 (a GRP78-overexpressing subline) and HepG2 as its pair-matched control. RNA interference in cancer cells was applied to determine the influence of GRP78 expression on sensitivity to sorafenib treatment.

Results

We found that HepG2 cells exhibited higher sensitivity toward sorafenib, with 50% inhibition concentration (IC50) >20 μΜ for HepJ5 and 4.8 μM for HepG2. Specifically, when HepG2 cells received 20 μM sorafenib treatment for 24 h, over 80% of cells underwent apoptosis compared with only 32% of HepJ5 cells under similar experimental conditions. Similarly, GRP78 knockdown in HepJ5 cells by small interfering RNA (siRNA) technique enhanced the efficacy of sorafenib-mediated cell death. This was reflected by a shift of IC50 values from >20 μM to 4.8 μM.

Conclusions

GRP78 is a positive modifier for sorafenib resistance acquisition in HCC and represents a prime target for overcoming sorafenib resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  2. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet. 2002;31:339–46.

    Article  CAS  PubMed  Google Scholar 

  3. Thomas MB, Zhu AX. Hepatocellular carcinoma: the need for progress. J Clin Oncol. 2005;23:2892–9.

    Article  PubMed  Google Scholar 

  4. Zhu AX. Systemic therapy of advanced hepatocellular carcinoma: how hopeful should we be? Oncologist. 2006;11:790–800.

    Article  CAS  PubMed  Google Scholar 

  5. Wu S, Chen JJ, Kudelka A, Lu J, Zhu X. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 2008;9:117–23.

    Article  CAS  PubMed  Google Scholar 

  6. Bracarda S, Caserta C, Sordini L, Rossi M, Hamzay A, Crino L. Protein kinase inhibitors in the treatment of renal cell carcinoma: sorafenib. Ann Oncol. 2007;18(Suppl 6):vi22–5

    Google Scholar 

  7. Llovet JM. Clinical and molecular classification of hepatocellular carcinoma. Liver Transpl. 2007;13:S13–6.

    Article  PubMed  Google Scholar 

  8. Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med. 2006;6:45–54.

    Article  CAS  PubMed  Google Scholar 

  9. Lee AS. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 2007;67:3496–9.

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez PM, Tabbara SO, Jacobs LK, Manning FC, Tsangaris TN, Schwartz AM, et al. Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat. 2000;59:15–26.

    Article  CAS  PubMed  Google Scholar 

  11. Jamora C, Dennert G, Lee AS. Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci USA. 1996;93:7690–4.

    Article  CAS  PubMed  Google Scholar 

  12. Koong AC, Chen EY, Lee AS, Brown JM, Giaccia AJ. Increased cytotoxicity of chronic hypoxic cells by molecular inhibition of GRP78 induction. Int J Radiat Oncol Biol Phys. 1994;28:661–6.

    CAS  PubMed  Google Scholar 

  13. Tomida A, Tsuruo T. Drug resistance mediated by cellular stress response to the microenvironment of solid tumors. Anticancer Drug Des. 1999;14:169–77.

    CAS  PubMed  Google Scholar 

  14. Belfi CA, Chatterjee S, Gosky DM, Berger SJ, Berger NA. Increased sensitivity of human colon cancer cells to DNA cross-linking agents after GRP78 up-regulation. Biochem Biophys Res Commun. 1999;257:361–8.

    Article  CAS  PubMed  Google Scholar 

  15. Croute F, Poinsot J, Gaubin Y, Beau B, Simon V, Murat JC, et al. Volatile organic compounds cytotoxicity and expression of HSP72, HSP90 and GRP78 stress proteins in cultured human cells. Biochim Biophys Acta. 2002;1591:147–55.

    Article  CAS  PubMed  Google Scholar 

  16. Tchounwou PB, Wilson BA, Ishaque AB, Schneider J. Atrazine potentiation of arsenic trioxide-induced cytotoxicity and gene expression in human liver carcinoma cells (HepG2). Mol Cell Biochem. 2001;222:49–59.

    Article  CAS  PubMed  Google Scholar 

  17. Tchounwou PB, Ishaque AB, Schneider J. Cytotoxicity and transcriptional activation of stress genes in human liver carcinoma cells (HepG2) exposed to cadmium chloride. Mol Cell Biochem. 2001;222:21–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ma Y, Yu J, Chan HL, Chen YC, Wang H, Chen Y, et al. Glucose-regulated protein 78 is an intracellular antiviral factor against hepatitis B virus. Mol Cell Proteomics. 2009 Aug 11 [Epub ahead of print].

  19. Dong D, Ko B, Baumeister P, Swenson S, Costa F, Markland F, et al. Vascular targeting and antiangiogenesis agents induce drug resistance effector GRP78 within the tumor microenvironment. Cancer Res. 2005;65:5785–91.

    Article  CAS  PubMed  Google Scholar 

  20. Wang SK, Liang PH, Astronomo RD, Hsu TL, Hsieh SL, Burton DR, et al. Targeting the carbohydrates on HIV-1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc Natl Acad Sci USA. 2008;105:3690–5.

    Article  CAS  PubMed  Google Scholar 

  21. Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K, et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol. 2008;10:211–9.

    Article  CAS  PubMed  Google Scholar 

  22. Jou MJ, Jou SB, Chen HM, Lin CH, Peng TI. Critical role of mitochondrial reactive oxygen species formation in visible laser irradiation-induced apoptosis in rat brain astrocytes (RBA-1). J Biomed Sci. 2002;9:507–16.

    Article  CAS  PubMed  Google Scholar 

  23. LeBel CP, Ischiropoulos H, Bondy SC. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 1992;5:227–31.

    Article  Google Scholar 

  24. Carter WO, Narayanan PK, Robinson JP. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukoc Biol. 1994;55:253–8.

    CAS  PubMed  Google Scholar 

  25. Reers M, Smith TW, Chen LB. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry. 1991;30:4480–6.

    Article  CAS  PubMed  Google Scholar 

  26. Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, et al. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA. 1991;88:3671–5.

    Article  CAS  PubMed  Google Scholar 

  27. Szilagyi G, Simon L, Koska P, Telek G, Nagy Z. Visualization of mitochondrial membrane potential and reactive oxygen species via double staining. Neurosci Lett. 2006;399:206–9.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang YZ, Ouyang YC, Hou Y, Schatten H, Chen DY, Sun QY. Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis. Dev Growth Differ. 2008;50:189–201.

    PubMed  Google Scholar 

  29. Lucke JF. Student’s t test and the Glasgow Coma Scale. Ann Emerg Med. 1996;28:408–13.

    Article  CAS  PubMed  Google Scholar 

  30. Sridhar SS, Hedley D, Siu LL. Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther. 2005;4:677–85.

    Article  CAS  PubMed  Google Scholar 

  31. Beeram M, Patnaik A, Rowinsky EK. Raf: a strategic target for therapeutic development against cancer. J Clin Oncol. 2005;23:6771–90.

    Article  CAS  PubMed  Google Scholar 

  32. Gridelli C, Maione P, Del Gaizo F, Colantuoni G, Guerriero C, Ferrara C, et al. Sorafenib and sunitinib in the treatment of advanced non-small cell lung cancer. Oncologist. 2007;12:191–200.

    Article  CAS  PubMed  Google Scholar 

  33. Morris JA, Dorner AJ, Edwards CA, Hendershot LM, Kaufman RJ. Immunoglobulin binding protein (BiP) function is required to protect cells from endoplasmic reticulum stress but is not required for the secretion of selective proteins. J Biol Chem. 1997;272:4327–34.

    Article  CAS  PubMed  Google Scholar 

  34. Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, et al. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett. 2002;514:122–8.

    CAS  PubMed  Google Scholar 

  35. Tsutsumi S, Namba T, Tanaka KI, Arai Y, Ishihara T, Aburaya M, et al. Celecoxib upregulates endoplasmic reticulum chaperones that inhibit celecoxib-induced apoptosis in human gastric cells. Oncogene. 2006;25:1018–29.

    Article  CAS  PubMed  Google Scholar 

  36. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS. Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem. 2003;278:20915–24.

    Article  CAS  PubMed  Google Scholar 

  37. Lin ZP, Boller YC, Amer SM, Russell RL, Pacelli KA, Patierno SR, et al. Prevention of brefeldin A-induced resistance to teniposide by the proteasome inhibitor MG-132: involvement of NF-kappaB activation in drug resistance. Cancer Res. 1998;58:3059–65.

    CAS  PubMed  Google Scholar 

  38. Lang L. FDA approves sorafenib for patients with inoperable liver cancer. Gastroenterology. 2008;134:379.

    Google Scholar 

  39. Rahmani M, Davis EM, Crabtree TR, Habibi JR, Nguyen TK, Dent P, et al. The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol. 2007;27:5499–513.

    Article  CAS  PubMed  Google Scholar 

  40. Liu H, Bowes RC III, van de Water B, Sillence C, Nagelkerke JF, Stevens JL. Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J Biol Chem. 1997;272:21751–9.

    Article  CAS  PubMed  Google Scholar 

  41. Lee AS. The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci. 2001;26:504–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from Taipei University and Hospital Research Grant (97TMU-TMUH-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Jia Chang PhD.

Additional information

Jeng-Fong Chiou, Cheng-Jeng Tai, Ming-Te Huang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiou, JF., Tai, CJ., Huang, MT. et al. Glucose-Regulated Protein 78 Is a Novel Contributor to Acquisition of Resistance to Sorafenib in Hepatocellular Carcinoma. Ann Surg Oncol 17, 603–612 (2010). https://doi.org/10.1245/s10434-009-0718-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-009-0718-8

Keywords

Navigation