Skip to main content
Log in

Clinical and Pathological Factors Related to 18F-FDG-PET Positivity in the Diagnosis of Recurrence and/or Metastasis in Patients with Differentiated Thyroid Cancer

  • Endocrine Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Objectives were to analyze the relationship between a positive 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) result and clinical and tumor factors in patients treated for differentiated thyroid cancer (DTC) and under suspicion of recurrence or metastasis, and to determine the diagnostic validity of PET in DTC patients with elevated serum thyroglobulin (Tg) and negative 131I whole-body scan (131I-WBS).

Methods

We studied 50 DTC patients with elevated serum Tg and negative WBS treated with total thyroidectomy and 131I ablation. Thyroxin treatment was withdrawn and patients were on iodine-free diet before WBS. Tg, anti-Tg antibodies, and thyroid-stimulating hormone (TSH) were determined. Patients with negative WBS and elevated Tg underwent PET study 1 week later. PET findings were verified by pathology findings or other imaging techniques [computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US)] and/or 12-month follow-up. The relationship between PET findings and tumor (histological type, size, multifocality, thyroid capsular invasion, lymph-node and/or metastatic involvement) and clinical (age at diagnosis, sex, Tg, accumulated iodine dose, and recurrence time) variables was analyzed.

Results

PET was positive in 32/39 patients with confirmed disease (82% sensitivity) and negative in 7/11 of disease-free cases (64% specificity), a positive predictive value (PPV) of 89%. Tumor size (P < 0.05) and thyroid capsular invasion (P < 0.05) were significantly associated with positive PET study. The relationship of PET findings with Tg levels and age at diagnosis was close to significance.

Conclusion

18F-FDG-PET study offers a high sensitivity and positive predictive value (PPV) in patients with negative WBS and Tg positive. The use of FDG-PET is strongly recommended in DTC patients with large tumors, thyroid capsule invasion or poor-prognosis variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kent WD, Hall SF, Isotalo PA, Houlden RL, George RL, Groome PA. Increased incidence of differentiated thyroid carcinoma and detection of subclinical disease. CMAJ. 2007;1357–61.

  2. Grünwald F, Diehl M. Thyroid carcinomas. In: Oehr P, Biersack HJ, Coleman RE, editors. PET and PET-CT in oncology. Germany: Springer-Verlag Berlin Heidelberg; 2004. p. 137–48.

    Google Scholar 

  3. Cady B. Papillary carcinoma of the thyroid gland: treatment based on risk group definition. Surg Oncol Clin North Am. 1998;7:633–44.

    CAS  Google Scholar 

  4. Hay ID, Thompson GB, Grant CS, Bergstalh EJ, Dvorak CE, Gorman CA, et al. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940–1999): temporal trends in initial therapy and long term outcome in 2444 consecutively treated patients. World J Surg. 2002;26:879–85.

    Article  PubMed  Google Scholar 

  5. Hay ID, Bergstrahl EJ, Goellner JR, Ebersold JR, Grant CS. Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery. 1993;114:1050–8.

    PubMed  CAS  Google Scholar 

  6. Hay ID, Bergstrahl EJ, Grant CS, McIver B, Thompson GB, van Heerden JA, et al. Impact of surgery on outcome in 300 patients with pathologic tumor node metastasis stage III papillary thyroid carcinoma treated at one institution from 1949 through 1989. Surgery. 1999;126:1173–81.

    Article  PubMed  CAS  Google Scholar 

  7. Hermanek P, Sobin LH, editors. Thyroid gland. TNM classification of malignant tumors, 4th ed, 2nd version. International Union against Cancer. Berlin: Springer-Verlag; 1992. p. 35–7.

  8. Mazzaferri EL, Kloos RT. Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab. 2001;86:1447–63.

    Article  PubMed  CAS  Google Scholar 

  9. Lang B, Lo CY, Chan WF, Lan KY, Wan KY. Thyroid. In: Greene FL, Page DL, Fleming ID, et al. editors. AJCC cancer staging handbook, 6th edition. New York: Springer; 2002. p. 89–98.

    Google Scholar 

  10. Grebe SKG, Hay ID. Thyroid cancer nodal metastases. Biologic significance and therapeutic considerations. Surg Oncol Clin North Am. 1996;5:43–63.

    CAS  Google Scholar 

  11. Tubiana M, Schlumberger M, Rougier P, Laplanche A, Benhamon E, Gardet P, et al. Long-term results and prognostic factors in patients with differentiated thyroid carcinoma. Cancer. 1985;55:794–804.

    Article  PubMed  CAS  Google Scholar 

  12. Riccabona G. Differentiated thyroid carcinoma. In: Murray IPC, editor. Nuclear medicine in clinical diagnosis and treatment, 2nd ed. Edinburgh: Churchill Livingstone; 1998. p. 941–57.

    Google Scholar 

  13. Mazzaferri EL, Kloos RT. Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab. 2001;86:1447–63.

    Article  PubMed  CAS  Google Scholar 

  14. Schlumberger MJ, Filetti S, Hay ID. Nontoxic goiter and thyroid neoplasia. In: Larsen RP, Kronenberg HM, Melmed S, Polonsky KS, editors. Williams textbook of endocrinology, 10th ed. Philadelphia: Saunders; 2002. p. 457–490.

    Google Scholar 

  15. Schlumberger M, Berg G, Cohen O, Duntas L, Jamar F, Jarzab B, et al. Follow-up of low-risk patients with differentiated thyroid carcinoma: a European perspective. Eur J Endocrinol. 2004;150:105–12.

    Article  PubMed  CAS  Google Scholar 

  16. Pacini F. Follow-up of differentiated thyroid cancer. Eur J Nucl Med. 2002;29:492–6.

    Google Scholar 

  17. Schlumberger M, Mancusi F, Baudin E, Pacini F. 131I therapy for elevated thyroglobulin levels. Thyroid. 1997;7:273–6.

    Article  PubMed  CAS  Google Scholar 

  18. McDougall R. Whole-body scintigraphy with radioiodine 131. A comprehensive list of false positive with some examples. Clin Nucl Med. 1995;20:869–75.

    Article  PubMed  CAS  Google Scholar 

  19. Meier DA, Brill DR, Becker DV, Clarke SE, Silberstein EB, Royal HD, et al. Procedure guidelines for therapy of thyroid disease with 131 iodine. J Nucl Med. 2002;43:856–61.

    PubMed  CAS  Google Scholar 

  20. Mueatet JP, Giraud P, Dever A, Minier JF, Gamelin E, Larra F. Predicting the efficacy of first iodine-131 treatment in differentiated thyroid carcinoma. J Nucl Med. 1997;38:1362–8.

    Google Scholar 

  21. O’Conell ME, A’Hern RP, Harmer CL. Results of external beam radiotherapy in differentiated thyroid carcinoma: a retrospective study from the Royal Marsden Hospital. Eur J Cancer. 1994;30A:733–9.

    Article  Google Scholar 

  22. Schlumberger M, Challeton C, De Vathaire F, Travagli JP, Gardet P, Lumbroso JD, et al. Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med. 1996;37:598–605.

    PubMed  CAS  Google Scholar 

  23. Travagli JP, Cailleux AF, Ricard M, Baudin E, Caillou B, Parmentier C, et al. Combination of radio-iodine (131I) and probe-guided surgery for persistent or recurrent thyroid carcinoma. J Clin Endocrinol Metab. 1998;83:2675–80.

    Article  PubMed  CAS  Google Scholar 

  24. Schlumberger M, Baudin E. Serum thyroglobulin determination in the follow-up of patients with differentiated thyroid carcinoma. Eur J Endocrinol. 1998;138:249–52.

    Article  PubMed  CAS  Google Scholar 

  25. Demers LM, Spencer CA. Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid. 2003;13:4–126.

    Article  Google Scholar 

  26. Morris LF, Waxman AD, Braunstein GD. Interlaboratory comparison of thyroglobulin measurements for patients with recurrent differentiated thyroid cancer. Clin Chem. 2002;48:1371–2.

    PubMed  CAS  Google Scholar 

  27. Wartofsky L. Management of low-risk well-differentiated thyroid cancer based only on thyroglobulin measurement after recombinant human thyrotropin. Thyroid. 2002;12:583–90.

    Article  PubMed  CAS  Google Scholar 

  28. Giammarile F, Hafdi Z, Bournaud C, Janier M, Houzard C, Desuzinges C, et al. Is (18F)-2-fluoro-2-deoxy-D-glucose (FDG) scintigraphy with non-dedicated positron emission tomography useful in the diagnostic management of suspected metastatic thyroid carcinoma in patients with no detectable radioiodine uptake. Eur J Endocrinol. 2003;149:293–300.

    Article  PubMed  CAS  Google Scholar 

  29. Grunwald F, Kalicke T, Feine U, Lietzenmayer R, Scheldhauer K, Dietlein M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicenter study. Eur J Nucl Med. 1999;26:1547–52.

    Article  PubMed  CAS  Google Scholar 

  30. Wang W, Macapinlac H, Larson SM, Yeh SD, Akhurst T, Finn RD, et al. 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography localices residual thyroid cancer in patients with negative diagnostic 131I iodine whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab. 1999;84:2291–302.

    Article  PubMed  CAS  Google Scholar 

  31. Wang W, Larson SM, Fazzari M, Tickoo SK, Kolbert K, Sgouros G, et al. Prognostic value of (18F) Fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab. 2000;85:1107–13.

    Article  PubMed  CAS  Google Scholar 

  32. Petrich T, Börner AR, Otto D, Hofmann M, Knapp WH. Influence of rhTSH on [18F] fluorodeoxyglucose uptake by differentiated thyroid carcinoma. Eur J Nucl Med. 2002;29:641–7.

    Article  CAS  Google Scholar 

  33. Muros MA, Llamas-Elvira JM, Ramírez-Navarro A, Gomez MJ, Rodriguez-Fernandez A, Muros T, et al. Utility of fluorine-18-fluorodeoxyglucose positron emission tomography in differentiated thyroid carcinoma with negative radioiodine scans and elevated serum thyroglobulin levels. Am J Surg. 2000;179:457–61.

    Article  PubMed  CAS  Google Scholar 

  34. Sackett DL, Richardson WS, Rosenberg W, Haynes RB, editors. Evidence-based medicine: how to practice and teach EBM, First edition. New York: Churchill-Livingstone; 1997. p. 104–12.

    Google Scholar 

  35. Schelbert HR, Hoh CK, Royal HD, Brown M, Dahlbom MN, Dehdashti F, et al. Procedure guideline for tumor imaging Fluorine-18-FDG. J Nucl Med. 1998;39:1302–5.

    PubMed  CAS  Google Scholar 

  36. Gulcelik MA, Gulcelik NE, Kuru B, Camlibel M, Alagol H. Prognostic factors determining survival in differentiated thyroid cancer. J Surg Oncol. 2007;96:598–604.

    Article  PubMed  Google Scholar 

  37. Loh K, Greenspan FS, Gee L, Miller TR, Yeo PP. Pathological tumor node metastasis (pTNM) staging for papillary and follicular thyroid carcinomas: a retrospective analysis of 700 patients. J Clin Endocrinol Metab. 1997;82:3553–62.

    Article  PubMed  CAS  Google Scholar 

  38. De Droot LJ, Kaplan EL, McCormick M, Straus FH. Natural history, treatment and course of papillary thyroid carcinoma. J Clin Endocrinol Metab. 1990;71:414–24.

    Article  Google Scholar 

  39. Lowe VJ, Mullan BP, Hay ID, McIver B, Kasperbauer JL. 18F-FDG PET of patients with Hürthle cell carcinoma. J Nucl Med. 2003;44:402–6.

    PubMed  Google Scholar 

  40. Plotkin M, Hautzel H, Krause BJ, Schmidt D, Larisch R, Mottaghy FM, et al. Implication of 2-18fluor-2-deoxyglucose positron emission tomography in the follow-up of Hürthle cell thyroid cancer. Thyroid. 2002;12:55–161.

    Article  PubMed  Google Scholar 

  41. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. Real-time prognosis for metastatic thyroid carcinoma based on 18F-fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91:498–505.

    Article  PubMed  CAS  Google Scholar 

  42. Schlüter B, Bohuslavizki KH, Beyer W, Plotkin M, Buchert R, Clausen M. Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan. J Nucl Med. 2001;42:77–8.

    Google Scholar 

  43. Moog F, Linke R, Manthey N, Tiling R, Knesewitsch P, Tatsch K, et al. Influence of thyroid-stimulating hormone levels on uptake of FDG in recurrent and metastatic differentiated thyroid carcinoma. J Nucl Med. 2000;41:1989–95.

    PubMed  CAS  Google Scholar 

  44. Jadvar H, McDougall IR, Segall GM. Evaluation of suspected recurrent papillary thyroid carcinoma with [18F]fluorodeoxyglucose positron emission tomography. Nucl Med Commun. 1998;19:547–54.

    Article  PubMed  CAS  Google Scholar 

  45. Conti PS, Durski JM, Bacqai F, Grafton ST, Singer PA. Imaging of locally recurrent and metastatic thyroid cancer with positron emission tomography. Thyroid. 1999;9:797–804.

    Article  PubMed  CAS  Google Scholar 

  46. Stokkel MP, de Klerk JH, Zelissen PM, Koppeschaar HP, van Rijk PP. Fluorine-18 fluorodeoxyglucose dual-head positron emission tomography in the detection of recurrent differentiated thyroid cancer: preliminary results. Eur J Nucl Med. 1999;26:1606–9.

    Article  PubMed  CAS  Google Scholar 

  47. Alnafisi NS, Driedger AA, Coates G, Moote DJ, Raphael SJ. FDG PET of recurrent or metastatic 131I-negative papillary thyroid carcinoma. J Nucl Med. 2000;41:1010–5.

    PubMed  CAS  Google Scholar 

  48. Altenvoerde G, Lerch H, Kuwert T, Matheja P, Schäfers M, Schober O. Positron emission tomography with F-18-deoxyglucose in patients with differentiated thyroid carcinoma, elevated thyroglobulin levels, and negative iodine scans. Langenbecks Arch Surg. 1998;383:160–3.

    PubMed  CAS  Google Scholar 

  49. Bachelot A, Cailleux AF, Klain M, Baudin E, Ricard M, Bellon N, et al. Relationship between tumor burden and serum thyroglobulin level in patients with papillary and follicular thyroid carcinoma. Thyroid. 2002;12:707–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Muros PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteva, D., Muros, M.A., Llamas-Elvira, J.M. et al. Clinical and Pathological Factors Related to 18F-FDG-PET Positivity in the Diagnosis of Recurrence and/or Metastasis in Patients with Differentiated Thyroid Cancer. Ann Surg Oncol 16, 2006–2013 (2009). https://doi.org/10.1245/s10434-009-0483-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-009-0483-8

Keywords

Navigation