Skip to main content
Log in

Decreased Expression of Stem Cell Factor in Esophageal and Gastric Mucosa After Esophagogastric Anastomosis for Cancer: Potential Relevance to Motility

  • Original Articles
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background: Esophageal replacement with gastric tube is a well-established reconstruction of the alimentary tract after esophagectomy in cancer patients. The resulting molecular events in the transposed gastric tube and residual esophagus have yet to be investigated. Stem cell factor (SCF) was recently shown to be critical for signaling in gastrointestinal motility. SCF expression is here correlated with changes in mucosal morphology, acid and biliary reflux, and motility in the residual esophagus and gastric tube.

Methods: Thirteen patients surgically resected for squamous esophageal carcinoma with gastric tube replaced by esophagogastric anastomosis underwent upper endoscopy, esophageal manometry, 24-hour pH monitoring, and bile reflux detection. Esophageal and gastric mucosa samples were examined for SCF expression by immunohistochemical and semiquantitative reverse transcriptase-polymerase chain reaction analysis and for SCF serum levels by enzyme-linked immunosorbent assay.

Results: All patients showed severe residual esophagus hypoperistalsis and no gastric tube motor activity. The 24-hour pH monitoring was positive in most; 24-hour bile detection was mostly negative. SCF levels in the residual esophageal and gastric tube mucosa were dramatically decreased compared with those of normal subjects. The correlation between SCF and slow-wave activity was positive.

Conclusions: Hypomotility of the residual esophagus and gastric tube seems closely associated with disruption of the SCF/c-kit signaling pathway. However, the absence of notable relations between mucosal changes after chronic exposure to acid, biliary gastric content, and SCF expression indicates that this analysis cannot be considered part of endoscopic follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Nishihira T, Watanabe T, Ohmori N, et al. Long-term evaluation of patients treated by radical operation for carcinoma of the thoracic esophagus. World J Surg 1984; 8: 778–85.

    Article  PubMed  CAS  Google Scholar 

  2. Wong J. Esophageal resection for cancer: the rationale of current practice. Am J Surg 1987; 153: 18–24.

    Article  PubMed  CAS  Google Scholar 

  3. Holscher AH, Voit H, Buttermann G, et al. Function of the intrathoracic stomach as esophageal replacement. World J Surg 1988; 12: 835–44.

    Article  PubMed  CAS  Google Scholar 

  4. Bonavina L, Anselmino M, Ruol A, et al. Functional evaluation of the intrathoracic stomach as an esophageal substitute. Br J Surg 1992; 71: 438–41.

    Google Scholar 

  5. Okada N, Sakurai T, Tsuchihashi S. Gastric functions in patients with the intrathoracic stomach after esophageal surgery. Ann Surg 1986; 204: 114–21.

    Article  PubMed  CAS  Google Scholar 

  6. Sean M, Ward SM, Sanders KM. Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside—I. Functional development and plasticity of interstitial cells of Cajal networks. Am J Physiol Gastrointest Liver Physiol 2001; 281: G602–11.

    Google Scholar 

  7. Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 1996; 111: 492–515.

    Article  PubMed  CAS  Google Scholar 

  8. Yarden Y, Kuang WJ, Yang-Feng T, et al. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 1987; 6: 3341–51.

    PubMed  CAS  Google Scholar 

  9. Huizinga JD, Thuneberg L, Kluppel M, et al. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 1995; 373: 347–9.

    Article  PubMed  CAS  Google Scholar 

  10. Maeda H, Yamagata A, Nishikawa S, et al. Requirement of c-kit for development of intestinal pacemaker system. Development 1992; 116: 369–75.

    PubMed  CAS  Google Scholar 

  11. Torihashi S, Ward SM, Nishikawa S, et al. c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res 1995; 280: 97–111.

    PubMed  CAS  Google Scholar 

  12. Zsebo KM, Williams DA, Geissler EN, et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 1990; 63: 213–24.

    Article  PubMed  CAS  Google Scholar 

  13. Huang E, Nocka K, Beier DR, et al. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 1990; 63: 225–33.

    Article  PubMed  CAS  Google Scholar 

  14. Anderson DM, Lyman SD, Baird A, et al. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell 1990; 63: 235–43.

    Article  PubMed  CAS  Google Scholar 

  15. Witte ON. Steel locus defines new multipotent growth factor. Cell 1990; 63: 5–6.

    Article  PubMed  CAS  Google Scholar 

  16. Wu JJ, Rothman TP, Gershon MD. Development of the interstitial cell of Cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand. J Neurosci Res 2000; 59: 384–401.

    Article  PubMed  CAS  Google Scholar 

  17. Huang EJ, Nocka KH, Buck J, Besmer P. Differential expression and processing of two cell associated forms of the kit-ligand: KL-1 and KL-2. Mol Biol Cell 1992; 3: 349–62.

    PubMed  CAS  Google Scholar 

  18. Galli SJ, Zsebo KM, Geissler EN. The kit ligand, stem cell factor. Adv Immunol 1994; 55: 1–96.

    Article  PubMed  CAS  Google Scholar 

  19. Burns AJ, Lomax AE, Torihashi S, et al. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci U S A 1996; 93: 12008–13.

    Article  PubMed  CAS  Google Scholar 

  20. Vanderwinden JM, Rumessen JJ. Interstitial cells of Cajal in human gut and gastrointestinal disease. Microsc Res Tech 1999; 47: 344–60.

    Article  PubMed  CAS  Google Scholar 

  21. Wang C, Curtis JE, Geissler EN, et al. The expression of the proto-oncogene c-kit in the blast cells of acute myeloblastic leukemia. Leukemia 1989; 3: 699–702.

    PubMed  CAS  Google Scholar 

  22. Natali PG, Nicotra MR, Winkler AB, et al. Progression of human cutaneous melanoma is associated with loss of expression of c-kit proto-oncogene receptor. Int J Cancer 1992; 52: 197–201.

    Article  PubMed  CAS  Google Scholar 

  23. Tian Q, Frierson HF Jr, Krystal GW, Moskaluk CA. Activating c-kit gene mutations in human germ cell tumors. Am J Pathol 1999; 154: 1643–7.

    PubMed  CAS  Google Scholar 

  24. Berdel WE, de Vos S, Maurer J, et al. Recombinant human stem cell factor stimulates growth of a human glioblastoma cell line expressing c-kit protooncogene. Cancer Res 1992; 52: 3498–502.

    PubMed  CAS  Google Scholar 

  25. Natali PG, Nicotra MR, Sures I, et al. Breast cancer is associated with loss of the c-kit oncogene product. Int J Cancer 1992; 52: 713–7.

    Article  PubMed  CAS  Google Scholar 

  26. Krystal GW, Hines SJ, Organ CP. Autocrine growth of small cell lung cancer mediated by coexpression of c-kit and stem cell factor. Cancer Res 1996; 56: 370–6.

    PubMed  CAS  Google Scholar 

  27. Hirota S, Isozaki K, Moriyama Y, et al. Gain of function mutations of c-Kit in human gastrointestinal stromal tumors. Science 1998; 279: 577–80.

    Article  PubMed  CAS  Google Scholar 

  28. Bellone G, Silvestri S, Artusio E, et al. Growth stimulation of colorectal carcinoma cells via the c-kit receptor is inhibited by TGF-beta 1. J Cell Physiol 1997; 172: 1–11.

    Article  PubMed  CAS  Google Scholar 

  29. Lewis I. The surgical treatment of carcinoma of the esophagus. Br J Surg 1946; 34: 18–31.

    Article  Google Scholar 

  30. McKeown KC. Total three-stage esophagectomy for cancer of the esophagus. Br J Surg 1976; 63: 259–62.

    Article  PubMed  CAS  Google Scholar 

  31. Johnsson F, Joelsson B, Isberg PE. Ambulatory 24 hour intraesophageal pH-monitoring in the diagnosis of gastroesophageal reflux disease. Gut 1987; 28: 1145–50.

    Article  PubMed  CAS  Google Scholar 

  32. Jamieson JR, Stein HJ, DeMeester TR, et al. Ambulatory 24-h esophageal pH-monitoring: normal values, optimal thresholds, specificity, sensitivity, and reproducibility. Am J Gastroenterol 1992; 87: 1071–5.

    Google Scholar 

  33. Arndorfer RC. Improved infusion system for intraluminal esophageal manometry. Gastroenterology 1977; 73: 23–7.

    PubMed  CAS  Google Scholar 

  34. Bechi P. Fiberoptic measurement of “alkaline” gastroesophageal reflux: technical aspects and clinical indications. Dis Esophagus 1994; 7: 131–8.

    Google Scholar 

  35. Remmele W, Stegner HE. Immunohistochemischer Nachweis von öestrogenrezeptoren (ERICA) in Mammakarzinomgewebe: Vorschlag zur einheitlichen Formulierung des Untersuchungsbefundes. Dtsch Arztebl 1986; 83: 3362–4.

    Google Scholar 

  36. Bellone G, Rollino C, Borsa S, et al. Association between elevated prolactin levels and circulating erythroid precursors in dialyzed patients. Proc Soc Exp Biol Med 2000; 223: 367–71.

    Article  PubMed  CAS  Google Scholar 

  37. Bellone G, Carbone A, Sibona N, et al. Aberrant activation of c-kit protects colon carcinoma cells against apoptosis and enhances their invasive potential. Cancer Res 2001; 61: 2200–6.

    PubMed  CAS  Google Scholar 

  38. Fein M, Fuchs KM, Bohrer T, et al. Fibreoptic technique for 24-hour bile reflux monitoring. Standards and normal values for gastric monitoring. Dig Dis Sci 1996; 41: 216–25.

    Article  PubMed  CAS  Google Scholar 

  39. Ward SM, Beckett EAH, Wang XY, et al. Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J Neurosci 2000; 20: 1393–403.

    PubMed  CAS  Google Scholar 

  40. Nakagawa S, Takashi K. Measurement of KIT ligand/stem cell factor: clinical and biochemical significance. Curr Opin Hematol 2000; 7: 133–42.

    Article  PubMed  CAS  Google Scholar 

  41. Nishihira T, Watanabe T, Ohmori N, et al. Long-term evaluation of patients treated by radical operation for carcinoma of the thoracic esophagus. World J Surg 1984; 8: 778–85.

    Article  PubMed  CAS  Google Scholar 

  42. Cheung HC, Siu KF, Wong J. Is pyloroplasty necessary in esophageal replacement by stomach? A prospective, randomized controlled trial. Surgery 1987; 102: 19–24.

    PubMed  CAS  Google Scholar 

  43. Mannell A, Hinder RA, San-Garde BA. The thoracic stomach: a study of gastric emptying, bile reflux and mucosal change. Br J Surg 1984; 71: 438–41.

    Article  PubMed  CAS  Google Scholar 

  44. Miyazawa K, Williams DA, Gotoh A, et al. Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood 1995; 85: 641–9.

    PubMed  CAS  Google Scholar 

  45. Hopwood D, Bateson MC, Milne G, et al. Effects of bile acids and hydrogen ion on the fine structure of esophageal epithelium. Gut 1981; 22: 306–11.

    Article  PubMed  CAS  Google Scholar 

  46. Clarke RJ, Alexander-Williams J. The effect of preserving antral innervation and of a pyloroplasty on gastric emptying after vagotomy in man. Gut 1973; 14: 300–7.

    Article  PubMed  CAS  Google Scholar 

  47. Moreno-Osset E, Tomas-Ridocci M, Paris F, et al. Motor activity of esophageal substitute (stomach, jejunal and colon segments). Ann Thorac Surg 1986; 41: 515–9.

    Article  PubMed  CAS  Google Scholar 

  48. Miller H, Lam KH, Ong GB. Observation of pressure waves in stomach, jejunal and colonic loops used to replace the esophagus. Surgery 1975; 78: 543–51.

    PubMed  CAS  Google Scholar 

  49. Hurwitz AL, Duranceau A, Haddad JK. Disorders of the Esophageal Motility. London: Saunders, 1979.

    Google Scholar 

  50. Hinder RA. The effect of posture on the emptying of the intrathoracic vagotomized stomach. Br J Surg 1976; 63: 581–4.

    Article  PubMed  CAS  Google Scholar 

  51. Morton KA, Karwande SV, Davis RK, et al. Gastric emptying after gastric interposition for cancer of the esophagus or hypopharynx. Ann Thorac Surg 1991; 51: 759–63.

    Article  PubMed  CAS  Google Scholar 

  52. Walsh TN, Caldwell TP, Fallon C, et al. Gastric motility following esophagectomy. Br J Surg 1995; 82: 91–4.

    Article  PubMed  CAS  Google Scholar 

  53. Collard JM, Romagnoli R, Otte JB, et al. The denervated stomach as an esophageal substitute is a contractile organ. Ann Surg 1998; 227: 33–9.

    Article  PubMed  CAS  Google Scholar 

  54. Collard JM, Romagnoli R, Otte JB, et al. Erythromycin enhances early postoperative contractility of the denervated whole stomach as an esophageal substitute. Ann Surg 1999; 229: 337–43.

    Article  PubMed  CAS  Google Scholar 

  55. Lee K, Fujimaki M, Soga J, et al. Clinical and pathophysio-logical evaluation of esophageal and reconstruction using gastric tube and pedicled colon segment. Jpn J Surg 1976; 6: 109–18.

    Article  PubMed  CAS  Google Scholar 

  56. Suzuki H. Cellular mechanisms of myogenic activity in gastric smooth muscle. Jpn J Physiol 2000; 50: 289–301.

    Article  PubMed  CAS  Google Scholar 

  57. Torihashi S, Nishi K, Tokutomi Y, et al. Blockade of Kit signaling induces transdifferentiation of interstitial cells of Cajal to a smooth muscle phenotype. Gastroenterology 1991; 117: 140–8.

    Article  Google Scholar 

  58. Huizinga JD, Thuneberg L, Kluppel M, et al. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 1995; 373: 347–9.

    Article  PubMed  CAS  Google Scholar 

  59. Tabata Y, Ikada Y. Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 1999; 20: 2169–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Nano MD, FACS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nano, M., Battaglia, E., Gasparri, G. et al. Decreased Expression of Stem Cell Factor in Esophageal and Gastric Mucosa After Esophagogastric Anastomosis for Cancer: Potential Relevance to Motility. Ann Surg Oncol 10, 801–809 (2003). https://doi.org/10.1245/ASO.2003.11.010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1245/ASO.2003.11.010

Key Words:

Navigation