Skip to main content
Log in

Herpes Simplex Virus Amplicon Delivery of a Hypoxia-Inducible Soluble Vascular Endothelial Growth Factor Receptor (sFlk-1) Inhibits Angiogenesis and Tumor Growth in Pancreatic Adenocarcinoma

  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Tumor hypoxia induces vascular endothelial growth factor (VEGF) expression, which stimulates angiogenesis and tumor proliferation. The VEGF signaling pathway is inhibited by soluble VEGF receptors (soluble fetal liver kinase 1; sFlk-1), which bind VEGF and block its interaction with endothelial cells. Herpes simplex virus (HSV) amplicons are replication-incompetent viruses used for gene delivery. We attempted to attenuate angiogenesis and inhibit pancreatic tumor growth through HSV amplicon–mediated expression of sFlk-1 under hypoxic control.

Methods

A multimerized hypoxia-responsive enhancer (10 × HRE) was cloned upstream of the sFlk-1 gene (10 × HRE/sFlk-1). A novel HSV amplicon expressing 10 × HRE/sFlk-1 was genetically engineered (HSV10 × HRE/sFlk-1).Human pancreatic adenocarcinoma cells (AsPC1) were transduced with HSV10 × HRE/sFlk-1 and incubated in normoxia (21% oxygen) or hypoxia (1% oxygen). Capillary inhibition was evaluated by human umbilical vein endothelial cell assay. Western blot assessed sFlk-1 expression. AsPC1 flank tumor xenografts (n = 24) were transduced with HSV10 × HRE/sFlk-1.

Results

Media from normoxic AsPC1 transduced with HSV10 × HRE/sFlk-1 yielded a 36% reduction in capillary formation versus controls (P < .05), whereas hypoxic AsPC1 yielded a 76% reduction (P < .005). Western blot of AsPC1 transduced with HSV10 × HRE/sFlk-1 demonstrated greater sFlk-1 expression in hypoxia versus normoxia. AsPC1 flank tumors treated with HSV10 × HRE/sFlk-1 exhibited a 59% reduction in volume versus controls (P < .000001).

Conclusions

HSV amplicon delivery of a hypoxia-inducible soluble VEGF receptor significantly reduces new vessel formation and tumor growth. Tumor hypoxia can thus be used to direct antiangiogenic therapy to pancreatic adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shibata T, Giaccia AJ, Brown JM. Development of a hypoxia-responsive vector for tumor-specific gene therapy. Gene Ther 2000;7:493–8

    Article  PubMed  CAS  Google Scholar 

  2. Koong AC, Mehta VK, Le QT, et al. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 2000;48:919–22

    PubMed  CAS  Google Scholar 

  3. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996;56:4509–15

    PubMed  CAS  Google Scholar 

  4. Brizel DM, Scully SP, Harrelson JM, et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 1996;56:941–3

    PubMed  CAS  Google Scholar 

  5. Tannock I, Guttman P. Response of Chinese hamster ovary cells to anticancer drugs under aerobic and hypoxic conditions. Br J Cancer 1981;43:245–8

    PubMed  CAS  Google Scholar 

  6. Jemal A, Thomas A, Murray T, Thun M. Cancer statistics, 2002. CA Cancer J Clin 2002;52:23–47

    Article  PubMed  Google Scholar 

  7. Bush RS, Jenkin RD, Allt WE, et al. Definitive evidence for hypoxic cells influencing cure in cancer therapy. Br J Cancer Suppl 1978;37:302–6

    PubMed  CAS  Google Scholar 

  8. Duffy JP, Eibl G, Reber HA, Hines OJ. Influence of hypoxia and neoangiogenesis on the growth of pancreatic cancer. Mol Cancer 2003;2:12.

    Article  PubMed  Google Scholar 

  9. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 1995;92:5510–4

    PubMed  CAS  Google Scholar 

  10. Buchler P, Reber HA, Buchler M, et al. Hypoxia-inducible factor 1 regulates vascular endothelial growth factor expression in human pancreatic cancer. Pancreas 2003;26:56–64

    PubMed  CAS  Google Scholar 

  11. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669–76

    PubMed  CAS  Google Scholar 

  12. Benjamin LE, Keshet E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci U S A 1997;94:8761–6

    Article  PubMed  CAS  Google Scholar 

  13. Shibuya M, Yamaguchi S, Yamane A, et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 1990;5:519–24

    PubMed  CAS  Google Scholar 

  14. Terman BI, Carrion ME, Kovacs E, Rasmussen BA, Eddy RL, Shows TB. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 1991;6:1677–83

    PubMed  CAS  Google Scholar 

  15. Millauer B, Wizigmann-Voos S, Schnurch H, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993;72:835–46

    Article  PubMed  CAS  Google Scholar 

  16. Gerber HP, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 1998;273:13313–6

    PubMed  CAS  Google Scholar 

  17. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994;367:576–9

    Article  PubMed  CAS  Google Scholar 

  18. Ogawa T, Takayama K, Takakura N, Kitano S, Ueno H. Anti-tumor angiogenesis therapy using soluble receptors: enhanced inhibition of tumor growth when soluble fibroblast growth factor receptor-1 is used with soluble vascular endothelial growth factor receptor. Cancer Gene Ther 2002;9:633–40

    Article  PubMed  CAS  Google Scholar 

  19. Sena-Esteves M, Saeki Y, Fraefel C, Breakefield XO. HSV-1 amplicon vectors—simplicity and versatility. Mol Ther 2000;2:9–15

    Article  PubMed  CAS  Google Scholar 

  20. Fraefel C, Jacoby DR, Lage C, et al. Gene transfer into hepatocytes mediated by helper virus-free HSV/AAV hybrid vectors. Mol Med 1997;3:813–25

    PubMed  CAS  Google Scholar 

  21. Tung C, Federoff HJ, Brownlee M, et al. Rapid production of interleukin-2-secreting tumor cells by herpes simplex virus-mediated gene transfer: implications for autologous vaccine production. Hum Gene Ther 1996;7:2217–24

    PubMed  CAS  Google Scholar 

  22. Jarnagin WR, Delman K, Kooby D, et al. Neoadjuvant interleukin-12 immunogene therapy protects against cancer recurrence after liver resection in an animal model. Ann Surg 2000;231:762–71

    Article  PubMed  CAS  Google Scholar 

  23. Wade-Martins R, Smith ER, Tyminski E, Chiocca EA, Saeki Y. An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nat Biotechnol 2001;19:1067–70

    Article  PubMed  CAS  Google Scholar 

  24. Post DE, Van Meir EG. Generation of bidirectional hypoxia/HIF-responsive expression vectors to target gene expression to hypoxic cells. Gene Ther 2001;8:1801–7

    Article  PubMed  CAS  Google Scholar 

  25. Bowers WJ, Howard DF, Brooks AI, Halterman MW, Federoff HJ. Expression of vhs and VP16 during HSV-1 helper virus-free amplicon packaging enhances titers. Gene Ther 2001;8:111–20

    Article  PubMed  CAS  Google Scholar 

  26. Bowers WJ, Howard DF, Federoff HJ. Discordance between expression and genome transfer titering of HSV amplicon vectors: recommendation for standardized enumeration. Mol Ther 2000;1:294–9

    Article  PubMed  CAS  Google Scholar 

  27. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993;362:841–4

    PubMed  CAS  Google Scholar 

  28. Saleh M, Stacker SA, Wilks AF. Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res 1996;56:393–401

    PubMed  CAS  Google Scholar 

  29. Imoto H, Osaki T, Taga S, Ohgami A, Ichiyoshi Y, Yasumoto K. Vascular endothelial growth factor expression in non-small-cell lung cancer: prognostic significance in squamous cell carcinoma. J Thorac Cardiovasc Surg 1998;115:1007–14

    PubMed  CAS  Google Scholar 

  30. Ishigami SI, Arii S, Furutani M, et al. Predictive value of vascular endothelial growth factor (VEGF) in metastasis and prognosis of human colorectal cancer. Br J Cancer 1998;78:1379–84

    PubMed  CAS  Google Scholar 

  31. Gasparini G, Toi M, Gion M, et al. Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl Cancer Inst 1997;89:139–47

    Article  PubMed  CAS  Google Scholar 

  32. Toi M, Hoshina S, Takayanagi T, Tominaga T. Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Jpn J Cancer Res 1994;85:1045–9

    PubMed  CAS  Google Scholar 

  33. Minchenko A, Bauer T, Salceda S, Caro J. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest 1994;71:374–9

    PubMed  CAS  Google Scholar 

  34. Guo D, Jia Q, Song HY, Warren RS, Donner DB. Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem 1995;270:6729–33

    PubMed  CAS  Google Scholar 

  35. Jacobi J, Tam BY, Sundram U, et al. Discordant effects of a soluble VEGF receptor on wound healing and angiogenesis. Gene Ther 2004;11:302–9

    Article  PubMed  CAS  Google Scholar 

  36. Takayama K, Ueno H, Nakanishi Y, et al. Suppression of tumor angiogenesis and growth by gene transfer of a soluble form of vascular endothelial growth factor receptor into a remote organ. Cancer Res 2000;60:2169–77

    PubMed  CAS  Google Scholar 

  37. Ye C, Feng C, Wang S, et al. sFlt-1 gene therapy of follicular thyroid carcinoma. Endocrinology 2004;145:817–22

    PubMed  CAS  Google Scholar 

  38. Saeki Y, Ichikawa T, Saeki A, et al. Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum Gene Ther 1998;9:2787–94

    PubMed  CAS  Google Scholar 

  39. Stavropoulos TA, Strathdee CA. An enhanced packaging system for helper-dependent herpes simplex virus vectors. J Virol 1998;72:7137–43

    PubMed  CAS  Google Scholar 

  40. Wang Y, Yu L, Geller AI. Diverse stabilities of expression in the rat brain from different cellular promoters in a helper virus-free herpes simplex virus type 1 vector system. Hum Gene Ther 1999;10:1763–71

    PubMed  CAS  Google Scholar 

  41. Costantini LC, Jacoby DR, Wang S, Fraefel C, Breakefield XO, Isacson O. Gene transfer to the nigrostriatal system by hybrid herpes simplex virus/adeno-associated virus amplicon vectors. Hum Gene Ther 1999;10:2481–94

    Article  PubMed  CAS  Google Scholar 

  42. Hockel M, Schlenger K, Knoop C, Vaupel P. Oxygenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements. Cancer Res 1991;51:6098–102

    PubMed  CAS  Google Scholar 

  43. Dachs GU, Greco O, Tozer GM. Targeting cancer with gene therapy using hypoxia as a stimulus. Methods Mol Med 2004;90:371–88

    PubMed  CAS  Google Scholar 

  44. Licht P, Russu V, Lehmeyer S, Wissentheit T, Siebzehnrubl E, Wildt L. Cycle dependency of intrauterine vascular endothelial growth factor levels is correlated with decidualization and corpus luteum function. Fertil Steril 2003;80:1228–33

    Article  PubMed  Google Scholar 

  45. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 2001;280:C1358–66

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Guo-jie Ye, PhD, for his advice with cloning procedures and knowledge of HSV vectors. They also thank Sam Yoon, MD, for his help with the HUVEC assay and Wade Narrows for preparation of helper virus-free HSV amplicon stocks. Supported by grants RO1 CA 76416 and RO1 CA/DK80982 (Y.F.) from the National Institutes of Health, grant MBC-99366 (Y.F.) from the American Cancer Society, grant BC024118 from the US Army, and the Rochester Nathan Shock Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuman Fong MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinblatt, M., Pin, R.H., Bowers, W.J. et al. Herpes Simplex Virus Amplicon Delivery of a Hypoxia-Inducible Soluble Vascular Endothelial Growth Factor Receptor (sFlk-1) Inhibits Angiogenesis and Tumor Growth in Pancreatic Adenocarcinoma. Ann Surg Oncol 12, 1025–1036 (2005). https://doi.org/10.1245/ASO.2005.03.081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/ASO.2005.03.081

Keywords

Navigation