Skip to main content
Log in

ACAT-1-Regulated Cholesteryl Ester Accumulation Modulates Gemcitabine Resistance in Biliary Tract Cancer

  • Translational Research
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Biliary tract cancer (BTC) has few choices of chemotherapy, including gemcitabine, therefore exploring the mechanisms of gemcitabine resistance is important. We focused on lipid metabolism because biliary tract epithelial cells are essential in cholesterol and bile acid metabolism and the messenger RNA (mRNA) microarray analysis showed high acyl coenzyme A: cholesterol acyltransferase 1 (ACAT-1) expression in BTC gemcitabine-resistant (GR) cell lines. We hypothesized that aberrant accumulation of cholesteryl ester (CE) regulated by ACAT-1 could modulate GR in BTC.

Methods

CE accumulations were measured in human BTC cell lines, and the relationships between CE levels, ACAT-1 expressions, and gemcitabine sensitivity were analyzed. We performed a small-interfering RNA (siRNA)-mediated knockdown and biochemical inhibition of ACAT-1 in BTC cell lines and alterations of gemcitabine sensitivity were evaluated. To evaluate the clinical significance of ACAT-1 in regard to GR, immunohistochemistry was performed and ACAT-1 expressions were analyzed in resected BTC specimens.

Results

CE levels were correlated with ACAT-1 expressions and GR in four human BTC cell lines. siRNA-mediated knockdown of ACAT-1 in two independent GR cell clones as well as ACAT-1 inhibitor treatment significantly increased gemcitabine sensitivity; knockdown of ACAT-1: 5.63- and 8.02-fold; ACAT-1 inhibitor: 8.75- and 9.13-fold, respectively. ACAT-1 expression in resected BTC specimens revealed that the disease-free survival of the ACAT-1 low-intensity group (median 2.3 years) had a significantly better outcome than that of the ACAT-1 high-intensity group (median 1.1 years) under gemcitabine treatment after surgery (*p < 0.05).

Conclusions

Our findings suggest that CE and ACAT-1 might be a novel therapeutic target for GR in BTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhu AX, Hezel AF. Development of molecularly targeted therapies in biliary tract cancers: reassessing the challenges and opportunities. Hepatology. 2011;53(2):695–704.

    Article  CAS  PubMed  Google Scholar 

  2. Matsukuma S, Tokumitsu Y, Shindo Y, Matsui H, Nagano H. Essential updates to the surgical treatment of biliary tract cancer. Ann Gastroenterol Surg. 2019;3(4):378–89.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Miyakawa S, Ishihara S, Horiguchi A, Takada T, Miyazaki M, Nagakawa T. Biliary tract cancer treatment: 5584 results from the biliary tract cancer statistics registry from 1998 to 2004 in Japan. J Hepato-biliary-pancreatic Surg. 2009;16(1):1–7.

    Article  Google Scholar 

  4. Kobayashi S, Nagano H, Marubashi S, et al. Treatment of borderline cases for curative resection of biliary tract cancer. J Surg Oncol. 2011;104(5):499–503.

    Article  PubMed  Google Scholar 

  5. Valle JW, Wasan H, Johnson P, et al. Gemcitabine alone or in combination with cisplatin in patients with advanced or metastatic cholangiocarcinomas or other biliary tract tumours: a multicentre randomised phase II study – The UK ABC-01 Study. Br J Cancer. 2009;101(4):621–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Okusaka T, Nakachi K, Fukutomi A, et al. Gemcitabine alone or in combination with cisplatin in patients with biliary tract cancer: a comparative multicentre study in Japan. Br J Cancer. 2010;103(4):469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Valle JW, Furuse J, Jitlal M, et al. Cisplatin and gemcitabine for advanced biliary tract cancer: a meta-analysis of two randomised trials. Ann Oncol. 2014;25(2):391–8.

    Article  CAS  PubMed  Google Scholar 

  8. Sasaki T, Isayama H, Nakai Y, et al. A retrospective study of gemcitabine and cisplatin combination therapy as second-line treatment for advanced biliary tract cancer. Chemotherapy. 2013;59(2):106–11.

    Article  CAS  PubMed  Google Scholar 

  9. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer cell. 2012;21(3):297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012;491(7424):364–73.

    Article  CAS  PubMed  Google Scholar 

  11. Chang TY, Li BL, Chang CC, Urano Y. Acyl-coenzyme A:cholesterol acyltransferases. Am J Physiol Endocrinol Metab. 2009;297(1):E1-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang TY, Chang CC, Cheng D. Acyl-coenzyme A:cholesterol acyltransferase. Ann Rev Biochem. 1997;66:613–38.

    Article  CAS  PubMed  Google Scholar 

  13. Ohshiro T, Matsuda D, Sakai K, et al. Pyripyropene A, an acyl-coenzyme A:cholesterol acyltransferase 2-selective inhibitor, attenuates hypercholesterolemia and atherosclerosis in murine models of hyperlipidemia. Arterioscler, Thrombosis, Vasc Biol. 2011;31(5):1108–15.

    Article  CAS  Google Scholar 

  14. Hartmann T, Kuchenbecker J, Grimm MO. Alzheimer’s disease: the lipid connection. J Neurochem. 2007;103(Suppl 1):159–70.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang Y, Sun A, Zhao Y, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature. 2019;567(7747):257–61.

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Gu D, Lee SS, et al. Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene. 2016;35(50):6378–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yue S, Li J, Lee SY, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 2014;19(3):393–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang W, Bai Y, Xiong Y, et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature. 2016;531(7596):651–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Antalis CJ, Arnold T, Rasool T, Lee B, Buhman KK, Siddiqui RA. High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation. Breast Cancer Res Treat. 2010;122(3):661–70.

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Qu X, Tian J, Zhang JT, Cheng JX. Cholesterol esterification inhibition and gemcitabine synergistically suppress pancreatic ductal adenocarcinoma proliferation. PloS One. 2018;13(2):e0193318.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sakamoto T, Kobayashi S, Yamada D, et al. A histone deacetylase inhibitor suppresses epithelial-mesenchymal transition and attenuates chemoresistance in biliary tract cancer. PloS One. 2016;11(1):e0145985.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yamada D, Kobayashi S, Wada H, et al. Role of crosstalk between interleukin-6 and transforming growth factor-beta 1 in epithelial-mesenchymal transition and chemoresistance in biliary tract cancer. Euro J Cancer. 2013;49(7):1725–40.

    Article  CAS  Google Scholar 

  23. Kobayashi S, Tomokuni A, Gotoh K, et al. A retrospective analysis of the clinical effects of neoadjuvant combination therapy with full-dose gemcitabine and radiation therapy in patients with biliary tract cancer. Euro J Surg Oncol. 2017;43(4):763–71.

    Article  CAS  Google Scholar 

  24. Iwagami Y, Eguchi H, Nagano H, et al. miR-320c regulates gemcitabine-resistance in pancreatic cancer via SMARCC1. Br J Cancer. 2013;109(2):502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Boil Chem. 1957;226(1):497–509.

    Article  CAS  Google Scholar 

  26. Okumura Y, Noda T, Eguchi H, et al. Hypoxia-induced PLOD2 is a key regulator in epithelial-mesenchymal transition and chemoresistance in biliary tract cancer. Ann Surg Oncol. 2018;25(12):3728–37.

    Article  PubMed  Google Scholar 

  27. Bemlih S, Poirier MD, El Andaloussi A. Acyl-coenzyme A: cholesterol acyltransferase inhibitor Avasimibe affect survival and proliferation of glioma tumor cell lines. Cancer Biol Therapy. 2010;9(12):1025–32.

    Article  CAS  Google Scholar 

  28. Kobayashi S, Nagano H, Tomokuni A, et al. A prospective, randomized phase II study of adjuvant gemcitabine versus S-1 after major hepatectomy for biliary tract cancer (KHBO 1208): kansai hepato-biliary oncology group. Ann Surg. 2019;270(2):230–7.

    Article  PubMed  Google Scholar 

  29. Kinoshita M, Kobayashi S, Gotoh K, et al. Heterogeneity of Treg/Th17 according to cancer progression and modification in biliary tract cancers via self-producing cytokines. Dig Dis Sci. 2020;65(10):2937–48.

    Article  CAS  PubMed  Google Scholar 

  30. Tabas I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Investig. 2002;110(7):905–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang TY, Chang CC, Ohgami N, Yamauchi Y. Cholesterol sensing, trafficking, and esterification. Ann Rev Cell Dev Biol. 2006;22:129–57.

    Article  CAS  Google Scholar 

  32. Accioly MT, Pacheco P, Maya-Monteiro CM, et al. Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 2008;68(6):1732–40.

    Article  CAS  PubMed  Google Scholar 

  33. Lacombe AMF, Soares IC, Mariani BMP, et al. Sterol O-Acyl transferase 1 as a prognostic marker of adrenocortical carcinoma. Cancers. 2020;12(1):247.

    Article  CAS  PubMed Central  Google Scholar 

  34. Bandyopadhyay S, Li J, Traer E, et al. Cholesterol esterification inhibition and imatinib treatment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia. PloS One. 2017;12(7):e0179558.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li M, Yang Y, Wei J, et al. Enhanced chemo-immunotherapy against melanoma by inhibition of cholesterol esterification in CD8(+) T cells. Nanomedicine. 2018;14(8):2541–50.

    Article  CAS  PubMed  Google Scholar 

  36. Guillaumond F, Bidaut G, Ouaissi M, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A. 2015;112(8):2473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weigt J, Malfertheiner P. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. Expert Rev Gastroenterol Hepatol. 2010;4(4):395–7.

    Article  CAS  PubMed  Google Scholar 

  38. Colvin H, Mizushima T, Eguchi H, Takiguchi S, Doki Y, Mori M. Gastroenterological surgery in Japan: the past, the present and the future. Ann Gastroenterol Surg. 2017;1(1):5–10.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Llaverias G, Laguna JC, Alegret M. Pharmacology of the ACAT inhibitor avasimibe (CI-1011). Cardiovasc Drug Rev. 2003;21(1):33–50.

    Article  CAS  PubMed  Google Scholar 

  40. Lee SS, Li J, Tai JN, Ratliff TL, Park K, Cheng JX. Avasimibe encapsulated in human serum albumin blocks cholesterol esterification for selective cancer treatment. ACS Nano. 2015;9(3):2420–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nicholls SJ, Sipahi I, Schoenhagen P, et al. Intravascular ultrasound assessment of novel antiatherosclerotic therapies: rationale and design of the Acyl-CoA: Cholesterol Acyltransferase Intravascular Atherosclerosis Treatment Evaluation (ACTIVATE) Study. Am Heart J. 2006;152(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  42. Nissen SE, Tuzcu EM, Brewer HB, et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. New Engl J Med. 2006;354(12):1253–63.

    Article  CAS  PubMed  Google Scholar 

  43. Qian H, Zhao X, Yan R, et al. Structural basis for catalysis and substrate specificity of human ACAT1. Nature. 2020;581(7808):333–8.

    Article  CAS  PubMed  Google Scholar 

  44. Long T, Sun Y, Hassan A, Qi X, Li X. Structure of nevanimibe-bound tetrameric human ACAT1. Nature. 2020;581(7808):339–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No sources of funding were used to assist in the preparation of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shogo Kobayashi MD, PhD.

Ethics declarations

Disclosure

Goro Ueno, Yoshifumi Iwagami, Shogo Kobayashi, Suguru Mitsufuji, Daisaku Yamada, Yoshito Tomimaru, Hirofumi Akita, Tadafumi Asaoka, Takehiro Noda, Kunihito Gotoh, Masaki Mori, Yuichiro Doki, and Hidetoshi Eguchi have no conflicts of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueno, G., Iwagami, Y., Kobayashi, S. et al. ACAT-1-Regulated Cholesteryl Ester Accumulation Modulates Gemcitabine Resistance in Biliary Tract Cancer. Ann Surg Oncol 29, 2899–2909 (2022). https://doi.org/10.1245/s10434-021-11152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-021-11152-1

Navigation