SUPPLEMENTARY MATERIAL TO "FUNCTIONAL DATA ANALYSIS FOR DENSITY FUNCTIONS BY TRANSFORMATION TO A HILBERT SPACE"

The Wasserstein metric, Wasserstein-Fréchet mean, simulation results and additional proofs

Alexander Petersen and Hans-Georg Müller

S.1. The Wasserstein Metric. The equivalence of the metrics

$$d_Q(f,g)^2 = \int_0^1 (F^{-1}(t) - G^{-1}(t))^2 dt \text{ and } d_W(f,g)^2 = \inf_{X \sim f, Y \sim g} E(X - Y)^2$$

is well known. It can be easily seen by applying a covariance identity due to [28]. If $X \sim F$, $Y \sim G$ and $(X, Y) \sim H$, then this identity states that

$$\operatorname{Cov}(X,Y) = \int \int \{H(u,v) - F(u)G(v)\} \, du \, dv.$$

Expanding the expectation $E(X - Y)^2$, one finds that the distance is obtained by maximizing E(XY), or, equivalently, by maximizing $\operatorname{Cov}(X, Y)$. For a random variable U that is uniformly distributed on [0, 1], take $X^* = F^{-1}(U)$ and $Y^* = G^{-1}(U)$. Then $X^* \sim F$, $Y^* \sim G$ and the distribution function of (X^*, Y^*) is given by $H^*(u, v) = \min(F(u), G(v))$. Clearly, for any joint distribution of $X \sim F$ and $Y \sim G$, we have $H \leq H^*$. By Hoeffding's inequality, this means $\operatorname{Cov}(X, Y) \leq \operatorname{Cov}(X^*, Y^*)$. Thus,

$$d_W(f,g)^2 = E[(X^* - Y^*)^2] = E[(F^{-1}(U) - G^{-1}(U))^2]$$
$$= \int_0^1 (F^{-1}(t) - G^{-1}(t))^2 dt.$$

Let Q be the quantile process corresponding to the density process $f \sim \mathfrak{F}$ and set $Q_{\oplus}(t) = E(Q(t))$. For $q_{\oplus} = Q'_{\oplus}$ and $F_{\oplus} = Q_{\oplus}^{-1}$, the Wasserstein-Fréchet mean is

$$f_{\oplus}(x) = \frac{1}{q_{\oplus}(F_{\oplus}(x))}.$$

Its estimation can thus be reduced to estimating the function q_{\oplus} . Due to the restrictions on the space \mathcal{F} (see assumption (A1)), we can pass differentiation inside the expectation so that $E(Q'(t)) = q_{\oplus}(t)$. This suggests averaging the quantile densities of the sample to obtain an estimator for q_{\oplus} .

Starting with either the densities, f_i , or their estimates, f_i , i = 1, ..., n, we therefore use the corresponding quantile densities $(q_i \text{ or } \check{q}_i)$ to estimate q_{\oplus} by

$$\tilde{q}_{\oplus}(t) = \frac{1}{n} \sum_{i=1}^{n} q_i(t), \quad \text{respectively}, \quad \hat{q}_{\oplus}(t) = \frac{1}{n} \sum_{i=1}^{n} \check{q}_i(t).$$

Computing the corresponding distribution functions, we thus estimate the Wasserstein-Fréchet mean by

$$\tilde{f}_{\oplus}(x) = rac{1}{\tilde{q}_{\oplus}(\tilde{F}_{\oplus}(x))}, \quad ext{respectively}, \quad \hat{f}_{\oplus}(x) = rac{1}{\hat{q}_{\oplus}(\hat{F}_{\oplus}(x))}.$$

As Theorem 2 requires a rate of convergence γ_n for the Wasserstein-Fréchet mean estimator based on fully observed densities, the following result shows that we make take $\gamma_n = n^{-1/2}$ in the case of fully observed densities.

PROPOSITION 3. Under assumption (A1), the estimator \tilde{f}_{\oplus} of f_{\oplus} for the Wasserstein-Fréchet mean satisfies

$$d_W(f_{\oplus}, \tilde{f}_{\oplus}) = O_p(n^{-1/2}).$$

PROOF. By Thm 3.9 in [9], $d_2(q_{\oplus}, \tilde{q}_{\oplus}) = O_p(n^{-1/2})$. As $|Q_{\oplus}(t) - \tilde{Q}_{\oplus}(t)| \le d_2(q_{\oplus}, \tilde{q}_{\oplus})$, we also have

$$d_W(f_{\oplus}, f_{\oplus}) = d_2(Q_{\oplus}, Q_{\oplus}) = O_p(n^{-1/2}).$$

S.2. Simulation Results for the Wasserstein Metric. Figure 7 shows the distribution of fraction of variance explained values in terms of the distance d_W for all simulation settings, similar to Figure 2 in the main text which shows the results for the ordinary L^2 distance. The use of the Wasserstein distance more clearly demonstrates the weakness of ordinary FPCA. The Hilbert sphere method performs relatively better in the context of metric d_W than the L^2 metric, but is still outperformed by the transformation method using the log quantile density transformation, ψ_Q .

Fig 7: Boxplots of fraction of variance explained for 200 simulations, using the Wasserstein metric, d_W . The first row corresponds to fully observed densities and the second corresponds to estimated densities. The columns correspond to settings 1, 2 and 3 from left to right (see Table 1). The methods are denoted by 'FPCA' for ordinary FPCA on the densities, 'LQD' for the transformation approach with ψ_Q and 'HS' for the Hilbert sphere method.

S.3. Listing of All Assumptions. The following is a systematic compilation of all assumptions, subsets of which are used for various results and some of which have been stated in the main text. Recall that d_2 and d_{∞} denote the L^2 and uniform metrics, respectively, and $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$ denote the corresponding norms.

- (A1) For all $f \in \mathcal{F}$, f is continuously differentiable. Moreover, there is a constant M > 1 such that, for all $f \in \mathcal{F}$, $||f||_{\infty}$, $||1/f||_{\infty}$ and $||f'||_{\infty}$ are all bounded above by M.
- (D1) For a sequence $b_N = o(1)$, the density estimator \check{f} , based on an i.i.d. sample of size N, satisfies $\check{f} \ge 0$, $\int_0^1 \check{f}(x) dx = 1$ and

$$\sup_{f \in \mathcal{F}} E(d_2(f, \check{f})^2) = O(b_N^2).$$

(D2) For a sequence $a_N = o(1)$ and some R > 0, the density estimator \check{f} , based on an i.i.d. sample of size N, satisfies

$$\sup_{f\in\mathcal{F}} P(d_{\infty}(f,\check{f}) > Ra_N) \to 0.$$

(S1) Let \check{f} be a density estimator that satisfies (D2), and suppose densities $f_i \in \mathcal{F}$ are estimated by \check{f}_i from i.i.d. samples of size $N_i = N_i(n)$, $i = 1, \ldots, n$, respectively. There exists a sequence of lower bounds $m(n) \leq \min_{1 \leq i \leq n} N_i$ such that $m(n) \to \infty$ as $n \to \infty$ and

$$n \sup_{f \in \mathcal{F}} P(d_{\infty}(f, \check{f}) > Ra_m) \to 0$$

where, for generic $f \in \mathcal{F}$, \check{f} is the estimated density from a sample of size $N(n) \ge m(n)$.

- (K1) The kernel κ is of bounded variation and is symmetric about 0.
- (K2) The kernel κ satisfies $\int_0^1 \kappa(u) \, du > 0$, and $\int_{\mathbb{R}} |u| \kappa(u) \, du$, $\int_{\mathbb{R}} \kappa^2(u) \, du$ and $\int_{\mathbb{R}} |u| \kappa^2(u) \, du$ are finite.
- (T0) Let $f, g \in \mathcal{G}$ with f differentiable and $||f'||_{\infty} < \infty$. Set

$$D_0 \ge \max\left(\|f\|_{\infty}, \|1/f\|_{\infty}, \|g\|_{\infty}, \|1/g\|_{\infty}, \|f'\|_{\infty}\right).$$

There exists C_0 depending only on D_0 such that

$$d_2(\psi(f), \psi(g)) \le C_0 d_2(f, g), \quad d_\infty(\psi(f), \psi(g)) \le C_0 d_\infty(f, g).$$

(T1) Let $f \in \mathcal{G}$ be differentiable with $||f'||_{\infty} < \infty$ and let D_1 be a constant bounded below by $\max(||f||_{\infty}, ||1/f||_{\infty}, ||f'||_{\infty})$. Then $\psi(f)$ is differentiable and there exists $C_1 > 0$ depending only on D_1 such that $||\psi(f)||_{\infty} \le C_1$ and $||\psi(f)'||_{\infty} \le C_1$.

imsart-aos ver. 2014/10/16 file: supplement.tex date: July 15, 2015

(T2) Let d be the selected metric in density space, Y be continuous and X be differentiable on \mathcal{T} with $||X'||_{\infty} < \infty$. There exist constants $C_2 = C_2(||X||_{\infty}, ||X'||_{\infty}) > 0$ and $C_3 = C_3(d_{\infty}(X, Y)) > 0$ such that

$$d(\psi^{-1}(X),\psi^{-1}(Y)) \le C_2 C_3 d_2(X,Y)$$

and, as functions, C_2 and C_3 are increasing in their respective arguments.

(T3) For a given metric d on the space of densities and $f_{1,K} = f_1(\cdot, K, \psi)$ (see (4.5)), $V_{\infty} - V_K \to 0$ and $E(d(f, f_{1,K})^4) = O(1)$ as $K \to \infty$.

S.4. Additional Proofs.

LEMMA 1. Let A be a closed and bounded interval of length |A| and assume $X : A \to \mathbb{R}$ is continuous with Lipschitz constant L. Then

$$||X||_{\infty} \le 2 \max \left(|A|^{-1/2} ||X||_2, \ L^{1/3} ||X||_2^{2/3} \right).$$

PROOF OF LEMMA 1. Let t^* satisfy $|X(t^*)| = ||X||_{\infty}$ and define $I = [t^* - ||X||_{\infty}/(2L), t^* + ||X||_{\infty}/(2L)] \cap A$. Then, for $t \in I$, $|X(t)| \ge ||X||_{\infty}/2$. If I = A,

$$||X||_2^2 = \int_A X^2(s) \ ds \ge \frac{|A| ||X||_\infty^2}{4}$$

so $||X||_{\infty} \leq 2|A|^{-1/2}||X||_2$. If $I \neq A$, suppose without loss of generality that $t^* + ||X||_{\infty}/(2L) \in A$. Then

$$\|X\|_{2}^{2} \geq \int_{t^{*}}^{t^{*} + \|X\|_{\infty}/(2L)} X^{2}(s) \ ds \geq \frac{\|X\|_{\infty}^{2}}{4} \cdot \frac{\|X\|_{\infty}}{2L} = \frac{\|X\|_{\infty}^{3}}{8L},$$

so $||X||_{\infty} \le 2L^{1/3} ||X||_2^{2/3}$.

LEMMA 2. Let X be a stochastic process on a closed interval $\mathcal{T} \subset \mathbb{R}$ such that $\|X\|_{\infty} < C$ and $\|X'\|_{\infty} < C$ almost surely. Let ν and H be the mean and covariance functions associated with X, and ρ_k and τ_k , $k \ge 1$, be the eigenfunctions and eigenvalues of the integral operator with kernel H. Then $\|\nu\|_{\infty} < C$, $\|H\|_{\infty} < 4C^2$ and $\|\rho_k\|_{\infty} < 4C^2 |\mathcal{T}|^{1/2} \tau_k^{-1}$ for all $k \ge 1$. Additionally, $\|\nu'\|_{\infty} < C$ and $\|\rho'_k\|_{\infty} < 4C^2 |\mathcal{T}|^{1/2} \tau_k^{-1}$ for all $k \ge 1$.

PROOF. Since the bounds on X and X' are deterministic, $\|\nu\|_{\infty}$ and $\|H\|_{\infty}$ are both bounded by the given constants. The bound on $\|\rho_k\|_{\infty}$ follows since $\rho_k(t) = \tau_k^{-1} \int_{\mathcal{T}} H(s,t)\rho_k(s) \, ds$ and $\|\rho_k\|_2 = 1$. Dominated convergence implies that ν' exists and is bounded by C, and also implies the bound

of $4C^2$ for the partial derivatives of H, which then leads to the bounds on ρ'_k for all k.

LEMMA 3. Under assumptions (A1) and (T1), with $\hat{\nu}, \tilde{\nu}, \hat{H}, \tilde{H}$ as in (4.2) and (4.3),

$$d_2(\nu, \tilde{\nu}) = O_p(n^{-1/2}),$$
 $d_2(H, \tilde{H}) = O_p(n^{-1/2}),$

(S.1)

$$d_{\infty}(\nu,\tilde{\nu}) = O_p\left(\left(\frac{\log n}{n}\right)^{1/2}\right), \qquad d_{\infty}(H,\tilde{H}) = O_p\left(\left(\frac{\log n}{n}\right)^{1/2}\right).$$

Under the additional assumptions (D1), (D2) and (S1), we have

$$d_{2}(\nu,\hat{\nu}) = O_{p}(n^{-1/2} + b_{m}), \qquad d_{2}(H,\hat{H}) = O_{p}(n^{-1/2} + b_{m}),$$
(S.2)

$$d_{\infty}(\nu,\hat{\nu}) = O_{p}\left(\left(\frac{\log n}{n}\right)^{1/2} + a_{m}\right), \qquad d_{\infty}(H,\hat{H}) = O_{p}\left(\left(\frac{\log n}{n}\right)^{1/2} + a_{m}\right)$$

PROOF. Assumptions (A1) and (T1) imply $E||X||_2^2 < \infty$, so the first line in (S.1) follows from Theorems 3.9 and 4.2 in [9]. The second line in (S.1) follows from Corollaries 2.3(b) and 3.5(b) in [33]. We will show the argument for the mean estimate in (S.2), and the covariance follows similarly.

Let M be as given in assumption (A1) and set $D_1 = 2M$. Define

$$E_n = \bigcap_{i=1}^n \left\{ d_{\infty}(f_i, \check{f}_i) \le D_1^{-1} \right\}.$$

Then $P(E_n^c) \to 0$ by assumptions (D2) and (S1). Take C_1 as given in (T1) for D_1 as defined above. Also by (S1), there is R > 0 such that

$$P(\{d_{\infty}(\tilde{\nu},\hat{\nu}) > Ra_m\} \cap E_n) \le n \max_{1 \le i \le n} P(d_{\infty}(f_i,\check{f}_i) > C_1^{-1}Ra_m) \to 0$$

as $n \to \infty$, so $d_{\infty}(\tilde{\nu}, \hat{\nu}) = O_p(a_m)$. Thus, by the triangle inequality, $d_{\infty}(\nu, \hat{\nu}) = O_p\left(\left(\frac{\log n}{n}\right)^{1/2} + a_m\right)$.

imsart-aos ver. 2014/10/16 file: supplement.tex date: July 15, 2015

 $\mathbf{6}$

Next, letting $\hat{X}_i = \psi(\check{f}_i)$,

$$P\left(\{d_2(\tilde{\nu}, \hat{\nu}) > R\} \cap E_n\right) \le P\left(\left\{\sum_{i=1}^n d_2(X_i, \hat{X}_i) > Rn\right\} \cap E_n\right)$$
$$\le P\left(\sum_{i=1}^n d_2(f_i, \check{f}_i) > C_1^{-1}Rn\right)$$
$$\le C_1 R^{-1} n^{-1} \sum_{i=1}^n \sqrt{E(d_2(f_i, \check{f}_i)^2)} = R^{-1}O(b_m)$$

which shows that $d_2(\tilde{\nu}, \hat{\nu}) = O_p(b_m)$, so the result holds by the triangle inequality.

COROLLARY 1. Under assumption (A1) and (T1), letting $A_k = \|\rho_k\|_{\infty}$, with δ_k as in (5.1),

(S.3)
$$\begin{aligned} |\tau_k - \tilde{\tau}_k| &= O_p(n^{-1/2}), \\ d_2(\rho_k, \tilde{\rho}_k) &= \delta_k^{-1} O_p(n^{-1/2}), \text{ and} \\ d_\infty(\rho_k, \tilde{\rho}_k) &= \tilde{\tau}_k^{-1} O_p\left(\frac{(\log n)^{1/2} + \delta_k^{-1} + A_k}{n^{1/2}}\right), \end{aligned}$$

where all O_p terms are uniform over k. If the additional assumptions (D1), (D2) and (S1) hold,

$$\begin{aligned} |\tau_k - \hat{\tau}_k| &= O_p(n^{-1/2} + b_m), \\ d_2(\rho_k, \hat{\rho}_k) &= \delta_k^{-1} O_p(n^{-1/2} + b_m), \text{ and} \\ (S.4) \ d_\infty(\rho_k, \hat{\rho}_k) &= \hat{\tau}_k^{-1} O_p\left(\frac{(\log n)^{1/2} + \delta_k^{-1} + A_k}{n^{1/2}} + a_m + b_m[\delta_k^{-1} + A_k]\right), \end{aligned}$$

where again all O_p terms are uniform over k.

PROOF. First, observe that (A1) and (T1) together imply that X satisfies the assumptions of Lemma 2. The first two lines of both (S.3) and (S.4) follow by applying Lemmas 4.2 and 4.3 of [9] with the rates given in Lemma 3, above. For the uniform metric on the eigenfunctions, we follow the argument given in the proof of Lemma 1 in [36] to find that

$$d_{\infty}(\tau_k \rho_k, \tilde{\tau}_k \tilde{\rho}_k) \le |\mathcal{T}|^{1/2} \left[d_{\infty}(H, \tilde{H}) + ||H||_{\infty} d_2(\rho_k, \tilde{\rho}_k) \right] = O_p \left(\frac{(\log n)^{1/2} + \delta_k^{-1}}{n^{1/2}} \right)$$

imsart-aos ver. 2014/10/16 file: supplement.tex date: July 15, 2015

It follows that

$$\begin{aligned} |\rho_k(s) - \tilde{\rho}_k(s)| &\leq \tilde{\tau}_k^{-1} \left(|\tau_k \rho_k(s) - \tilde{\tau}_k \rho_k(s)| + |\rho_k(s)| \, |\tau_k - \tilde{\tau}_k| \right) \\ &= \tilde{\tau}_k^{-1} O_p \left(\frac{(\log n)^{1/2} + \delta_k^{-1} + A_k}{n^{1/2}} \right). \end{aligned}$$

Since this last expression is independent of s, this proves the third line of (S.3). The third line of (S.4) is proven in a similar manner.

LEMMA 4. Assume (A1), (T1) and (T2) hold. Let $A_k = \|\rho_k\|_{\infty}$, M as in (A1), δ_k as in (5.1), and C_1 as in (T1) with $D_1 = M$. Let $K^*(n) \to \infty$ be any sequence which satisfies $\tau_{K^*} n^{1/2} \to \infty$ and

$$\sum_{k=1}^{K^*} \left[(\log n)^{1/2} + \delta_k^{-1} + A_k + \tau_{K^*} \delta_k^{-1} A_k \right] = O(\tau_{K^*} n^{1/2}).$$

Let C_2 be as in (T2), $X_{i,K} = \nu + \sum_{k=1}^{K} \eta_{ik} \rho_k$, $\widetilde{X}_{i,K} = \widetilde{\nu} + \sum_{k=1}^{K} \widetilde{\eta}_{ik} \widetilde{\rho}_k$, and set

$$S_{K^*} = \max_{1 \le K \le K^*} \max_{1 \le i \le n} C_2(\|X_{i,K}\|_{\infty}, \|X'_{i,K}\|_{\infty}).$$

Then

$$\max_{1 \le K \le K^*} \max_{1 \le i \le n} d(f_i(\cdot, K, \psi), \tilde{f}_i(\cdot, K, \psi)) = O_p\left(\frac{S_{K^*} \sum_{k=1}^{K^*} \delta_k^{-1}}{n^{1/2}}\right)$$

PROOF. First, observe that $f_i(\cdot, K, \psi) = \psi^{-1}(X_{i,K})$ and $\tilde{f}_i(\cdot, K, \psi) = \psi^{-1}(\tilde{X}_{i,K})$. Recall that $|\eta_{ik}| \leq 2C_1 |\mathcal{T}|^{1/2}$ for all *i* and *k* (see (4.13). Then, by (A1) and Corollary 1,

$$|\eta_{ik} - \tilde{\eta}_{ik}| \le d_2(X_i, \nu) d_2(\rho_k, \tilde{\rho}_k) + d_2(\nu, \tilde{\nu}) = \delta_k^{-1} O_p(n^{-1/2}),$$

where the O_p term is uniform over *i* and *k*. Next, using Lemma 3 and Corollary 1, along with the requirement that $\tau_{K^*} n^{1/2} \to \infty$, for $K \leq K^*$

$$d_{\infty}(X_{i,K}, \tilde{X}_{i,K}) \leq d_{\infty}(\nu, \tilde{\nu}) + \sum_{k=1}^{K} d_{\infty}(\eta_{ik}\rho_{k}, \tilde{\eta}_{ik}\tilde{\rho}_{k})$$

$$\leq d_{\infty}(\nu, \tilde{\nu}) + \sum_{k=1}^{K} |\eta_{ik}| d_{\infty}(\rho_{k}, \tilde{\rho}_{k}) + \sum_{k=1}^{K} ||\rho_{k}||_{\infty} |\eta_{ik} - \tilde{\eta}_{ik}|$$

$$= O_{p} \left(\frac{\sum_{k=1}^{K} \left[(\log n)^{1/2} + \delta_{k}^{-1} + A_{k} + \tau_{K}\delta_{k}^{-1}A_{k} \right]}{\tau_{K}n^{1/2}} \right).$$

imsart-aos ver. 2014/10/16 file: supplement.tex date: July 15, 2015

8

Since the O_p term does not depend on i or K, by the first assumption in the statement of the Lemma, we have

$$\max_{1 \le K \le K^*} \max_{1 \le i \le n} d_{\infty}(X_{i,K}, \widetilde{X}_{i,K}) = O_p(1).$$

For $C_{3,K,i} = C_3(d_{\infty}(X_{i,K}, \widetilde{X}_{i,K}))$ as in (T2),

$$\max_{1 \le K \le K^*} \max_{1 \le i \le n} C_{3,K,i} = O_p(1),$$

whence

$$d_{2}(X_{i,K}, \tilde{X}_{i,K}) \leq d_{2}(\nu, \tilde{\nu}) + \sum_{k=1}^{K} d_{2}(\eta_{ik}\rho_{k}, \tilde{\eta}_{ik}\tilde{\rho}_{k})$$

$$\leq d_{2}(\nu, \tilde{\nu}) + \sum_{k=1}^{K} |\eta_{ik}| d_{2}(\rho_{k}, \tilde{\rho}_{k}) + \sum_{k=1}^{K} |\eta_{ik} - \tilde{\eta}_{ik}|$$

$$= O_{p} \left(n^{-1/2} \sum_{k=1}^{K} \delta_{k}^{-1} \right).$$

Again, this O_p term does not depend on i or K, so

$$\max_{1 \le K \le K^*} \max_{1 \le i \le n} d_2(X_{i,K}, \widetilde{X}_{i,K}) = O_p\left(n^{-1/2} \sum_{k=1}^{K^*} \delta_k^{-1}\right),$$

leading to

$$\max_{1 \le K \le K^*} \max_{1 \le i \le n} d(f_i(\cdot, K, \psi), \tilde{f}_i(\cdot, K, \psi)) \le S_{K^*} \max_{1 \le K \le K^*} \max_{1 \le i \le n} C_{3,K,i} d_2(X_{i,K}, \tilde{X}_{i,K})$$
$$= O_p \left(\frac{S_{K^*} \sum_{k=1}^{K^*} \delta_k^{-1}}{n^{1/2}}\right).$$

imsart-aos ver. 2014/10/16 file: supplement.tex date: July 15, 2015