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S.1. The Wasserstein Metric. The equivalence of the metrics

dQ(f, g)2 =

∫ 1

0
(F−1(t)−G−1(t))2 dt and dW (f, g)2 = inf

X∼f,Y∼g
E(X−Y )2

is well known. It can be easily seen by applying a covariance identity due to
[28]. If X ∼ F , Y ∼ G and (X,Y ) ∼ H, then this identity states that

Cov(X,Y ) =

∫ ∫
{H(u, v)− F (u)G(v)} du dv.

Expanding the expectation E(X − Y )2, one finds that the distance is ob-
tained by maximizing E(XY ), or, equivalently, by maximizing Cov(X,Y ).
For a random variable U that is uniformly distributed on [0, 1], take X∗ =
F−1(U) and Y ∗ = G−1(U). Then X∗ ∼ F , Y ∗ ∼ G and the distribution
function of (X∗, Y ∗) is given by H∗(u, v) = min(F (u), G(v)). Clearly, for any
joint distribution of X ∼ F and Y ∼ G, we have H ≤ H∗. By Hoeffding’s
inequality, this means Cov(X,Y ) ≤ Cov(X∗, Y ∗). Thus,

dW (f, g)2 = E[(X∗ − Y ∗)2] = E[(F−1(U)−G−1(U))2]

=

∫ 1

0
(F−1(t)−G−1(t))2 dt.
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Let Q be the quantile process corresponding to the density process f ∼ F
and set Q⊕(t) = E(Q(t)). For q⊕ = Q′⊕ and F⊕ = Q−1⊕ , the Wasserstein-
Fréchet mean is

f⊕(x) =
1

q⊕(F⊕(x))
.

Its estimation can thus be reduced to estimating the function q⊕. Due to the
restrictions on the space F (see assumption (A1)), we can pass differentiation
inside the expectation so that E(Q′(t)) = q⊕(t). This suggests averaging the
quantile densities of the sample to obtain an estimator for q⊕.

Starting with either the densities, fi, or their estimates, f̌i, i = 1, . . . , n,
we therefore use the corresponding quantile densities (qi or q̌i) to estimate
q⊕ by

q̃⊕(t) =
1

n

n∑
i=1

qi(t), respectively, q̂⊕(t) =
1

n

n∑
i=1

q̌i(t).

Computing the corresponding distribution functions, we thus estimate the
Wasserstein-Fréchet mean by

f̃⊕(x) =
1

q̃⊕(F̃⊕(x))
, respectively, f̂⊕(x) =

1

q̂⊕(F̂⊕(x))
.

As Theorem 2 requires a rate of convergence γn for the Wasserstein-
Fréchet mean estimator based on fully observed densities, the following result
shows that we make take γn = n−1/2 in the case of fully observed densities.

Proposition 3. Under assumption (A1), the estimator f̃⊕ of f⊕ for
the Wasserstein-Fréchet mean satisfies

dW (f⊕, f̃⊕) = Op(n
−1/2).

Proof. By Thm 3.9 in [9], d2(q⊕, q̃⊕) = Op(n
−1/2). As |Q⊕(t)− Q̃⊕(t)| ≤ d2(q⊕, q̃⊕),

we also have
dW (f⊕, f̃⊕) = d2(Q⊕, Q̃⊕) = Op(n

−1/2).
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S.2. Simulation Results for the Wasserstein Metric. Figure 7
shows the distribution of fraction of variance explained values in terms of the
distance dW for all simulation settings, similar to Figure 2 in the main text
which shows the results for the ordinary L2 distance. The use of the Wasser-
stein distance more clearly demonstrates the weakness of ordinary FPCA.
The Hilbert sphere method performs relatively better in the context of met-
ric dW than the L2 metric, but is still outperformed by the transformation
method using the log quantile density transformation, ψQ.
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Fig 7: Boxplots of fraction of variance explained for 200 simulations, using the
Wasserstein metric, dW . The first row corresponds to fully observed densities and
the second corresponds to estimated densities. The columns correspond to settings
1, 2 and 3 from left to right (see Table 1). The methods are denoted by ‘FPCA’ for
ordinary FPCA on the densities, ‘LQD’ for the transformation approach with ψQ

and ‘HS’ for the Hilbert sphere method.
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S.3. Listing of All Assumptions. The following is a systematic com-
pilation of all assumptions, subsets of which are used for various results and
some of which have been stated in the main text. Recall that d2 and d∞
denote the L2 and uniform metrics, respectively, and ‖·‖2 and ‖·‖∞ denote
the corresponding norms.

(A1) For all f ∈ F , f is continuously differentiable. Moreover, there is a
constant M > 1 such that, for all f ∈ F , ‖f‖∞, ‖1/f‖∞ and ‖f ′‖∞
are all bounded above by M .

(D1) For a sequence bN = o(1), the density estimator f̌ , based on an i.i.d.
sample of size N , satisfies f̌ ≥ 0,

∫ 1
0 f̌(x) dx = 1 and

sup
f∈F

E(d2(f, f̌)2) = O(b2N ).

(D2) For a sequence aN = o(1) and some R > 0, the density estimator f̌ ,
based on an i.i.d. sample of size N , satisfies

sup
f∈F

P (d∞(f, f̌) > RaN )→ 0.

(S1) Let f̌ be a density estimator that satisfies (D2), and suppose densities
fi ∈ F are estimated by f̌i from i.i.d. samples of size Ni = Ni(n),
i = 1, . . . , n, respectively. There exists a sequence of lower bounds
m(n) ≤ min1≤i≤nNi such that m(n)→∞ as n→∞ and

n sup
f∈F

P (d∞(f, f̌) > Ram)→ 0

where, for generic f ∈ F , f̌ is the estimated density from a sample of
size N(n) ≥ m(n).

(K1) The kernel κ is of bounded variation and is symmetric about 0.
(K2) The kernel κ satisfies

∫ 1
0 κ(u) du > 0, and

∫
R |u|κ(u) du,

∫
R κ

2(u) du
and

∫
R |u|κ

2(u) du are finite.
(T0) Let f , g ∈ G with f differentiable and ‖f ′‖∞ <∞. Set

D0 ≥ max
(
‖f‖∞, ‖1/f‖∞, ‖g‖∞, ‖1/g‖∞, ‖f ′‖∞

)
.

There exists C0 depending only on D0 such that

d2(ψ(f), ψ(g)) ≤ C0 d2(f, g), d∞(ψ(f), ψ(g)) ≤ C0 d∞(f, g).

(T1) Let f ∈ G be differentiable with ‖f ′‖∞ <∞ and let D1 be a constant
bounded below by max (‖f‖∞, ‖1/f‖∞, ‖f ′‖∞). Then ψ(f) is differ-
entiable and there exists C1 > 0 depending only on D1 such that
‖ψ(f)‖∞ ≤ C1 and ‖ψ(f)′‖∞ ≤ C1.
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(T2) Let d be the selected metric in density space, Y be continuous and
X be differentiable on T with ‖X ′‖∞ < ∞. There exist constants
C2 = C2(‖X‖∞, ‖X ′‖∞) > 0 and C3 = C3(d∞(X,Y )) > 0 such that

d(ψ−1(X), ψ−1(Y )) ≤ C2C3 d2(X,Y )

and, as functions, C2 and C3 are increasing in their respective argu-
ments.

(T3) For a given metric d on the space of densities and f1,K = f1(·,K, ψ)
(see (4.5)), V∞ − VK → 0 and E(d(f, f1,K)4) = O(1) as K →∞.

S.4. Additional Proofs.

Lemma 1. Let A be a closed and bounded interval of length |A| and
assume X : A→ R is continuous with Lipschitz constant L. Then

‖X‖∞ ≤ 2 max
(
|A|−1/2‖X‖2, L1/3‖X‖2/32

)
.

Proof of Lemma 1. Let t∗ satisfy |X(t∗)| = ‖X‖∞ and define I =
[t∗ − ‖X‖∞/(2L), t∗ + ‖X‖∞/(2L)] ∩A. Then, for t ∈ I, |X(t)| ≥ ‖X‖∞/2.
If I = A,

‖X‖22 =

∫
A
X2(s) ds ≥ |A|‖X‖

2
∞

4
,

so ‖X‖∞ ≤ 2|A|−1/2‖X‖2. If I 6= A, suppose without loss of generality that
t∗ + ‖X‖∞/(2L) ∈ A. Then

‖X‖22 ≥
∫ t∗+‖X‖∞/(2L)

t∗
X2(s) ds ≥ ‖X‖

2
∞

4
· ‖X‖∞

2L
=
‖X‖3∞

8L
,

so ‖X‖∞ ≤ 2L1/3‖X‖2/32 .

Lemma 2. Let X be a stochastic process on a closed interval T ⊂ R
such that ‖X‖∞ < C and ‖X ′‖∞ < C almost surely. Let ν and H be the
mean and covariance functions associated with X, and ρk and τk, k ≥ 1, be
the eigenfunctions and eigenvalues of the integral operator with kernel H.
Then ‖ν‖∞ < C, ‖H‖∞ < 4C2 and ‖ρk‖∞ < 4C2|T |1/2τ−1k for all k ≥ 1.
Additionally, ‖ν ′‖∞ < C and ‖ρ′k‖∞ < 4C2|T |1/2τ−1k for all k ≥ 1.

Proof. Since the bounds on X and X ′ are deterministic, ‖ν‖∞ and
‖H‖∞ are both bounded by the given constants. The bound on ‖ρk‖∞ fol-
lows since ρk(t) = τ−1k

∫
T H(s, t)ρk(s) ds and ‖ρk‖2 = 1. Dominated conver-

gence implies that ν ′ exists and is bounded by C, and also implies the bound
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of 4C2 for the partial derivatives of H, which then leads to the bounds on
ρ′k for all k.

Lemma 3. Under assumptions (A1) and (T1), with ν̂, ν̃, Ĥ, H̃ as in
(4.2) and (4.3),

d2(ν, ν̃) = Op(n
−1/2), d2(H, H̃) = Op(n

−1/2),

d∞(ν, ν̃) = Op

((
log n

n

)1/2
)
, d∞(H, H̃) = Op

((
log n

n

)1/2
)
.

(S.1)

Under the additional assumptions (D1), (D2) and (S1), we have

d2(ν, ν̂) = Op(n
−1/2 + bm), d2(H, Ĥ) = Op(n

−1/2 + bm),

d∞(ν, ν̂) = Op

((
log n

n

)1/2

+ am

)
, d∞(H, Ĥ) = Op

((
log n

n

)1/2

+ am

)
.

(S.2)

Proof. Assumptions (A1) and (T1) imply E‖X‖22 <∞, so the first line
in (S.1) follows from Theorems 3.9 and 4.2 in [9]. The second line in (S.1)
follows from Corollaries 2.3(b) and 3.5(b) in [33]. We will show the argument
for the mean estimate in (S.2), and the covariance follows similarly.

Let M be as given in assumption (A1) and set D1 = 2M . Define

En =
n⋂

i=1

{
d∞(fi, f̌i) ≤ D−11

}
.

Then P (Ec
n) → 0 by assumptions (D2) and (S1). Take C1 as given in (T1)

for D1 as defined above. Also by (S1), there is R > 0 such that

P ({d∞(ν̃, ν̂) > Ram} ∩ En) ≤ n max
1≤i≤n

P (d∞(fi, f̌i) > C−11 Ram)→ 0

as n→∞, so d∞(ν̃, ν̂) = Op(am). Thus, by the triangle inequality, d∞(ν, ν̂) =

Op

((
logn
n

)1/2
+ am

)
.
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Next, letting X̂i = ψ(f̌i),

P ({d2(ν̃, ν̂) > R} ∩ En) ≤ P

({
n∑

i=1

d2(Xi, X̂i) > Rn

}
∩ En

)

≤ P

(
n∑

i=1

d2(fi, f̌i) > C−11 Rn

)

≤ C1R
−1n−1

n∑
i=1

√
E(d2(fi, f̌i)2) = R−1O(bm),

which shows that d2(ν̃, ν̂) = Op(bm), so the result holds by the triangle
inequality.

Corollary 1. Under assumption (A1) and (T1), letting Ak = ‖ρk‖∞,
with δk as in (5.1),

|τk − τ̃k| = Op(n
−1/2),

d2(ρk, ρ̃k) = δ−1k Op(n
−1/2), and

d∞(ρk, ρ̃k) = τ̃−1k Op

(
(log n)1/2 + δ−1k +Ak

n1/2

)
,(S.3)

where all Op terms are uniform over k. If the additional assumptions (D1),
(D2) and (S1) hold,

|τk − τ̂k| = Op(n
−1/2 + bm),

d2(ρk, ρ̂k) = δ−1k Op(n
−1/2 + bm), and

d∞(ρk, ρ̂k) = τ̂−1k Op

(
(log n)1/2 + δ−1k +Ak

n1/2
+ am + bm[δ−1k +Ak]

)
,(S.4)

where again all Op terms are uniform over k.

Proof. First, observe that (A1) and (T1) together imply that X satisfies
the assumptions of Lemma 2. The first two lines of both (S.3) and (S.4) follow
by applying Lemmas 4.2 and 4.3 of [9] with the rates given in Lemma 3,
above. For the uniform metric on the eigenfunctions, we follow the argument
given in the proof of Lemma 1 in [36] to find that

d∞(τkρk, τ̃kρ̃k) ≤ |T |1/2
[
d∞(H, H̃) + ‖H‖∞d2(ρk, ρ̃k)

]
= Op

(
(log n)1/2 + δ−1k

n1/2

)
.
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It follows that

|ρk(s)− ρ̃k(s)| ≤ τ̃−1k (|τkρk(s)− τ̃kρk(s)|+ |ρk(s)| |τk − τ̃k|)

= τ̃−1k Op

(
(log n)1/2 + δ−1k +Ak

n1/2

)
.

Since this last expression is independent of s, this proves the third line of
(S.3). The third line of (S.4) is proven in a similar manner.

Lemma 4. Assume (A1), (T1) and (T2) hold. Let Ak = ‖ρk‖∞, M as
in (A1), δk as in (5.1), and C1 as in (T1) with D1 = M . Let K∗(n) → ∞
be any sequence which satisfies τK∗n

1/2 →∞ and

K∗∑
k=1

[
(log n)1/2 + δ−1k +Ak + τK∗δ

−1
k Ak

]
= O(τK∗n

1/2).

Let C2 be as in (T2), Xi,K = ν +
∑K

k=1 ηikρk, X̃i,K = ν̃ +
∑K

k=1 η̃ikρ̃k, and
set

SK∗ = max
1≤K≤K∗

max
1≤i≤n

C2(‖Xi,K‖∞, ‖X ′i,K‖∞).

Then

max
1≤K≤K∗

max
1≤i≤n

d(fi(·,K, ψ), f̃i(·,K, ψ)) = Op

(
SK∗

∑K∗

k=1 δ
−1
k

n1/2

)
.

Proof. First, observe that fi(·,K, ψ) = ψ−1(Xi,K) and f̃i(·,K, ψ) = ψ−1(X̃i,K).
Recall that |ηik| ≤ 2C1|T |1/2 for all i and k (see (4.13). Then, by (A1) and
Corollary 1,

|ηik − η̃ik| ≤ d2(Xi, ν)d2(ρk, ρ̃k) + d2(ν, ν̃) = δ−1k Op(n
−1/2),

where the Op term is uniform over i and k. Next, using Lemma 3 and
Corollary 1, along with the requirement that τK∗n

1/2 →∞, for K ≤ K∗

d∞(Xi,K , X̃i,K) ≤ d∞(ν, ν̃) +

K∑
k=1

d∞(ηikρk, η̃ikρ̃k)

≤ d∞(ν, ν̃) +

K∑
k=1

|ηik|d∞(ρk, ρ̃k) +

K∑
k=1

‖ρk‖∞|ηik − η̃ik|

= Op

(∑K
k=1

[
(log n)1/2 + δ−1k +Ak + τKδ

−1
k Ak

]
τKn1/2

)
.
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Since the Op term does not depend on i or K, by the first assumption in
the statement of the Lemma, we have

max
1≤K≤K∗

max
1≤i≤n

d∞(Xi,K , X̃i,K) = Op(1).

For C3,K,i = C3(d∞(Xi,K , X̃i,K)) as in (T2),

max
1≤K≤K∗

max
1≤i≤n

C3,K,i = Op(1),

whence

d2(Xi,K , X̃i,K) ≤ d2(ν, ν̃) +

K∑
k=1

d2(ηikρk, η̃ikρ̃k)

≤ d2(ν, ν̃) +
K∑
k=1

|ηik|d2(ρk, ρ̃k) +
K∑
k=1

|ηik − η̃ik|

= Op

(
n−1/2

K∑
k=1

δ−1k

)
.

Again, this Op term does not depend on i or K, so

max
1≤K≤K∗

max
1≤i≤n

d2(Xi,K , X̃i,K) = Op

(
n−1/2

K∗∑
k=1

δ−1k

)
,

leading to

max
1≤K≤K∗

max
1≤i≤n

d(fi(·,K, ψ), f̃i(·,K, ψ)) ≤ SK∗ max
1≤K≤K∗

max
1≤i≤n

C3,K,i d2(Xi,K , X̃i,K)

= Op

(
SK∗

∑K∗

k=1 δ
−1
k

n1/2

)
.
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