SUPPLEMENTARY MATERIAL TO
 "FUNCTIONAL DATA ANALYSIS FOR
 DENSITY FUNCTIONS BY
 TRANSFORMATION TO A HILBERT SPACE"

The Wasserstein metric, Wasserstein-Fréchet mean, simulation results and additional proofs

Alexander Petersen and Hans-Georg Müller

S.1. The Wasserstein Metric. The equivalence of the metrics
$d_{Q}(f, g)^{2}=\int_{0}^{1}\left(F^{-1}(t)-G^{-1}(t)\right)^{2} d t \quad$ and $\quad d_{W}(f, g)^{2}=\inf _{X \sim f, Y \sim g} E(X-Y)^{2}$
is well known. It can be easily seen by applying a covariance identity due to [28]. If $X \sim F, Y \sim G$ and $(X, Y) \sim H$, then this identity states that

$$
\operatorname{Cov}(X, Y)=\iint\{H(u, v)-F(u) G(v)\} d u d v .
$$

Expanding the expectation $E(X-Y)^{2}$, one finds that the distance is obtained by maximizing $E(X Y)$, or, equivalently, by maximizing $\operatorname{Cov}(X, Y)$. For a random variable U that is uniformly distributed on $[0,1]$, take $X^{*}=$ $F^{-1}(U)$ and $Y^{*}=G^{-1}(U)$. Then $X^{*} \sim F, Y^{*} \sim G$ and the distribution function of $\left(X^{*}, Y^{*}\right)$ is given by $H^{*}(u, v)=\min (F(u), G(v))$. Clearly, for any joint distribution of $X \sim F$ and $Y \sim G$, we have $H \leq H^{*}$. By Hoeffding's inequality, this means $\operatorname{Cov}(X, Y) \leq \operatorname{Cov}\left(X^{*}, Y^{*}\right)$. Thus,

$$
\begin{aligned}
d_{W}(f, g)^{2}=E\left[\left(X^{*}-Y^{*}\right)^{2}\right] & =E\left[\left(F^{-1}(U)-G^{-1}(U)\right)^{2}\right] \\
& =\int_{0}^{1}\left(F^{-1}(t)-G^{-1}(t)\right)^{2} d t .
\end{aligned}
$$

Let Q be the quantile process corresponding to the density process $f \sim \mathfrak{F}$ and set $Q_{\oplus}(t)=E(Q(t))$. For $q_{\oplus}=Q_{\oplus}^{\prime}$ and $F_{\oplus}=Q_{\oplus}^{-1}$, the WassersteinFréchet mean is

$$
f_{\oplus}(x)=\frac{1}{q_{\oplus}\left(F_{\oplus}(x)\right)}
$$

Its estimation can thus be reduced to estimating the function q_{\oplus}. Due to the restrictions on the space \mathcal{F} (see assumption (A1)), we can pass differentiation inside the expectation so that $E\left(Q^{\prime}(t)\right)=q_{\oplus}(t)$. This suggests averaging the quantile densities of the sample to obtain an estimator for q_{\oplus}.

Starting with either the densities, f_{i}, or their estimates, $\mathscr{f}_{i}, i=1, \ldots, n$, we therefore use the corresponding quantile densities (q_{i} or \check{q}_{i}) to estimate q_{\oplus} by

$$
\tilde{q}_{\oplus}(t)=\frac{1}{n} \sum_{i=1}^{n} q_{i}(t), \quad \text { respectively, } \quad \hat{q}_{\oplus}(t)=\frac{1}{n} \sum_{i=1}^{n} \check{q}_{i}(t) .
$$

Computing the corresponding distribution functions, we thus estimate the Wasserstein-Fréchet mean by

$$
\tilde{f}_{\oplus}(x)=\frac{1}{\tilde{q}_{\oplus}\left(\tilde{F}_{\oplus}(x)\right)}, \quad \text { respectively, } \quad \hat{f}_{\oplus}(x)=\frac{1}{\hat{q}_{\oplus}\left(\hat{F}_{\oplus}(x)\right)} .
$$

As Theorem 2 requires a rate of convergence γ_{n} for the WassersteinFréchet mean estimator based on fully observed densities, the following result shows that we make take $\gamma_{n}=n^{-1 / 2}$ in the case of fully observed densities.

Proposition 3. Under assumption (A1), the estimator \tilde{f}_{\oplus} of f_{\oplus} for the Wasserstein-Fréchet mean satisfies

$$
d_{W}\left(f_{\oplus}, \tilde{f}_{\oplus}\right)=O_{p}\left(n^{-1 / 2}\right)
$$

Proof. By Thm 3.9 in [9], $d_{2}\left(q_{\oplus}, \tilde{q}_{\oplus}\right)=O_{p}\left(n^{-1 / 2}\right)$. As $\left|Q_{\oplus}(t)-\tilde{Q}_{\oplus}(t)\right| \leq d_{2}\left(q_{\oplus}, \tilde{q}_{\oplus}\right)$, we also have

$$
d_{W}\left(f_{\oplus}, \tilde{f}_{\oplus}\right)=d_{2}\left(Q_{\oplus}, \tilde{Q}_{\oplus}\right)=O_{p}\left(n^{-1 / 2}\right)
$$

S.2. Simulation Results for the Wasserstein Metric. Figure 7 shows the distribution of fraction of variance explained values in terms of the distance d_{W} for all simulation settings, similar to Figure 2 in the main text which shows the results for the ordinary L^{2} distance. The use of the Wasserstein distance more clearly demonstrates the weakness of ordinary FPCA. The Hilbert sphere method performs relatively better in the context of metric d_{W} than the L^{2} metric, but is still outperformed by the transformation method using the log quantile density transformation, ψ_{Q}.

Fig 7: Boxplots of fraction of variance explained for 200 simulations, using the Wasserstein metric, d_{W}. The first row corresponds to fully observed densities and the second corresponds to estimated densities. The columns correspond to settings 1,2 and 3 from left to right (see Table 1). The methods are denoted by 'FPCA' for ordinary FPCA on the densities, 'LQD' for the transformation approach with ψ_{Q} and 'HS' for the Hilbert sphere method.
S.3. Listing of All Assumptions. The following is a systematic compilation of all assumptions, subsets of which are used for various results and some of which have been stated in the main text. Recall that d_{2} and d_{∞} denote the L^{2} and uniform metrics, respectively, and $\|\cdot\|_{2}$ and $\|\cdot\|_{\infty}$ denote the corresponding norms.
(A1) For all $f \in \mathcal{F}, f$ is continuously differentiable. Moreover, there is a constant $M>1$ such that, for all $f \in \mathcal{F},\|f\|_{\infty},\|1 / f\|_{\infty}$ and $\left\|f^{\prime}\right\|_{\infty}$ are all bounded above by M.
(D1) For a sequence $b_{N}=o(1)$, the density estimator \check{f}, based on an i.i.d. sample of size N, satisfies $\check{f} \geq 0, \int_{0}^{1} \check{f}(x) d x=1$ and

$$
\sup _{f \in \mathcal{F}} E\left(d_{2}(f, \check{f})^{2}\right)=O\left(b_{N}^{2}\right) .
$$

(D2) For a sequence $a_{N}=o(1)$ and some $R>0$, the density estimator \check{f}, based on an i.i.d. sample of size N, satisfies

$$
\sup _{f \in \mathcal{F}} P\left(d_{\infty}(f, \check{f})>R a_{N}\right) \rightarrow 0
$$

(S1) Let \check{f} be a density estimator that satisfies (D2), and suppose densities $f_{i} \in \mathcal{F}$ are estimated by \check{f}_{i} from i.i.d. samples of size $N_{i}=N_{i}(n)$, $i=1, \ldots, n$, respectively. There exists a sequence of lower bounds $m(n) \leq \min _{1 \leq i \leq n} N_{i}$ such that $m(n) \rightarrow \infty$ as $n \rightarrow \infty$ and

$$
n \sup _{f \in \mathcal{F}} P\left(d_{\infty}(f, \check{f})>R a_{m}\right) \rightarrow 0
$$

where, for generic $f \in \mathcal{F}, \check{f}$ is the estimated density from a sample of size $N(n) \geq m(n)$.
(K1) The kernel κ is of bounded variation and is symmetric about 0 .
(K2) The kernel κ satisfies $\int_{0}^{1} \kappa(u) d u>0$, and $\int_{\mathbb{R}}|u| \kappa(u) d u, \int_{\mathbb{R}} \kappa^{2}(u) d u$ and $\int_{\mathbb{R}}|u| \kappa^{2}(u) d u$ are finite.
(T0) Let $f, g \in \mathcal{G}$ with f differentiable and $\left\|f^{\prime}\right\|_{\infty}<\infty$. Set

$$
D_{0} \geq \max \left(\|f\|_{\infty},\|1 / f\|_{\infty},\|g\|_{\infty},\|1 / g\|_{\infty},\left\|f^{\prime}\right\|_{\infty}\right)
$$

There exists C_{0} depending only on D_{0} such that

$$
d_{2}(\psi(f), \psi(g)) \leq C_{0} d_{2}(f, g), \quad d_{\infty}(\psi(f), \psi(g)) \leq C_{0} d_{\infty}(f, g)
$$

(T1) Let $f \in \mathcal{G}$ be differentiable with $\left\|f^{\prime}\right\|_{\infty}<\infty$ and let D_{1} be a constant bounded below by $\max \left(\|f\|_{\infty},\|1 / f\|_{\infty},\left\|f^{\prime}\right\|_{\infty}\right)$. Then $\psi(f)$ is differentiable and there exists $C_{1}>0$ depending only on D_{1} such that $\|\psi(f)\|_{\infty} \leq C_{1}$ and $\left\|\psi(f)^{\prime}\right\|_{\infty} \leq C_{1}$.
(T2) Let d be the selected metric in density space, Y be continuous and X be differentiable on \mathcal{T} with $\left\|X^{\prime}\right\|_{\infty}<\infty$. There exist constants $C_{2}=C_{2}\left(\|X\|_{\infty},\left\|X^{\prime}\right\|_{\infty}\right)>0$ and $C_{3}=C_{3}\left(d_{\infty}(X, Y)\right)>0$ such that

$$
d\left(\psi^{-1}(X), \psi^{-1}(Y)\right) \leq C_{2} C_{3} d_{2}(X, Y)
$$

and, as functions, C_{2} and C_{3} are increasing in their respective arguments.
(T3) For a given metric d on the space of densities and $f_{1, K}=f_{1}(\cdot, K, \psi)$ (see (4.5)), $V_{\infty}-V_{K} \rightarrow 0$ and $E\left(d\left(f, f_{1, K}\right)^{4}\right)=O(1)$ as $K \rightarrow \infty$.

S.4. Additional Proofs.

Lemma 1. Let A be a closed and bounded interval of length $|A|$ and assume $X: A \rightarrow \mathbb{R}$ is continuous with Lipschitz constant L. Then

$$
\|X\|_{\infty} \leq 2 \max \left(|A|^{-1 / 2}\|X\|_{2}, \quad L^{1 / 3}\|X\|_{2}^{2 / 3}\right)
$$

Proof of Lemma 1. Let t^{*} satisfy $\left|X\left(t^{*}\right)\right|=\|X\|_{\infty}$ and define $I=$ $\left[t^{*}-\|X\|_{\infty} /(2 L), t^{*}+\|X\|_{\infty} /(2 L)\right] \cap A$. Then, for $t \in I,|X(t)| \geq\|X\|_{\infty} / 2$. If $I=A$,

$$
\|X\|_{2}^{2}=\int_{A} X^{2}(s) d s \geq \frac{|A|\|X\|_{\infty}^{2}}{4}
$$

so $\|X\|_{\infty} \leq 2|A|^{-1 / 2}\|X\|_{2}$. If $I \neq A$, suppose without loss of generality that $t^{*}+\|X\|_{\infty} /(2 L) \in A$. Then

$$
\|X\|_{2}^{2} \geq \int_{t^{*}}^{t^{*}+\|X\|_{\infty} /(2 L)} X^{2}(s) d s \geq \frac{\|X\|_{\infty}^{2}}{4} \cdot \frac{\|X\|_{\infty}}{2 L}=\frac{\|X\|_{\infty}^{3}}{8 L}
$$

so $\|X\|_{\infty} \leq 2 L^{1 / 3}\|X\|_{2}^{2 / 3}$.
Lemma 2. Let X be a stochastic process on a closed interval $\mathcal{T} \subset \mathbb{R}$ such that $\|X\|_{\infty}<C$ and $\left\|X^{\prime}\right\|_{\infty}<C$ almost surely. Let ν and H be the mean and covariance functions associated with X, and ρ_{k} and $\tau_{k}, k \geq 1$, be the eigenfunctions and eigenvalues of the integral operator with kernel H. Then $\|\nu\|_{\infty}<C,\|H\|_{\infty}<4 C^{2}$ and $\left\|\rho_{k}\right\|_{\infty}<4 C^{2}|\mathcal{T}|^{1 / 2} \tau_{k}^{-1}$ for all $k \geq 1$. Additionally, $\left\|\nu^{\prime}\right\|_{\infty}<C$ and $\left\|\rho_{k}^{\prime}\right\|_{\infty}<4 C^{2}|\mathcal{T}|^{1 / 2} \tau_{k}^{-1}$ for all $k \geq 1$.

Proof. Since the bounds on X and X^{\prime} are deterministic, $\|\nu\|_{\infty}$ and $\|H\|_{\infty}$ are both bounded by the given constants. The bound on $\left\|\rho_{k}\right\|_{\infty}$ follows since $\rho_{k}(t)=\tau_{k}^{-1} \int_{\mathcal{T}} H(s, t) \rho_{k}(s) d s$ and $\left\|\rho_{k}\right\|_{2}=1$. Dominated convergence implies that ν^{\prime} exists and is bounded by C, and also implies the bound
of $4 C^{2}$ for the partial derivatives of H, which then leads to the bounds on ρ_{k}^{\prime} for all k.

LEMMA 3. Under assumptions (A1) and (T1), with $\hat{\nu}, \tilde{\nu}, \widehat{H}, \widetilde{H}$ as in (4.2) and (4.3),

$$
d_{2}(\nu, \tilde{\nu})=O_{p}\left(n^{-1 / 2}\right), \quad d_{2}(H, \widetilde{H})=O_{p}\left(n^{-1 / 2}\right)
$$

$$
\begin{equation*}
d_{\infty}(\nu, \tilde{\nu})=O_{p}\left(\left(\frac{\log n}{n}\right)^{1 / 2}\right), \quad d_{\infty}(H, \tilde{H})=O_{p}\left(\left(\frac{\log n}{n}\right)^{1 / 2}\right) \tag{S.1}
\end{equation*}
$$

Under the additional assumptions (D1), (D2) and (S1), we have

$$
d_{2}(\nu, \hat{\nu})=O_{p}\left(n^{-1 / 2}+b_{m}\right), \quad d_{2}(H, \widehat{H})=O_{p}\left(n^{-1 / 2}+b_{m}\right)
$$

$$
\begin{equation*}
d_{\infty}(\nu, \hat{\nu})=O_{p}\left(\left(\frac{\log n}{n}\right)^{1 / 2}+a_{m}\right), \quad d_{\infty}(H, \widehat{H})=O_{p}\left(\left(\frac{\log n}{n}\right)^{1 / 2}+a_{m}\right) \tag{S.2}
\end{equation*}
$$

Proof. Assumptions (A1) and (T1) imply $E\|X\|_{2}^{2}<\infty$, so the first line in (S.1) follows from Theorems 3.9 and 4.2 in [9]. The second line in (S.1) follows from Corollaries $2.3(\mathrm{~b})$ and $3.5(\mathrm{~b})$ in [33]. We will show the argument for the mean estimate in (S.2), and the covariance follows similarly.

Let M be as given in assumption (A1) and set $D_{1}=2 M$. Define

$$
E_{n}=\bigcap_{i=1}^{n}\left\{d_{\infty}\left(f_{i}, \check{f}_{i}\right) \leq D_{1}^{-1}\right\}
$$

Then $P\left(E_{n}^{c}\right) \rightarrow 0$ by assumptions (D2) and (S1). Take C_{1} as given in (T1) for D_{1} as defined above. Also by (S1), there is $R>0$ such that

$$
P\left(\left\{d_{\infty}(\tilde{\nu}, \hat{\nu})>R a_{m}\right\} \cap E_{n}\right) \leq n \max _{1 \leq i \leq n} P\left(d_{\infty}\left(f_{i}, \check{f}_{i}\right)>C_{1}^{-1} R a_{m}\right) \rightarrow 0
$$

as $n \rightarrow \infty$, so $d_{\infty}(\tilde{\nu}, \hat{\nu})=O_{p}\left(a_{m}\right)$. Thus, by the triangle inequality, $d_{\infty}(\nu, \hat{\nu})=$ $O_{p}\left(\left(\frac{\log n}{n}\right)^{1 / 2}+a_{m}\right)$.

Next, letting $\widehat{X}_{i}=\psi\left(\check{f}_{i}\right)$,

$$
\begin{aligned}
P\left(\left\{d_{2}(\tilde{\nu}, \hat{\nu})>R\right\} \cap E_{n}\right) & \leq P\left(\left\{\sum_{i=1}^{n} d_{2}\left(X_{i}, \widehat{X}_{i}\right)>R n\right\} \cap E_{n}\right) \\
& \leq P\left(\sum_{i=1}^{n} d_{2}\left(f_{i}, \check{f}_{i}\right)>C_{1}^{-1} R n\right) \\
& \leq C_{1} R^{-1} n^{-1} \sum_{i=1}^{n} \sqrt{E\left(d_{2}\left(f_{i}, \check{f}_{i}\right)^{2}\right)}=R^{-1} O\left(b_{m}\right),
\end{aligned}
$$

which shows that $d_{2}(\tilde{\nu}, \hat{\nu})=O_{p}\left(b_{m}\right)$, so the result holds by the triangle inequality.

Corollary 1. Under assumption (A1) and (T1), letting $A_{k}=\left\|\rho_{k}\right\|_{\infty}$, with δ_{k} as in (5.1),

$$
\begin{align*}
\left|\tau_{k}-\tilde{\tau}_{k}\right| & =O_{p}\left(n^{-1 / 2}\right) \\
d_{2}\left(\rho_{k}, \tilde{\rho}_{k}\right) & =\delta_{k}^{-1} O_{p}\left(n^{-1 / 2}\right), \text { and } \\
d_{\infty}\left(\rho_{k}, \tilde{\rho}_{k}\right) & =\tilde{\tau}_{k}^{-1} O_{p}\left(\frac{(\log n)^{1 / 2}+\delta_{k}^{-1}+A_{k}}{n^{1 / 2}}\right) \tag{S.3}
\end{align*}
$$

where all O_{p} terms are uniform over k. If the additional assumptions (D1), (D2) and (S1) hold,

$$
\begin{align*}
\left|\tau_{k}-\hat{\tau}_{k}\right| & =O_{p}\left(n^{-1 / 2}+b_{m}\right), \\
d_{2}\left(\rho_{k}, \hat{\rho}_{k}\right) & =\delta_{k}^{-1} O_{p}\left(n^{-1 / 2}+b_{m}\right), \text { and } \\
d_{\infty}\left(\rho_{k}, \hat{\rho}_{k}\right) & =\hat{\tau}_{k}^{-1} O_{p}\left(\frac{(\log n)^{1 / 2}+\delta_{k}^{-1}+A_{k}}{n^{1 / 2}}+a_{m}+b_{m}\left[\delta_{k}^{-1}+A_{k}\right]\right) \tag{S.4}
\end{align*}
$$

where again all O_{p} terms are uniform over k.
Proof. First, observe that (A1) and (T1) together imply that X satisfies the assumptions of Lemma 2. The first two lines of both (S.3) and (S.4) follow by applying Lemmas 4.2 and 4.3 of [9] with the rates given in Lemma 3, above. For the uniform metric on the eigenfunctions, we follow the argument given in the proof of Lemma 1 in [36] to find that
$d_{\infty}\left(\tau_{k} \rho_{k}, \tilde{\tau}_{k} \tilde{\rho}_{k}\right) \leq|\mathcal{T}|^{1 / 2}\left[d_{\infty}(H, \widetilde{H})+\|H\|_{\infty} d_{2}\left(\rho_{k}, \tilde{\rho}_{k}\right)\right]=O_{p}\left(\frac{(\log n)^{1 / 2}+\delta_{k}^{-1}}{n^{1 / 2}}\right)$.

It follows that

$$
\begin{aligned}
\left|\rho_{k}(s)-\tilde{\rho}_{k}(s)\right| & \leq \tilde{\tau}_{k}^{-1}\left(\left|\tau_{k} \rho_{k}(s)-\tilde{\tau}_{k} \rho_{k}(s)\right|+\left|\rho_{k}(s)\right|\left|\tau_{k}-\tilde{\tau}_{k}\right|\right) \\
& =\tilde{\tau}_{k}^{-1} O_{p}\left(\frac{(\log n)^{1 / 2}+\delta_{k}^{-1}+A_{k}}{n^{1 / 2}}\right)
\end{aligned}
$$

Since this last expression is independent of s, this proves the third line of (S.3). The third line of (S.4) is proven in a similar manner.

Lemma 4. Assume (A1), (T1) and (T2) hold. Let $A_{k}=\left\|\rho_{k}\right\|_{\infty}, M$ as in (A1), δ_{k} as in (5.1), and C_{1} as in (T1) with $D_{1}=M$. Let $K^{*}(n) \rightarrow \infty$ be any sequence which satisfies $\tau_{K^{*}} n^{1 / 2} \rightarrow \infty$ and

$$
\sum_{k=1}^{K^{*}}\left[(\log n)^{1 / 2}+\delta_{k}^{-1}+A_{k}+\tau_{K^{*}} \delta_{k}^{-1} A_{k}\right]=O\left(\tau_{K^{*}} n^{1 / 2}\right)
$$

Let C_{2} be as in (T2), $X_{i, K}=\nu+\sum_{k=1}^{K} \eta_{i k} \rho_{k}, \widetilde{X}_{i, K}=\tilde{\nu}+\sum_{k=1}^{K} \tilde{\eta}_{i k} \tilde{\rho}_{k}$, and set

$$
S_{K^{*}}=\max _{1 \leq K \leq K^{*}} \max _{1 \leq i \leq n} C_{2}\left(\left\|X_{i, K}\right\|_{\infty},\left\|X_{i, K}^{\prime}\right\|_{\infty}\right)
$$

Then

$$
\max _{1 \leq K \leq K^{*}} \max _{1 \leq i \leq n} d\left(f_{i}(\cdot, K, \psi), \tilde{f}_{i}(\cdot, K, \psi)\right)=O_{p}\left(\frac{S_{K^{*}} \sum_{k=1}^{K^{*}} \delta_{k}^{-1}}{n^{1 / 2}}\right)
$$

Proof. First, observe that $f_{i}(\cdot, K, \psi)=\psi^{-1}\left(X_{i, K}\right)$ and $\tilde{f}_{i}(\cdot, K, \psi)=\psi^{-1}\left(\widetilde{X}_{i, K}\right)$. Recall that $\left|\eta_{i k}\right| \leq 2 C_{1}|\mathcal{T}|^{1 / 2}$ for all i and k (see (4.13). Then, by (A1) and Corollary 1,

$$
\left|\eta_{i k}-\tilde{\eta}_{i k}\right| \leq d_{2}\left(X_{i}, \nu\right) d_{2}\left(\rho_{k}, \tilde{\rho}_{k}\right)+d_{2}(\nu, \tilde{\nu})=\delta_{k}^{-1} O_{p}\left(n^{-1 / 2}\right),
$$

where the O_{p} term is uniform over i and k. Next, using Lemma 3 and Corollary 1 , along with the requirement that $\tau_{K^{*}} n^{1 / 2} \rightarrow \infty$, for $K \leq K^{*}$

$$
\begin{aligned}
d_{\infty}\left(X_{i, K}, \tilde{X}_{i, K}\right) & \leq d_{\infty}(\nu, \tilde{\nu})+\sum_{k=1}^{K} d_{\infty}\left(\eta_{i k} \rho_{k}, \tilde{\eta}_{i k} \tilde{\rho}_{k}\right) \\
& \leq d_{\infty}(\nu, \tilde{\nu})+\sum_{k=1}^{K}\left|\eta_{i k}\right| d_{\infty}\left(\rho_{k}, \tilde{\rho}_{k}\right)+\sum_{k=1}^{K}\left\|\rho_{k}\right\|_{\infty}\left|\eta_{i k}-\tilde{\eta}_{i k}\right| \\
& =O_{p}\left(\frac{\sum_{k=1}^{K}\left[(\log n)^{1 / 2}+\delta_{k}^{-1}+A_{k}+\tau_{K} \delta_{k}^{-1} A_{k}\right]}{\tau_{K} n^{1 / 2}}\right) .
\end{aligned}
$$

Since the O_{p} term does not depend on i or K, by the first assumption in the statement of the Lemma, we have

$$
\max _{1 \leq K \leq K^{*}} \max _{1 \leq i \leq n} d_{\infty}\left(X_{i, K}, \widetilde{X}_{i, K}\right)=O_{p}(1)
$$

For $C_{3, K, i}=C_{3}\left(d_{\infty}\left(X_{i, K}, \widetilde{X}_{i, K}\right)\right)$ as in (T2),

$$
\max _{1 \leq K \leq K^{*}} \max _{1 \leq i \leq n} C_{3, K, i}=O_{p}(1),
$$

whence

$$
\begin{aligned}
d_{2}\left(X_{i, K}, \widetilde{X}_{i, K}\right) & \leq d_{2}(\nu, \tilde{\nu})+\sum_{k=1}^{K} d_{2}\left(\eta_{i k} \rho_{k}, \tilde{\eta}_{i k} \tilde{\rho}_{k}\right) \\
& \leq d_{2}(\nu, \tilde{\nu})+\sum_{k=1}^{K}\left|\eta_{i k}\right| d_{2}\left(\rho_{k}, \tilde{\rho}_{k}\right)+\sum_{k=1}^{K}\left|\eta_{i k}-\tilde{\eta}_{i k}\right| \\
& =O_{p}\left(n^{-1 / 2} \sum_{k=1}^{K} \delta_{k}^{-1}\right) .
\end{aligned}
$$

Again, this O_{p} term does not depend on i or K, so

$$
\max _{1 \leq K \leq K^{*}} \max _{1 \leq i \leq n} d_{2}\left(X_{i, K}, \widetilde{X}_{i, K}\right)=O_{p}\left(n^{-1 / 2} \sum_{k=1}^{K^{*}} \delta_{k}^{-1}\right),
$$

leading to

$$
\begin{aligned}
\max _{1 \leq K \leq K^{*}} \max _{1 \leq i \leq n} d\left(f_{i}(\cdot, K, \psi), \tilde{f}_{i}(\cdot, K, \psi)\right) & \leq S_{K^{*}} \max _{1 \leq K \leq K^{*}} \max _{1 \leq i \leq n} C_{3, K, i} d_{2}\left(X_{i, K}, \widetilde{X}_{i, K}\right) \\
& =O_{p}\left(\frac{S_{K^{*}} \sum_{k=1}^{K^{*}} \delta_{k}^{-1}}{n^{1 / 2}}\right) .
\end{aligned}
$$

