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In this supplement several auxiliary results, which are partially
taken from [9], are presented and the assumptions made in the
paper are discussed in more detail. This material is contained
in the sections A.1 to A.10. In addition, we present a couple
of two-dimensional examples that show that the assumptions
imposed in the paper are not only met by many discontinuous
densities, but also by many continuous densities. This material
is contained in the sections B.1 and B.2.

Appendix A. Remaining Proofs and Additional Material. In this
appendix, the auxiliary results from [9] are presented and the assumptions
are discussed in more detail than it was possible in the main paper.

A.1. Material Related to Level Sets. In this section we present
some additional results from [9] related to the definition of M,,.

To begin with, we note that using the definition of the support of a mea-
sure it becomes obvious that M, can be expressed by

(A.11) M, ={z € X :pu,(U) > 0 for all open neighborhoods U of =} .

Furthermore, if supp 4 = X, we actually have M, = X for all p < 0, but
typically we are, of course, interested in the case p > 0, only. The next
lemma shows that the sets M, are ordered in the usual way.

LEMMA A.1.1.  Let (X,d) be a complete separable metric space, i be a
o-finite measure on X, and P be a p-absolutely continuous distribution on
X. Then, for all p1 < p2, we have

M,, C M,, .

Proor or LEMMA A.1.1. We fix an x € M,, and an open set U C X
with x € U. Moreover, we fix a py-density A of P. Then we obtain

po(U) = p({h > p1}NU) > p({h > p2} NU) = 1, (U) >0,

and hence we obtain x € M, by (A.1.1). O

The following lemma describes the relationship between M, and {h > p}.



LEMMA A.1.2. Let (X,d) be a complete separable metric space, i be a
o-finite measure on X with suppu = X, and P be a p-absolutely continuous
distribution on X. Then, for all p-densities h of P and all p € R, we have

{h>p}cM,c{h>p}.
If b is continuous, we even have {h>p} C M, C {h>p} and OM, C {h=p}.

Proor or LEMMA A.1.2. By definition, M, is the smallest closed set A
satisfying u({h > p} \ A) = 0. Moreover, we obviously have

p({h>p}\{h>p}) =0,

and hence we obtain M, C {h > p}. To show the other inclusion, we fix an
x € {h > p} and an open set U C X with x € U. Then {h > p} NU is open
and non-empty, and hence supp p = X yields

Hp(U) = p({h = p} N U) = u({h > p} N U) > 0.

By (A.1.1) we conclude that x € M,, that is, we have shown {h > p} C M,.

Now assume that h is continuous. Clearly, we have {h > p} C {h > p}
and since {h > p} is open, we conclude that {h > p} C {h > p} C M, by
the previously shown inclusion. Moreover, since {h > p} is closed, we find
M, c {h>p} = {h > p}. Recalling that M, is closed by definition, we
further find 0M, C M, C {h > p}, and thus it remains to show dM, C
{h < p}. Let us assume the converse, i.e., that there exists an x € dM, such
that h(z) > p. By the continuity we then find an open neighborhood U of
x with U C {h > p}. Since € M, we further find an y € U \ M,,, while
our construction together with the previously shown {h > p} C M, yields
the contradicting statement U \ M, C {h > p} \ M, = 0. O

The next lemma provides some simple sufficient conditions for normality.

LEMMA A.1.3. Let (X,d) be a complete separable metric space, i be a
o-finite measure on X with suppu = X, and P be a p-absolutely continuous
distribution on X. Then the following statements hold:

i) If P has an upper semi-continuous pu-density, then it is upper normal
at every level.
it) If P has a lower semi-continuous j-density, then it is lower normal at
every level.
i11) If, for some p > 0, P has a p-density h such that p(0{h > p}) = 0,
then P is normal at level p.
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PROOF OF LEMMA A.1.3. i). Let us fix an upper semi-continuous -
density h of P. Then {h > p} is closed, and hence Lemma A.1.2 shows
M, c {h > p} = {h > p}. Thus, P is upper normal at level p.

ii). Let h be a lower sem1 contmuous ,u,—densmy of P. By Lemma A.1.2 we
then know {h > p} = {h > p} C{h> > p} C M This yields the assertion.

iii). The upper normality follows from (2.3). To see that P is lower normal,
we use the inclusion {h > p} \ ]\04,, C{h>p}\{h > p} = 0{h > p} which
follows from Lemma A.1.2. O]

Let us now assume that P is upper normal at some level p. By (2.2) we
then immediately see that

(A.1.2) w(My & {h = p}) =0

for all p-densities h of P. In other words, up to p-zero measures, M, equals
the p-level set of all u-densities h of P. Moreover, if for some p* > 0 and
p** > p*, the distribution P is upper normal at every level p € (p*, p**],
then using the monotonicity of the sets M, and {h > p} in p as well as
(Uier4;) A (UierBi) C Uier(4; A By), we ﬁnd

(A.1.3) ,u({h>p*}A U Mp> < ﬂ(U ({th*—i—l/n}AMp*H/n)) =0

p>p* neN

for all p-densities h of P, and if P has a continuous density h, we even have
Upsp+ Mp = {h > p*} by an easy consequence of Lemma A.1.2. Similarly, if
P is lower normal at every level p € (p*, p**], we find

(A.1.4) u({h>p*}\ U Mp> < ﬂ(U ({h>p*+1/n}\Mp*+1/n)> =0,

p>p* neN

and if in addition, (A.1.3) holds, we obtain pu(|J M, sl M,) = 0.

p>p* p>p*

A.2. Proofs and Material on Connected Components. This sec-
tion contains the proofs related to Subsection 2.2. In addition, we recall
several additional results on connected components from [9)].

LEMMA A.2.1. Let A C B be two non-empty sets with partitions P(A)
and P(B), respectively. Then the following statements are equivalent:

i) P(A) is comparable to P(B).
i) There exists a ¢ : P(A) — P(B) such that, for all A" € P(A), we have

(A.2.1) A c¢(A).
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Moreover, if one these statements are true, the map C is uniquely determined
by (A.2.1). We call ¢ the cell relating map (CRM) between A and B.

PrROOF OF LEMMA A.2.1. i) = 4). Trivial.

i) = ii). For A’ € P(A) we find a B’ € P(B) such that A" C B’. Defining
C(A") := B’ then gives the desired Property (A.2.1).

Finally, assume that i) is true but ¢ is not unique. Then there exist
A" € P(A) and B',B" € P(B) with B" # B” and both A’ C B’ and
A" c B”. Since A’ # (), this yields B’ N B” # @, which in turn implies
B’ = B"” as P(B) is a partition, i.e. we have found a contradiction. O

PROOF OF LEMMA 2.4. Clearly, ¢ := (p,c o (a3 maps from P(A) to
P(C). Moreover, for A" € P(A) we have A" C (4p5(A") and for B' :=
Ca,B(4") € P(B) we have B’ C (p,c(B’). Combining these inclusions we
find

A" C CaB(A") C(Bc(CaB(A) =(BcoCan(A) =((A)

for all A" € P(A). Consequently, P(A) is comparable to P(C) and by Lemma
A.2.1 we see that ¢ is the CRM (4 ¢, that is (4.c = ( = (B,c 2 (a,B- O

LEMMA A.2.2. Let (X,d) be a metric space, A C X be a non-empty
subset and T > 0. Then every T-connected component of A is T-connected.

PRrROOF OF LEMMA A.2.2. Let A’ be a 7-connected component of A and
x,2 € A’. Then x and 2’ are 7T-connected in A, and hence there exist
Z1,...,oy € A such that 1 = z, z, = 2’ and d(z;,x;41) < 7 for all
i=1,...,n—1. Now, d(x1,x2) < 7 shows that 21 and x5 are 7-connected in
A, and hence they belong to the same 7-connected component, i.e. we have
found xo € A’. Iterating this argument, we find z; € A’ for all i = 1,...,n.
Consequently, z and 2’ are not only 7-connected in A, but also 7-connected
in A’. This shows that A’ is T-connected. O

LeMMmA A.2.3. Let (X,d) be a metric space and A C B be two closed
non-empty subsets of X with |C(B)| < oco. Then C(A) is comparable to C(B).

PROOF OF LEMMA A.2.3. Let us fix an A’ € C(A). Since A C B and
|IC(B)| < oo there then exist an m > 1 and mutually distinct By,..., B, €
C(B) with A’ C ByU---UBy, and AN B; # 0 for all i =1,...,m. Since A
and B are closed, A" and the sets A’ N B; are also closed. Consequently, the
sets A’ N B; are also closed in A’ with respect to the relative topology of A’.
Let us now assume that m > 1. Then A’NB; and (A'NBy)U---U(A'NBy,)
are two disjoint relatively closed non-empty subsets of A’ whose union equals
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A’. Consequently A’ is not connected, which contradicts A’ € C(A). In other
words, we have m = 1, that is, C(A) is comparable to C(B). O

LEMMA A.24. Let (X,d) be a metric space, A C X be non-empty and
7 > 0. Then we have d(A’,A") > 1 for all A, A" € C.(A) with A" # A”.
Moreover, if A is closed, all A" € C.(A) are closed, and if X is compact we
have |C,(A)| < 0.

PROOF OF LEMMA A.2.4. Let A’ # A” be two T-connected components
of A. Then we have d(a/,2") > 7 for all 2’/ € A" and 2" € A”, since otherwise
2’ and 2" would be 7-connected in A. Thus, we have d(A’, A”) > 7, and from
the latter and the compactness of X, we conclude that |C.(A)| < oo. Finally,
let (x;) C A’ be a sequence in some component A’ € C,(A) such that z; — x
for some z € X. Since A is closed, we have x € A, and hence x € A” for
some A” € C;(A). By construction we find d(A’, A”) = 0, and hence we
obtain A’ = A” by the assertion that has been shown first. O

LEMMA A.2.5. Let (X,d) be a metric space, A C X be a non-empty
subset and 7 > 0. Then the following statements are equivalent:

i) A is T-connected.
ii) For all non-empty subsets AT and A~ of A with AT UA™ = A and
AT N A" =0 we have d(AT, A7) < 7.

PROOF OF LEMMA A.2.5. i) = ii). We fix two subsets AT and A~ of A
with ATUA™ = Aand ATN A~ = (). Let us further fix two points 2T € AT
and ~— € A™. Since A is T-connected, there then exist x1,...,x, € A such
that x1 = 27, , = 7 and d(z;,x;41) < 7 for all i = 1,...,n — 1. Then,
2t € AT and z~ € A imply the existence of an i € {1,...,n — 1} with
r; € A” and Tir1 € AT, This yields d(A+,A_) < d(:l?l', xi+1) <T.

ii) = 1i). Assume that A is not 7-connected, that is |C;(A4)] > 1. We
pick an AT € C.(A) and write A~ := A\ AT. Since |C;(A)| > 1, both sets
are non-empty, and our construction ensures that they are also disjoint and
satisfy AT U A~ = A. Moreover, for every A’ € C;(A) with A’ # AT we
know d(A*, A’) > 7 by Lemma A.2.4 and since A~ is the union of such A’,
we conclude d(A*, A7) > 7. O

COROLLARY A.2.6. Let (X,d) be a metric space, A C B C X be non-
empty subsets and T > 0. If A is T-connected, then there exists exactly one
T-connected component B’ of B with AN B’ # (. Moreover, B’ is the only
T-connected component B"” of B that satisfies A C B”.



PROOF OF COROLLARY A.2.6. The second assertion is a direct conse-
quence of the first, and hence it suffice to show the first assertion. Let us
assume the first is not true. Since A C B there then exist B/, B” € C.(B)
with B" # B", AN B’ # (), and AN B"” # (. We write A~ := AN B’ and
AT := An(B\ B'). Since B” C B\ B’, we obtain AT # (), and therefore,
Lemma A.2.5 shows d(A~, A") < 7. Consequently, there exist = € A~ and
xt € At with d(z%,27) < 7. Now we obviously have z= € B’, and by con-
struction, we also find a B” € C-(B) with T € B”. Our previous inequality
then yields d(B’, B") < 7, while Lemma A.2.4 shows d(B’, B") > 7, that
is, we have found a contradiction. O

LEMMA A.2.7. Let (X,d) be a metric space, A C B be two non-empty
subsets of X and 7 > 0. Then C-(A) is comparable to C-(B).

PROOF OF LEMMA A.2.7. For A" € C;(A), Corollary A.2.6 shows that
there is exactly B’ € C-(B) with A” C B’. Thus, C;(A) is comparable to
C-(B). O

LEMMA A.2.8. Let (X,d) be a metric space, A C X be a non-empty
subset and T > 0. Then, for a partition Ai,..., A, of A, the following
statements are equivalent:

i) C-(A) ={A1,..., An}.
ii) A; is T-connected for all i =1,...,m, and d(A;, Aj) > 7 for all i # j.

PROOF OF LEMMA A.2.8. i) = ii). Follows from Lemma A.2.4.

ii) = i). Let us fix an A’ € C;(A) and an A; with A;NA’ # (). Since A; is 7-
connected and A" € C,(A), Corollary A.2.6 applied to the sets 4; C A C X
yields A; € A’. Moreover, Aj,...,A,, is a partition of A, and thus we
conclude that

A =4,

i€l
where [ := {i : A;N A" # (0}. Now let us assume that |I| > 2. We fix an
io € I and write A™ := A;; and A~ := U,cp 4,y Ai- Since |I] > 2, we obtain
A~ # (), and Lemma A.2.5 thus shows d(A*, A~) < 7. On the other hand,
our assumption ensures d(A*, A~) > 7, and hence |I| > 2 cannot be true.
Consequently, there exists a unique index ¢ with A’ = A;. O

LEMMA A.2.9. Let (X,d) be a compact metric space and A C X be a
non-empty closed subset. Then the following statements are equivalent:

i) A is connected.



it) A is T-connected for all T > 0.

PROOF OF LEMMA A.2.9. i) = ii). Assume that A is not 7-connected
for some 7 > 0. Then, by Lemma A.2.4, there are finitely many 7-connected
components Aq,..., A, of A with m > 1. We write A’ := A; and A" :=
AsU---UA,,. Then A" and A” are non-empty, disjoint and A’ U A” = A
by construction. Moreover, Lemma A.2.4 shows that A’ and A” are closed
since A is closed, and hence A cannot be connected.

i1) = 1i). Let us assume that A is not connected. Then there exist two non-
empty closed disjoint subsets of A with A’UA” = A. Since X is compact, A’
and A" are also compact, and hence A’N A" = () implies 7 := d(A4’, A”) > 0.
Lemma A.2.5 then shows that A is not 7-connected. O

The next proposition investigates the relation between C(A) and C(A).

PROPOSITION A.2.10. Let (X,d) be a compact metric space and A C X
be a non-empty closed subset. Then the following statements hold:

i) For all 7 > 0, C(A) is comparable to C+(A) and the CRM ¢ : C(A) —
C-(A) is surjective.
ii) If |C(A)| < oo, we have

74 = min{d(A’, A") : A", A" € C(A) with A" # A"} >0,

where min() := co. Moreover, for all T € (0,74] N (0,00), we have
C(A) =C-(A) and, for such T, the CRM (¢ : C(A) — C-(A) is bijective.
Finally, if 7 < oo, that is, |C(A)| > 1, we have

74 =max{rT >0:C(A) =C,(A)}.

Note that, in general, a closed subset of A may have infinitely many
topologically connected components as, e.g., the Cantor set shows. In this
case, the second assertion of the lemma above is, in general, no longer true.

PROOF OF PROPOSITION A.2.10. i). Let A” € C(A) and 7 > 0. Since
A is closed, so is A’, and hence A’ is T-connected by Lemma A.2.9. Con-
sequently, Corollary A.2.6 shows that there exists an A” € C;(A) with
A" c A" ie. C(A) is comparable to C.(A). Now we fix an A” € C.(A).
Then there exists an x € A”, and to this z, there exists an A" € C(A) with
xz € A'. This yields A’ N A” # 0, and since A’ is T-connected by Lemma
A.2.9, Corollary A.2.6 shows A" C A", i.e. we obtain ((4") = A”.

ii). Let Aq,..., A, be the topologically connected components of A. Then
the components are closed, and since A is a closed and thus compact subset of
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X, the components are compact, too. This shows d(A4;, Aj) > 0 for all i # j,
and consequently we obtain 77 > 0. Let us fix a 7 € (0,74] N (0, 00). Then,
Lemma A.2.9 shows that each A; is T-connected, and therefore Lemma A.2.8
together with d(A;, A;) > 74 > 7 for all i # j yields C-(A) = {A1,..., An}.
Consequently, we have proved C(A) = C(A). The bijectivity of ¢ now follows
from its surjectivity. For the proof of the last equation, we define 7 :=
sup{7 > 0: C(A) = C;(A)}. Then we have already seen that 7} < 7*. Now
suppose that 73 < 7*. Then there exists a 7 € (7}, 7*) with C(A) = C-(A).
On the one hand, we then find d(A;, A;) > 7 for all i@ # j by Lemma
A.2.4, while on the other hand 7 > 7} shows that there exist ig # jo
with d(A;,, Aj,) < 7. In other words, the assumption 7 < 7* leads to a
contradiction, and hence we have 73 = 7. O

The last lemma in this subsection shows the monotonicity of 7.

LEMMA A.2.11. Let (X,d) be a compact metric space and A C B be two
non-empty closed subsets of X with |C(A)] < oo and |C(B)| < oo. If the
CRM ( : C(A) — C(B) is injective, then we have T > Tf.

PROOF OF LEMMA A.2.11. Let us fix some A’; A” € C(A) with A" # A”.
Since ( is injective, we then obtain ((A’) # ((A”). Combining this with
A" C ((A") and A" C ¢(A"), we find

d(A', A") = d(¢(A),¢(A") = 75,

where the last inequality follows from the definition of 7. Taking the infi-
mum over all A" and A” with A’ #£ A” yields the assertion. O

A.3. Additional Material Related to Tubes around Sets. This
section contains additional material on the operations A% and A~9.

Let us begin by noting that in the literature there is another, closely
related concept for adding and cutting off d-tubes, which is based on the
Minkowski addition. Namely, in generic metric spaces (X, d), we can define

AP .= {z € X : Iy € A with d(z,y) < §}
A% .= {z € X : B(z,6) C A}

for A C X and 0 > 0, where B(z,d) := {y € X : d(z,y) < 0} denotes
the closed ball with radius § and center z. Some simple considerations then
show AS@+) = A= < A9 and AP ¢ A0 ¢ AP0+ for all €,6 > 0,
that is, the operations of both concepts almost coincide. In addition, it is
straightforward to check that A% = X\ (X \ A)%°.
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Usually, the operations @4 and &6 are considered for the special case
X := R? equipped with the Euclidean norm. In this case, we immediately
obtain the more common expressions

A@‘Sz{x—i—y:xEAandyEéng}
A ={z eR?: 2+ 6By C A},

where Bég denotes the closed unit Euclidean ball at the origin. Note that the
latter formulas remain true for sufficiently small 6 > 0, if we consider the
“relative case” X C R? and subsets A C X satisfying d(4,R%\ X) € (0, 00).

In general, it is cumbersome to determine the exact forms of A1 and
A9 respectively A% and A®? for a given A. For a particular class of sets
A C R?, Example B.1.1 illustrates this by providing both A®% and A®°.

The next lemma establishes some basic properties of the introduced op-
erations.

LEMMA A.3.1.  Let (X,d) be a metric space and A, B C X be two subsets.
Then the following statements hold:

i) If A is compact, then A0 = A9,
i) We have d(A, B) < d(AT0, Bt9) 4 26.
i11) We have

(A.3.1) (AT =4.

>0

i) We have (AU B)T0 = At U BT and (AN B)*® ¢ AY N B+,

v) We have AUB™° C (AUB)™° and, if d(A, B) > 6, we actually have
A9UB™® = (AUB)™°.

vi) For Ay, Ay C X with AyNAy =0 and B; C A; with d(By, Ba) > 8, we
have

(AT \ Bi®)U(A;°\ By®) C (A1 U A3)°\ (B1UBy) ™,

and equality holds, if d(Ay, Ag) > 6.
vii) For all § > 0 and € > 0, we have A C (AT0T) ™0 and (A=9~)T0 C A.
viti) For all § >0 and € > 0, we have (0A)T0 C ATOFTe\ A=0—¢,

PrOOF OF LEMMA A.3.1. 4). Clearly, it suffices to prove AT9 c A%,
To prove this inclusion, we fix an # € AT®. Then there exists a sequence
(xn) C A with d(z, x,) < d+1/n for all n > 1. Since A is compact, we may
assume without loss of generality that (x,) converges to some 2’ € A. Now
we easily obtain the assertion from d(z, ') < d(x,x,) + d(xn, 2').
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ii). Let us fix an 2 € A1 and an y € BT?. Then there exist two sequences
(xn) C A and (y,) C B such that d(z,z,) < d+1/n and d(y,y,) <d+1/n
for all n > 1. For n > 1, this construction now yields

d(A, B) < d(@n, yn) < d(zn, ) + d(z,y) + d(y,yn) < d(z,y) +20 +2/n,

and by first letting n — oo and then taking the infimum over all z € A*?
and y € BT, we obtain the assertion.

ii). To show the inclusion D, we fix an & € A. Then there exists a sequence
(xn) C A with 2, — = for n — oo. For § > 0 there then exists an ns such
that d(z,z,) < 6 for all n > ns. This shows d(x, A) < §, i.e. z € AT, To
show the converse inclusion C, we fix an = € X that satisfies z € AT/ for
all n > 1. Then there exists a sequence (x,) C A with d(z,z,) < 1/n, and
hence we find x,, — = for n — co. This shows z € A.

). If z € (AUB)19, there exists a sequence (z,,) C AUB with d(z, x,) <
d + 1/n. Without loss of generality we may assume that (z,,) C A, which
immediately yields z € AT, The converse inclusion AT U BT ¢ (AUB)™?
and the inclusion (A N B)*® ¢ A N B+ are trivial.

v). The first inclusion follows from part iv) and simple set algebra, namely

APUBI =X\ (X \ AP N(X\B)Y) c X\ ((Xx\4)n(Xx\B)"
=X\ (X\(4uB)”’
= (AUB)™?.

To show the converse inclusion, we fix an 2 € (AU B) ™. Since (AUB)™° C

AU B, we may assume without loss of generality that z € A. It then remains
to show that = € A™°, that is d(x, X \ A) > §. Obviously, AN B = ), which
follows from d(A, B) > §, implies

X\A=(X\A)N(X\B)UX\4)NB)=(X\(AUB)UB,

and hence we obtain d(z, X \ A) =d(z, X \ (AUB))Ad(z,B) >dNd =20
where we used both 2 € (AU B)™ and d(4, B) > 4.

’U’L) Using the formula (A1 UAQ) \ (Bl @] Bg) = (A1 \Bl) U (A2 \ BQ), which
easily follows from A; \ B; = A; for i # j, we obtain

(AT \ B U (47 \ By?) = (47" U A\ (B U By”)
Cc (AU Ag)ié \ (B1 U Bg)ﬂs ,
where in the last step we used v). The second assertion also follows from v).

vii). Obviously, A C (AT9€)~% is equivalent to (X \ AT0H)0 c X\ A.
To prove the latter, we fix an z € (X \ AT9t)*% Then there exists a
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sequence (z,) C X \ AToF€ with d(z, 2,) < 0+ 1/n for all n > 1. Moreover,
(zn) € X\ ATOF implies d(x,,2’) > 6 + € for all n > 1 and 2’ € A. Now
assume that we had =z € A. For an index n with 1/n < ¢, we would then
obtain § + € < d(zp,x) < 0 + €, and hence x € A cannot be true.

To show the second inclusion we fix an z € (A7°~¢)*9. Then there exists
a sequence (z,) C A707¢ such that d(z,z,) < § + 1/n for all n > 1. This
time, z,, € A707¢ implies z,, ¢ (X \ A)T0F, that is d(z,,2") > § + ¢ for all
n>1and 2/ € X \ A. Choosing an n with 1/n < ¢, we then find z € A.

viii). We fix an o € (0A)®°. By definition, there then exists an 2/ € 9A
with d(z, 2") < §. Moreover, by the definition of the boundary, there exists an
2" € A with d(2/,2") < €, and hence we find d(z, ") < §+¢, i.e. z € ATIHe,
Since DA = J(X \ A), the same argument yields x € (X \ A)T0+ ie. x ¢
A797¢. Thus, we have shown (QA)® C AT+Te\ A=9=¢ Using (0A)™ C
(8A)®(5+6) and a simple change of variables then yields the assertion. O

A.4. Additional Material Related to Persistence. In this section
we recall and prove two results of [9] that extend Theorem 2.7.

We begin with the following lemma, which shows that C-(A) is persistent
in C;(A*?),if 7 > 0 and § > 0 are sufficiently small.

LEMMA A4.1. Let (X,d) be a compact metric space, and A C X be
non-empty. Then, for all § > 0 and T > §, the following statements hold:

i) The set (A))*° is T-connected for all A’ € C(A).
ii) The CRM ¢ : C.(A) — C,(AT9) is surjective.
iii) If A is closed, |C(A)| < oo, and T < 73/3, then the CRM ¢ : C-(A) —
C,(AT9) is bijective and satisfies

(A.4.1) C(A") = (AN, A€ C (A).

PrROOF OF LEMMA A.4.1. i). Since 7 > ¢, there exist an ¢ > 0 with
§+e < 1. For x € (A")™9, there thus exists an 2’ € A’ with d(z,2') <
d+e < 1,ie x and 2’ are T-connected. Since A’ is T-connected, it is then
easy to show that every pair x,2” € (A’)*9 is 7-connected.

ii). Let us fix an A’ € C,(AT%) and an 2 € A". For n > 1 there then exists
an x, € A with d(x,z,) < § + 1/n and since by Lemma A.2.4 there only
exist finitely many 7-connected components of A, we may assume without
loss of generality that there exists an A” € C;(A) with x, € A” for all
n > 1. This yields d(x, A”) <6 + 1/n for all n > 1, and hence d(z, A”) < 6.
Consequently, we obtain z € (A”)*9, i.e. we have (A”)*9 N A’ # (). Since
(A"t C AT we then conclude that (A”)*° C A’ by Corollary A.2.6 and
part i). Furthermore, we clearly have A” C (A”)*° and hence ((A") = A’
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ii1). Let us first consider the case |C(A)| = 1. In this case, part i) of
Proposition A.2.10 shows |C-(A)| = 1, and thus |C;(A1®)| = 1 by the already
established part ¢). This makes the assertion obvious.

In the case |C(A)| > 1 we write Aj,..., A, for the 7-connected compo-
nents of A. By part iv) of Lemma A.3.1 we then obtain

(A.4.2) AT = ] AP,

=1

Since |C(A)| > 1, we further have 77 < oo, and hence part i) of Proposition
A.2.10 yields C(A) = C,(A). The definition of 7} thus gives d(A4;, A;) >
74 > 37 for all i # j. Our first goal is to show that

(A.4.3) d(Af AT > 7, i

To this end, we fix ¢ # j and both an z; € AZTHS and an z; € A;”S. Now, the
compactness of X yields the compactness of A; and A; by Lemma A.2.4, and
hence part i) of Lemma A.3.1 shows that there exist z; € A; and 2, € 4;
with d(z;,z;) < ¢ and d(x;,2}) < 6. This yields

3T < d(ZU;, .1‘;) < d(.%;, xl) + d(mla .Z‘j) + d(.’Bj, .%';) <20+ d(xh ZCj) )
and the latter together with ¢ < 7 implies (A.4.3).

Now i) showed that each A;”S, 1 =1,...,m, is T-connected. Combining
this with (A.4.2), (A.4.3), and Lemma A.2.8, we see that A7, ... A+% are
the 7-connected components of A9, The bijectivity of ¢ then follows from
the surjectivity and a cardinality argument, and (A.4.1) is obvious. O

The following theorem is an extended version of the statements of Theo-
rem 2.7 that deal with C(M).

THEOREM A.4.2. Let (X,d) be a compact metric space, i be a finite
Borel measure on X and P be a p-absolutely continuous distribution on X
that can be clustered between p* and p**. Then the function T defined by
(2.6) is monotonically increasing. Moreover, for all e* € (0, p** — p*], § > 0,
T € (0, 7"(")], and all p € [0, p**], the following statements hold:

i) We have 1 < ]CT(M;F‘S)\ <2.

it) If p > p* + &, then |CT(M;"S)| =2andC(M,) C CT(MI;HS).
i) If |CT(M;F5)| =2, then p > p* and CT(M;Q) C CT(M;rd).

iv) If Cr(M2) € Co(MJ2) and |C-(M;°)| =1, then p < p* + £*.



13

PrROOF OF THEOREM A.4.2. Let us first show the assertions related to
the function 7*. To this end, we first observe that for ¢ € (0, p™* — p*] we
have |C(My+yc)| = |C(Mp+)| = 2 by Definition 2.5. This shows 7%(g) < oo.

Let us now fix e1,e2 € (0, p*™* — p*] with &1 < 3. Then Definition 2.5
guarantees that both M,«;., and M, ., have two topologically connected
components and that the CRM ¢ : C(Mp4e,) = C(Mp4c,) is bijective.
From Lemma A.2.11 we thus obtain

1 1
* otk 1« s
T (62) - 3TMP*+52 2 STM * =T (81) N

i). Since 0 # M, C M;‘S, we find |CT(Mp+6)| > 1. On the other hand,
since 7 > 4, part i) of Lemma A.4.1 and part i) of Proposition A.2.10 yield

(A.4.4) C- (M) < 1C-(M)] < [C(Mp)| < 2.

ii). Let us fix a p € [p* + *, p**]. For € := p — p*, the monotonicity of 7*

then gives 7%(e*) < 7*(¢), and hence we obtain
* 1 *
T< gTMp*+€* < gTMP < 00.

Part 4i) of Proposition A.2.10 thus shows that the CRM (, : C(M,) —
Cr(Mp) is bijective. Furthermore, 6 < 7 < 7}, /3 together with part iii)
of Lemma A.4.1 shows that the CRM (5 : C-(M,) — C(M?) is bijective.
Consequently, the CRM ¢ = (50, : C(M,) — CT(M;F‘S) is bijective, and
from the latter we conclude that |CT(M;'5)| =|C(M,)| = 2.

#ii). Since ]CT(M;“;)] = 2, the already established (A.4.4) yields |C(M,)| =
2, and hence Definition 2.5 implies both p > p* and the bijectivity of the
CRM (¢** : C(Mp=~) — C(M,). Moreover, for p**, the already established
part i7) shows that the CRM (ps @ Cr(Mpex) — CT(M;Z‘E) is bijective, and
the proof of ) further showed C(M+) = C, (M= ). Consequently, (5s equals
the CRM C(M ) — CT(M;é). In addition, § < 7 together with part i) of
Lemma A.4.1 and part i) of Proposition A.2.10 shows that the CRM ¢, :
C(M,) — CT(M;‘s) is surjective. Now, by Lemma 2.4 these maps commute
in the sense of the following diagram

C**
C(Mp**) C(Mp)
CM Cp
Cr (M) C- (M)
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=2

and consequently, the CRM ( is surjective. Since |C,(M pté)

and |C-(M,°)| = 2, we then conclude that ¢ is bijective.
iv). We proceed by contraposition. To this end, we fix an p € [p*+e*, p**].

By the already established part ) we then find |C, (M %)| = 2, and part iii)

thus shows that the CRM () : CT(M;ZSE) — CT(M,;“S) is bijective. Moreover,
Lemma 2.4 yields the following diagram

= [C(M)-~)

C (M) C (M)
Qv Cm
Cr (M) Cr (M)

Cv,m
where ¢, (v, and (y,»s are the corresponding CRMs. Now our assumption
guarantees that ( is bijective, and hence the diagram shows that (v, o (v

is bijective. Consequently, (y is injective, and from the latter we obtain
2= ’CT(M;jr&)’ - |C7'(Mp_*§‘)’ < ’CT(M;;(s)’- O

The next lemma investigates situations in which C,(A7%) is persistent
in C(A). In particular, it shows that if 7 is sufficiently large compared to
§ and |C,(A™%)| = |C(A)]|, then we obtain persistence. Informally speaking
this means that gluing é-cuts by 7-connectivity may preserve the component
structure.

LEMMA A4.3. Let (X,d) be a compact metric space, and A C X be
non-empty and closed with |C(A)| < co. We define % : (0,00) — [0, 00] by

P4 (8) := supd(z, A70), 5> 0.
T€EA

Then, for all 6 > 0 and all T > 2¢%(9), the following statements hold:

i) For all B' € C(A), there is at most one A’ € C;(A™%) with A'N B’ # ().
i) We have |C,(A™%)| < |C(A)|.
iii) If |Cr (A7) = |C(A)|, then C,(A™%) is persistent in C(A). Moreover,
for all B', B" € C(A) with B' # B" we have

(A.4.5) d(B',B") > 1 — 20%(5).

PROOF OF LEMMA A.4.3. 4). Let us fix a ¢ > 2¢%(6) with ¢ < 7 and
a 7" € (0,73) such that ¢y + 7/ < 7, where 7} is the constant defined in
Proposition A.2.10. Moreover, we fix a B’ € C(A). By Proposition A.2.10



15

we then see that C(A) = C,/(A), and hence B’ is 7'-connected. Now let
Ay, ..., Ay, be the T-connected components of A~%. Clearly, Lemma A.2.4
yields d(A;, Aj) > 7 for all i # j. Assume that i) is not true, that is, there
exist indices 4, jo with ig # jo such that A;)NB’ # 0 and Aj,NB’ # (). Thus,
there exist ' € A;, N B' and 2" € Aj, N B’, and since B’ is 7'-connected,
there further exist xq,...,zp41 € B’ C A with g = 2/, 241 = 2" and
d(x;, xi41) < 7 for all i = 0,...,n. Moreover, our assumptions guarantee
d(xz;, A% <¢p/2foralli =0,...,n+ 1. For all i = 0,...,n 4+ 1, there thus
exists an index ¢; with
d(zi, Ag,) < /2.

In addition, we have zg € A;, and x,41 € Aj, by construction, and hence
we may actually choose ¢y = iy and £,11 = jo. Since we assumed £y #
lp41, there then exists an ¢ € {0,...,n} with ¢; # ¢;+1. For this index, our
construction now yields

d(Ayg,, Ag,,) < d(g, Agy) + d(zg, 2i) + d(@ig1, Ag, ) < +7' <1,

which contradicts the earlier established d(Ay,, Ay, ,) > 7.

i). Since A™9 C A, there exists, for every A’ € C,(A™?), a B’ € C(A) with
A'N B’ # (. We pick one such B’ and define ((A’) := B’. Now part i) shows
that ¢ : C,(A7%) — C(A) is injective, and hence we find |C,(A7%)| < |C(A)].

#i). As mentioned in part ii), we have an injective map ¢ : C,(A7%) —
C(A) that satisfies

(A.4.6) An¢A)#0, Al e (A7Y).

Now, |C,(A7?%)| = |C(A)| together with the assumed |C(A)| < co implies that
¢ is actually bijective. Let us first show that { is the only map that satisfies
(A.4.6). To this end, assume the converse, that is, for some A’ € C,;(A™°),
there exists an B’ € C(A) with B’ # ((A’) and A’ N B’ # (. Since (¢ is
bijective, there then exists an A” € C.(A™%) with ¢(A”) = B’, and hence
we have A” N B’ # 0 by (A.4.6). By part i), we conclude that A" = A”,
which in turn yields ((A’) = ((A”) = B’. In other words, we have found a
contradiction, and hence ( is indeed the only map that satisfies (A.4.6).

Let us now show that C,(A™%) is persistent in C(A). Since we assumed
IC-(A7%)| = |C(A)|, it suffices to prove that the injective map ¢ : C, (A7) —
C(A) defined by (A.4.6) is a CRM, i.e. it satisfies

(A.4.7) A c A, A e (A79).

To show (A.4.7), we pick an A’ € C.(A7%) and write By,..., By, for the
topologically connected components of A. Since A~% C A, we then have
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A’ C B1U---UB,,, where the latter union is disjoint. Now, we have just seen
that ¢(A’) € {Bx,..., By} is the only component satisfying A’ N (A") # 0,
and therefore we can conclude A" C ((4’).

Finally, let us show (A.4.5). To this end, we first prove that, for all A" €
C,(A™%) and = € ((A’) we have

(A.4.8) d(z, A") < 94(9),

where ¢ : C.(A7%) — C(A) is the bijective CRM considered above. Let
us assume that (A.4.8) is not true, that is, there exist an A’ € C,(A79)
and an x € ((A’) such that d(z, A’) > ¥%(5). Since d(z, A~%) < ¥ (6),
there further exists an A” € C,(A7%) with d(z, A”) < %(J). Obviously,
this yields A" # A”. Let us fix a 7/ € (0,7}) with 2¢%(§) + 7" < 7, and
an ' € A'. For B’ := ((A4’), we then have 2/ € B’ by (A.4.7), and our
construction guarantees x € B’. Now, the rest of the proof is similar to that

of 7). Namely, since B’ is 7/-connected, there exist xg,...,zn,+1 € B’ with
29 =, Tpy1 = ¢’ and d(z;,x41) < 7' for all i = 0,...,n. Let Aq,..., An
be the 7-connected components of A~°. Then, for all i = 0,...,n + 1, there

exists an index ¢; with

d(zi, Ag;) < Pa(6),
where we may choose Agy = A” and Ay, , = A’. Since £y # £y 1, there then
exists an 7 € {0,...,n} with ¢; # £;11, and our construction yields

T < d(Ag,, Agyy ) < d(xg, Ag)+d(x, Tigr)+d(2ig1, Ag,, ) < 203 (0)+7 < 7.

To prove (A.4.5), we again assume the converse, that is, that there exist
B',B" € C(A) with B’ # B” and d(B’, B") < 7 — 2% (0). Then there exist
' € B" and 2" € B” such that d(2/,2") < 7 — 2¢%(5). Now, since ( is
bijective, there exists A’, A" € C.(A™%) with A" # A", B’ = ((A’), and
B" = ((A"). Using (A.4.8), we then obtain

T<d(AA") < d(a, A) +d(a’,2") +d(2", AT) < 205 (0) +7 = 294(6) =T,
i.e. we again have found a contradiction. O

The following theorem provides an extended version of the statements of
Theorem 2.7 that deal with CT(MP_(S).

THEOREM A.4.4. Let Assumption C be satisfied and £* € (0, p** — p*],
0 € (0, 0¢nick), 7 € (¥(5), 7*(e*)], and p € [0, p**]. Then, we have:

i) We have 1 < ]CT(Mp_‘s)\ < 2.
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ii) We have CT(MPZ‘E) C CT(M;‘E).
iii) If ]CT(M;‘s)] =2, then p > p* and CT(MP_*Q) C CT(M;5) C C(M,).

PROOF OF THEOREM A.4.4. i). We first observe that § < dpiei implies

sup d(m,Mp_é) = @Z)Lp((s) < Conickd” < 00,
€M,

and thus Mp_‘S # 0, ie. ]CT(MP_‘S)\ > 1. Conversely, we have |CT(Mp_6)| <
|C(M,)| < 2, where the first inequality was established in part i) of Lemma
A.4.3 and the second is ensured by Definition 2.5.

ii). The monotonicity of 7% established in Theorem A.4.2 yields § <
P(0) < 17 < 7€) < Tj\%)**/& By part i) of Lemma A.4.1 we then
conclude that the CRM Cr(M,+) — CT(M;Z(E) is bijective, and part i)
of Theorem A.4.2 shows |C;(Mp)| = |CT(Mpt‘E)| = 2. By Lemma 2.4 it
thus suffices to show that the CRM ( : CT(M;;‘E) — Cr (M) is bijec-
tive. Furthermore, if |C,(M pié) = 1, this map is automatically injective,
and if |C-(M p_*‘Z)| = 2, the injectivity follows from the surjectivity and the
above proven |Cr(M,«)| = 2. Consequently, it actually suffices to show
that ¢ is surjective. To this end, we fix a B' € C-(M,++) and an =z € B'.
Then our assumption ensures d(z, M ,;:E) < 9(6), and hence there exists an
A e CT(MP_*‘E) with d(z, A") < (). Therefore, 1)(d) < 7 implies that x and
A’ are T-connected, which yields z € A’. In other words, we have shown
A'N B # . By Lemma A.2.6 and the definition of {, we conclude that
C(A) = B,

iit). We have 2 = |CT(Mp_5)| < |C(M,)| < 2, where the first inequality
was shown in part ) of Lemma A.4.3 and the second is guaranteed by
Definition 2.5. We conclude that |C(M,)| = 2, and hence Definition 2.5
ensures both p > p* and the bijectivity of the CRM (iop : C(Mpe=) — C(M)).
Furthermore, |CT(MP_5)| = |C(M,)|, which has been shown above, together
with part i) of Lemma A.4.3 yields a bijective CRM (, : C.(M;%) —

p
C(M,), i.e. the second persistence CT(MP_‘S) C C(M),) is shown. Moreover,

part i) of Theorem A.4.2 shows |CT(M;§£)\ = 2, and hence the already
established bijectivity of (** : CT(MP_*‘E) — CT(M;;‘E) gives \CT(MP_*‘E)
\CT(M;;‘EH = 2 = |C(M,++)|. Consequently, part iii) of Lemma A.4.3 yields
a bijective CRM (pev : Cr(M.2) = C(Mj++). Then the CRM ¢ : Cr(M.2) —

Cr (M, %) enjoys the following diagram
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6 Cp**
CT(M[;*) C(Mp+)
C Ctop
C‘I‘ (Mp_(s) C(Mp)
Co
whose commutativity follows from Lemma 2.4. Then the bijectivity of (,,
Ctop, and ¢, yields the bijectivity of ¢, which completes the proof. O

A.5. Additional Material Related to Thickness. In this section
we discuss some aspects related to the thickness assumption introduced in
Definition 2.6.

To this end, let (X, d) be an arbitrary metric spaces and A C X. We then
define the function ¢ : (0,00) — [0, 00] by

$4(6) == sup d(z,A%), §>0.
€M,

Obviously, 43, coincides with the left-hand side of (2.5).
Our first observation is that the definition of ¢% immediately yields A C

(A=) TY4A0) for all § > 0 with 1% () < oo, and it is also straightforward to
see that 9% (9) is the smallest ) > 0, for which this inclusion holds, that is

¢4 (8) =min{y >0: A (A7)}

for all 6 > 0. In other words, 1% (6) gives the size of the smallest tube needed

to recover a superset of A from A~°. In particular, if § is too large, that is

A~9 = (), we obviously have 1% (0) = oo and no recovery is possible.
Intuitively it is not surprising that 1% grows at least linearly, that is

(A5.1) (8) > 6

for all § > 0 provided that d(A, X \ A) = 0. Indeed, 9% (§) < ¢ for some
§ > 0 gives us an € > 0 such that d(z, A%) < § — € for all z € A. Since
d(A, X \ A) = 0 there then exists an z € A with d(z, X \ A) < ¢, and for
this = there exists an 2’ € A= with d(z,2’) < § — . Now the definition of
A0 gives d(2/, X \ A) > §, and hence we find a contradiction by

§<d@, X\ A) <d,z)+dz, X\ A) <3J.

For generic sets A, the function 1% is usually hard to bound, but for some
classes of sets, 1% can be computed precisely. For example, for an interval
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I = [a,b], we have 97(d) = d for all 6 € (0,(b— a)/2], and ¥}(§) = oo,
otherwise. Clearly, this example can be extended to finite unions of such
intervals and for intervals that are not closed, the only difference occurs at
d = (b—a)/2. In higher dimensions, an interesting class of sets A with linear
behavior of 9% is described by Serra’s model, see [7, p. 144], that consist of
all compact sets A C R? for which there is a 6y > 0 with

A= (A650)€B(50 — (A@50)@50 )

If, in addition, A is path-connected, then [11, Theorem 1] shows that this
relation also holds for all § € (0,dp]. In this case, we then obtain

A= (Ae(6+e))es(6+e) C (Ae(6+e))+6+e C (A—5)+6+e

for all § € (0,dp) and 0 < € < dp — d. In other words, we have ¢ (0) < +e,
and letting e — 0, we thus conclude % (6) = ¢ for all § € (0,dp). With the
help of Lemma A.3.1, it is not hard to see that this result generalizes to finite
unions of compact, path-connected sets, which has already been observed
in [11]. Finally, note that [11, Theorem 1] also provides some useful char-
acterizations of (path-connected) compact sets belonging to Serra’s model.
In a nutshell, these are the sets whose boundary is a (d — 1)-dimensional
sub-manifold of R? with outward pointing unit normal vectors satisfying a
Lipschitz condition.

Fortunately, our analysis does not require the exact form of %, but only
its asymptotic behavior for § — 0. Therefore, it is interesting to note that
1’ is also asymptotically invariant against bi-Lipschitz transformations. To
be more precise, let (X, d) and (Y,e) be two metric spaces and [ : X — Y
be a bijective map for which there exists a constant C' > 0 such that

Cle(I(z), I(2)) < d(z,2") < Ce(I(z), I(x"))

for all z,2’ € X. For A C X and § > 0, we then have I(A+%/C) c (I(A))*
I(A*Y?), which in turn implies

CTNA(6/C) < Wi ) (8) < O (C9)

for all 6 > 0. In particular, we have 9% (5) < 07 for some v € (0, 1] if and
only if wj(A)(cS) =47

Last but not least we like to mention that based on the sets A C R?
considered in Example B.1.1, Example B.1.2 estimates v%. In particular,
this example provides various sets A with ¢% () ~ d that do not belong
to Serra’s model, and this class of sets can be further expanded by using
bi-Lipschitz transformations as discussed above.
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Now consider Definition 2.6, which excludes thin cusps and bridges, where
the thinness and length of both is controlled by 7. Such assumptions have
been widely used in the literature on level set estimation and density-based
clustering. For example, a basically identical assumption has been made in
[8] for the exponent v = 1, which can be taken, if, e.g., the level sets belong
to Serra’s model. Moreover, level sets belonging to Serra’s model have been
investigated in [10]. In particular, [10, Theorem 2] shows that most level
sets of a Cl-density with Lipschitz continuous gradient belong to Serra’s
model. Unfortunately, however, levels at which the density has a saddle
point are excluded in this theorem, and some other elementary sets such
as cubes in R¢ do not belong to Serra’s model, either. For this reason, we
allow constants cipjc > 1 in Definition 2.6. Moreover, the exponent v < 1 is
allowed to provide more flexibility in situations, in which very thin bridges
are expected. However, based on the discussion on v’ as well as the examples
provided in Section B.2, we strongly believe, that in most cases assuming
«v = 1 is reasonable. With the help of the discussion on 7% it is also easy to
see that we have M, C (M*‘S)J“Z’(‘S)/2 for all 6 € (0, d¢nick] and all p € (0, p**].
In addition, it becomes clear that exponents v > 1 are impossible as soon as
d(M,, X\ M,) = 0 for some p € (0, p**]. Finally, recall that a less geometric
assumption excluding thin features has been used by various authors, see
e.g. [3, 2, 6] and the references therein, and an overview of these and similar
assumptions can be found in [1].

Understanding (2.5) in the one-dimensional case is very simple. Indeed, if
X C R is an interval and P can be topologically clustered between p* and
p**, then, for all p € [0, p™*], the level set M), consists of either one or two
closed intervals. Using this, the discussion on 1% shows that P actually has
thick levels of order v = 1 up to the level p**. Moreover, a possible thickness
function is ¥(d) = 36 for all § € (0, d¢nick), where dgnick equals the smaller
radius of the two intervals at level p**.

Finally, using the discussion on % it is not hard to construct distributions
with discontinuous densities that have thick levels of order, e.g. v = 1. For
continuous densities, however, this task is significantly harder due to the
above mentioned saddle point effects at the critical level p*. Therefore, we
have added Example B.2.1, which provides a large class of such densities in
the case X C R2.

A.6. Proofs and Results Related to Algorithm 2.1. The main
goals of this section is to prove Theorem 2.8 and to provide background
material from [9] for the proof of Theorem 2.9.
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LEMMA A.6.1. Let (X,d) be a compact metric space and p be a finite
Borel measure on X with suppu = X. Moreover, let P be a p-absolutely
continuous distribution on X, and (L,),>0 be a decreasing family of sets
L, C X such that

M} cL, cM*‘S

pte

for some ﬁxed 0>0,e>0, and all p > 0. For some fixed p > 0 and T > 0,
let ¢ : Cr( p+5) — Cr(L,) be the CRM. Then we have:

i) For all A" € C,( p_,_a) with A’ M p+3<€ # () we have ((A")N L 40 # 0.
ii) For all B' € C.(L,) with B' ¢ {(C,(M,?.)), we have

pte
(A.6.1) B' C (X \ M) N M,
(A.6.2) B'N Ly C(X\ Mye)™n M;fs

PROOF OF LEMMA A.6.1. i). Using the CRM property A" C ((A’) and

the inclusion M0 pt3e C L, 2., we obtain

0# A MM, CEA)N Ly
). We fix a B" € C-(L,) \ ¢(C( p+€)). For € B’ we then have

rg  J ¢,

AeC,(M0,)
and hence the CRM property yields
rg | A=M7.
AreC, (M)

This shows = € (X \ M,4.)*°, i.e. we have proved B’ C (X \ M,..)™. Now,

(A.6.1) follows from B’ C L, C M;“SE, and (A.6.2) follows from B'NL,42. C

Lp+2€ C Mp+5- D
PrOOF OF THEOREM 2.8. We first establish the following disjoint union:

Cr(Lp) = C(Co(M2)) U{B' € Cr(L,) \ C(Cr(M,7.)) : B' N Lpyoe # 0}
(A.6.3) U{B' €C-(L,): B'N Ly =0} .

We begin by showing the auxiliary result

(A.6.4) AN ML #0, A eC (MY,
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To this end, we observe that i) and i) of Theorem A.4.2 yield |C; (M, =2,
and hence part ) of Theorem A.4.4 1mphes |C-(M **)\ = 2. Let W’ and W”

be the two 7-connected components of M .9 oo+~ We first assume that M, _fg has

exactly one T-connected component A’, i.e. A’ = M0 ote- Then p + 3¢ < p*™*
and p 4+ ¢ < p + 3¢ imply
é 0 é
0# M C M2y =M OAMP =AM,
i.e. we have shown (A.6.4). Let us now assume that M fe has more than
one T-component. Then it has exactly two such components A’ and A” by
p+e < p* and part i) of Theorem A.4.4. By part i) of Theorem A.4.4
we may then assume without loss of generality that we have W’ c A’ and
W" c A”. Since p + 3e < p** implies M p_*é c M, _335, these inclusions yield
0#W' =WNM2 C ANM ) and ) # W" =W"'nM.2 C A"NM ).
Consequently, we have proved (A.6.4) in this case, too.
Now, from (A.6.4) we conclude by part i) of Lemma A.6.1 that B’ N

Lyio: # 0 for all B € {(C( erE)) This yields

{B' € C-(Ly) \ C(C-(M,}.)) : B'N Lo =0}
—{B €C(L,): B'NLypa =0},

which in turn implies (A.6.3).
Let us now show (2.8). Clearly, by (A.6.3) it remains to show

B'ﬂLp+25 — @,

for all B" € C-(L,) \ ¢(C-(M, Jrs)) Let us assume the converse, that is, there
exists a B’ € C-(L,)\¢(Cx( p+8)) with B'NL,42. # 0. Since Ly12. C Mp+5,
there then exists an z € B’ N M;fe By part i) of Lemma A.3.1 this gives
an &’ € M,y with d(z,z") <6, and hence we obtain

d(x Mp—l—s) ¢}k\/[p+5 (5) < Cthické’y < 2Cthick(s’y .

From this inequality we conclude that there exists an z” € M) e satisfying
d(z',2") < 2¢tnierd”. Let A” € Cr( p+5) be the unique 7-connected compo-
nent satlsfymg a2 € A”. The CRM property then yields 2" € A” C ((A") =
B”, and thus, using ¢ > 1, we find

d(B',B") < d(z,2") < d(z,2') + d(z',2") < 6 + 2ctniekd” < 3cpniad? < 7.

However, since B’ ¢ C(Cr(Mp+5)) and B” € {(C.( pfg)) we obtain B’ # B,

and hence Lemma A.2.4 yields d(B’, B") > . O
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THEOREM A.6.2. Let Assumption C be satisfied. Furthermore, let e* <
(p*™ = p*)/9, 6 € (0,0tnick), T € (¥(5),7"(e")], and € € (0,e*]. In addition,
let D be a data set and (Lp,,)p>0 be a decreasing family satisfying

Mp+6

C LD,P M:_(SE
for all p > 0. Furthermore, assume that Algorithm 2.1 receives the parame-
ters 7, €, and (Lp ,),>0. Then, the following statements are true:

i) The returned level p}, satisfies p}, € [p* + 2¢, p* + 5 + 5el.
it) We have |C-(M | =2 and the CRM ¢ : C-(M.°, ) — C+(Lp,pz)
18 injective.
i11) Algorithm 2.1 returns the two T-connected components of((CT(M;§+5)).

w) There exist CRMs (yex CT(M;JZ) — C(Mp++) and Cpe e CA(MZ°, ) —

D +£) D +a

ppte
C(Mps 1) such that we have a commutative diagram of bijective CRMs:
6 Cp**
Cr(M %) C(Mp+)
Cp**7p35+€ 5
-0 M "
(M) e C(Mpy 4e)

PROOF OF THEOREM A.6.2. We begin with some general observations.
To this end, let p € [0, p** — 4e] be the level that is currently considered
in Line 3 of Algorithm 2.1. Then, Theorem 2.8 shows that Algorithm 2.1
identifies exactly the 7-connected components of Lp , that belong to the set
(= (Mp+5)) where ¢ : Cr( p+5) — C-(Lp,p) is the CRM. In the following,
we thus consider the set ((C, (M, +€)) Moreover, we note that the returned
level p7, always satisfies ,oD 2 p + 3¢ by Line 4 and Line 6, and equality
holds if and only if |¢(C, p+€))] # 1.

i). Let us first consider the case p € [0, p* — ). Then p + e < p* together
with part ¢) and 4ii) of Theorem A.4.4 shows |C,( erE)| = 1, and hence
IC(Cr(M " +€))\ = 1. Our initial consideration then show, that Algorithm 2.1
does not leave its loop, and thus p}, > p* 4+ 2¢.

Let us now consider the case p € [p* + &* + ¢, p* + &* + 2¢|. Here we
first note that Algorithm 2.1 actually inspects such an p, since it iteratively
inspects all p = ie, i = 0,1,..., and the width of the interval above is e.
Moreover, our assumptions on €* and € guarantee p* + * + 2¢ < p** — 4,
and hence we have p € [p* + &* + ¢, p** — 4¢], i.e., we are in the situation
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described at the beginning of the proof. We write (v : C-(M,. 9 = C( pfs)
Cur 2 Cr(M2) — Cr (M), and Cyar : Cr (ML) — Cr (M*‘S ) for the CRMs

between the involved sets. We then obtain the commutative diagram

Cv,m
CT(Mi—Ea) CT(M;—éa)
Cv Cm
C (M) o C (M)

where the CRM (** is bijective by part i) of Theorem A.4.4. Moreover,
p—e > p*+e* together with part i) of Theorem A.4.2 shows |C, (M;rfe)\ =2,
and by m) of Theorem A.4.2 we conclude that (3 is bijective. Similarly,
p+e > p*+e* and the bijectivity of ¢** show by iv) of Theorem A.4.2
that |Cr( ijE)| = 2, and thus (y is bijective by part i) of Theorem
A.4.4. Consequently, (v s is bijective. Let us further consider the CRM
¢ :Cr(Lp,y) — CT(M:_(SE). Then Lemma 2.4 yields another diagram:

Cv,Mm
CH (M) > C-(MS°,)

CT(LD,p)

Since Cy,u is bijective we then find that ( is injective, and since we have

already seen that M, +€ has two 7-connected components, we conclude that

C(Cr (M, Jf‘s)) contains two elements. Consequently, the stopping criterion of
Algorithm 2.1 is satisfied, that is, p;, = p 4 3¢ < p* +€* + be.

i1). Theorem 2.8 shows that in its last run through the loop Algorithm
2.1 identifies exactly the T-connected components of Lp , that belong to the
set (_35(CT(M;EE), where p := p}, — 3¢ and (_3. : CT(Mp_fE) — C+(Lp,)
is the CRM. Moreover, since Algorithm 2.1 stops at p}, — 3¢, we have

|C—3:(C( p+€))] # 1 by our remarks at the beginning of the proof, and
thus |C; (M, JFE)| # 1. From the already proven part i) we further know that
p+e=phH—2 <p"+e" 43 < p*+4e* < p™, and part i) of Theorem
A.4.4 hence gives |C( p+5)] = 2. For later purposes, note that the latter
together with |¢_s.( T(Mp+€))| # 1 implies the injectivity ofg 3¢. Now, part
i) of Theorem A.4.4 shows that the CRM (p pte : Cr (M 0 = C(M0)

pte
is bijective. Let us consider the following commutative dlagram
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s Cp**,p+e - s
C- (M) C-(M,2.)
Cp**,p’b—&-e CN
-5
Cr (Mp*D +s)

where the remaining two maps are the corresponding CRMs, whose existence
is guaranteed by p}, + ¢ < pp + 7e* < p™* and p + ¢ < p}, + €, respectively.
Now the bijectivity of (p ;4. shows that (p« ,x . is injective. Moreover,

ph +e < p** implies \CT(M;*D§+5)\ < 2 by part i) of Theorem A.4.4, while

p** > p* + " implies |CT(MpZi)| = 2 by part iv) of Theorem A.4.2 and part
ii) of Theorem A.4.4. Therefore, Cor= pt,+e 18 actually bijective. This yields
both |CT(M;B‘5+8)| = 2, which is the first assertion, and the bijectivity of .
Let us consider yet another commutative diagram

—0 C -0
C-(M°, ) (M)
C <—3€
CT((LD,pB) ¢ CT(LD,p)

where again, all occurring maps are the CRMs between the respective sets.
Now we have already shown that ¢(_s. is injective and that ¢ is bijective.
Consequently, ( is injective.

iii). This assertions follows from Theorem 2.8 and the inequality p}, <
p** — 3¢, which follows from part ).

iv). We have already seen in the proof of part i) that |C, (M /;‘3)| =2, and
consequently part 4ii) of Lemma A.4.3 shows that there exists a bijective
CRM (= : CT(M/;Q) — C(M++). Moreover, part ii) shows |CT(M;§+8)| =
2, thus part i) of Lemma A.4.3 yields another bijective CRM (pr 4 :

CT(M;*D(SJFE) — C(Mps +c). Furthermore, in the proof of part i) we have

already seen that CRM (p+= ,» 1. is bijective. This gives the diagram. O

A.7. Additional Material Related to Assumption A. In this sec-
tion we discuss Assumption A, which describes the partitions needed for our
histogram approach, in more detail.

We begin with an example of partitions satisfying Assumption A.
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EXAMPLE A.7.1. Let X :=[0,1]¢ be equipped with the metric defined by
the supremum norm || - ||a_, and X be the Lebesque measure. For 6 € (0,1],

there then exists a unique £ € N with @%1 <0< %. We define h := %H and
write As for the usual partition of [0,1]9 into hypercubes of side-length h.
Then, for each A; € As, we have diam A; = h < § and A\4(4;) = hd > 27454,
Moreover, we obviously have |As| = h™% < 29679, and hence (As)se(o,1]
satisfies Assumption A with cpary 1= 2d,

The next lemma describes a general situation in which there exist parti-
tions satisfying Assumption A. For its formulation, recall that the covering
numbers of a compact metric space (X, d) are defined by

N(X,d,d) := min{n >1:3dxq,...,2, € X with X C UB(xi,é)}, 0 >0,
i=1

where again B(z,0) denotes the closed ball with center x and radius 6.

LEMMA A.7.2. Let (X,d) be a compact metric space for which there exist
constants ¢ > 0 and d > 0 such that

N(X,d,6) < e, §€(0,1/4].
Moreover, assume that there exists a finite measure p on X such that
w(B(x,8)) > ¢ '8

for all x € X and 6 € (0,1/4]. Then Assumption A is satisfied for d and
Cpart = 4dC.

Note that the unit spheres S* C R4+ together with their surface measures
satisfy the assumptions for d = d — 1, see also Corollary A.7.3.

PrOOF OF LEMMA A.7.2. Let us recall that a §-packing in X is a family
Yi,- -, Ym € X with d(y;,y;) > 20 for all i # j. Let us write

M(X,d,)) = max{m > 1: dé-packing y1,...,Ym In X}

for the size of the largest possible d-packing in X. Then it is well-known
that we have the following inequalities between these packing numbers and
the covering numbers:

(A.7.1)  M(X,d,8) <N(X,d,6) < M(X,d,6/2), 5> 0.



27

Let us now fix a ¢ € (0,1] and a maximal ¢/4-packing y1, ...,y in X. By
(A.7.1) we conclude that

m=M(X,d,5/4) <N(X,d,5/4) < 4%cs9.

To construct the partition Ag, we consider a Voronoi partition Aq,..., A,
that corresponds to the points y1,. .., ym, where the behavior of the cells on
their boundary may be arbitrary, i.e. ties may be arbitrarily resolved. Our
next goal is to show

(A.7.2) B(yi,5/4)CAiCB(yi,(s/2), 1=1,...,m.
To prove the left inclusion, we fix an x € B(y;,/4). For j # i, we then find
0/2 < d(yi,y;) < d(yi,x) + d(z,y;) < 6/4+d(z,y;),

and hence d(z,y;) > §/4 > d(z,y;). From the latter we conclude that z € A;.

For the proof of the right inclusion, we assume that it does not hold
for some index i € {1,...,m}. Then there exists an = € A; such that
d(x,y;) > §/2. On the hand, since yi,...,yn is a maximal §/4-packing in
X, there exists a j € {1,...,m} with d(z,y;) <2§/4 = §/2, and hence we
have d(z,y;) < 0/2 < d(x,z;). This implies z ¢ A;, i.e. we have found a
contradiction.

Now, using (A.7.2), we obtain both u(A;) > u(B(y;,d6/4)) > 4~d¢ 14
and diam A; < diam B(y;,d/2) < 9. O

The next corollary in particular shows that one of the assumptions made
in Lemma A.7.2 can be omitted if the measure behaves regularly on balls.

COROLLARY A.7.3. Let (X,d) be a compact metric space and p be a
finite measure on X for which there exists a constant K > 1 such hat

K‘l<m<K, 2,y € X, 8 € (0,1/4].

If there exist constants ¢ > 0 and d > 0 such that
N(X,d,8) < e 4, §€(0,1/4],

then Assumption A is satisfied for d and cpary = 44cK . Similarly, if
w(B(z,8)) > ¢ 164, §€(0,1/8],

holds true, then Assumption A is satisfied for d and cpart = 8dcK .
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If (X,d,-) is a compact group with invariant metric d and p is its Haar
measure, then we have K = 1. Moreover, if X C R? is a sufficiently smooth
manifold and p is its surface measure, then the corollary is also applicable.

PrOOF OF COROLLARY A.7.3. To show the first assertion, we fix a § €
(0,1/4] and a minimal é-net z1,...,z, of X. For an x € X we then obtain

1= pu(X) < 3 (B2, ) < nKp(B(x, ) < Ko~ u(B(x,3)).
=1

By Lemma A.7.2 we thus obtain the first assertion.

To prove the second assertion we fix a 6 € (0,1/4] and a maximal 6/2-
packing y1, ..., ym of X. Then B(y;,d/2) N B(y;,6/2) = 0 for i # j implies
1= u(X) = S u(Blyi,6/2)) > mK " u(B(,6/2)) > m2~de 1 K154

i=1

and hence NV'(X,d,8) < M(X,d,6/2) = m < 29cK6~9 by (A.7.1). Lemma
A.7.2 then yields the second assertion. O

A.8. Material Related to Basic Properties of Histograms. The
goal of this section is to establish the key inclusion (2.7) for our histogram-
based approach. The material of this section is taken from [9)].

Our first result shows that hp s uniformly approximates its infinite-sample
counterpart

i)

hps(z) == Z

A

( ])-1A.(£L'), xz € X,
— pu(4;)

J=1

1(
with high probability, where As = (A1, ..., A,,) for a fixed 6 > 0.

THEOREM A.8.1. Let Assumption A be satisfied and P be a distribution
on X. Then, for allm>1,e >0, and § > 0, we have

2ne242d

2 )

part

P”({D € X" : |hps — hpslloo > e}) < 2part exp(—dln5 -
In addition, if P is p-absolutely continuous and there exists a bounded p-
density h of P, then, for alln > 1, >0, and § > 0, we have

3ne2sd )
cpart (6] floo +2¢)/)

P"(D € X" ||hps—hpslle > 5) <2Cpart exp<ln5_d—
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PROOF OF THEOREM A.8.1. We fixan A € As and write f := pu(A)"114.
Then f is non-negative and our assumptions ensure | f||oo < cpartd 9. Con-
sequently, Hoeffding’s inequality, see e.g. [4, Theorem 8.1], yields

1 — 2ne252d
P"({DEX":‘Zf(xi)—Epf‘<a}>Zl—2exp<— ni )
n =1 Cpart
for all n > 1 and € > 0, where we assumed D = (z1,...,z,). Furthermore,

we have 13" | f(2;) = u(A)"'D(A) and Epf = p(A)"'P(A). By a union
bound argument and |As| < cpma—d, we thus obtain
252d

D(A) P(A) > _d 2ne
P ({Dexm: su ———’<e > 1226040 dexp(— .
<{ eyl p(A)  u(A) } part p< Cart )

Since, for x € X and A € As with = € A, we have hp s(x) = u(A)"'D(A)
and hps(z) = p(A)~1P(A), we then find the first assertion.

To show the second inequality, we write f := u(A)~ (14 — P(A)) for a
fixed A € As. This yields Epf =0, || fllco < cpartéfd, and

Epf? < u(A)*P(A) < p(A) Al < cpared ™ Alloo -

Consequently, Bernstein’s inequality, see e.g. [4, Theorem 8.2], yields

1 — 3ne25d
p({D X”:‘— M<el)>1-20xp(- .
({pe w2 1) ) z1-2e0(- i)

Using 237 | f(z;) = (D(A) — P(A))u(A)~", the rest of the proof follows
the lines of the proof of the first inequality. O

The next result specifies the vertical and horizontal uncertainty of a plug-
in level set estimate {h > p}, if h is a uniform approximation of hp.

LEMMA A.8.2.  Let Assumption A be satisfied, P be a pi-absolutely con-
tinuous distribution on X, and h : X — R be a function with ||h—hps|e < €
for some € > 0. Then, for all p > 0, the following statements hold:

i) If P is upper normal at the level p+ ¢, then we have Mp__,i - {il > pt.

i) If P is upper normal at the level p— e, then we have {h > p} C M;_‘Sg.

PROOF OF LEMMA A.8.2. 7). We will show the equivalent inclusion {}Az <
p} C (X \ M,-)*. To this end, we fix an x € X with h(z) < p. If z €
X \ M., we immediately obtain x € (X \ M,.)"°, and hence we may
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restrict our considerations to the case v € M, .. Then, fz(m) < p together
with ||h — hpsllee < € implies hps(x) < h(z) +e < p+¢e. Now let A be
the unique cell of the partition Aj satisfying € A. The definition of hps
together with the assumed 0 < p(A) < oo then yields

(A8D) [ hdu=PA) = hrsl@ln(d) < (p+2)n(A),

where h : X — [0,00) is an arbitrary u-density of P. Our next goal is
to show that there exists an &’ € (X \ M,4.) N A. Suppose the converse,
that is A C M,4.. Then the upper normality of P at the level p + ¢ yields
p(A\N{h > p+e}) < u(Mpre \ {h > p+¢€}) = 0, and hence we conclude
that u(AN{h > p+e}) = p(A). This leads to

/hdu: / hdu + / hdu = / hdp > (p+e)u(A).

A AN{h>p+e} A\{h>p+e} AN{h>p+e}

However, this inequality contradicts (A.8.1), and hence there does exist an
' € (X \ Myi) N A. This implies d(z, X \ M,;.) < d(z,2’) < diam A <4,
i.e. we have shown z € (X \ M,..)*.

i). Let us fix an € X with h(z) > p. If 2 € M,_., we immediately
obtain x € M:_‘SE, and hence it remains to consider the case z € X \ M,_..
Clearly, if p — e < 0, this case is impossible, and hence we may additionally

assume p — e > 0. Then, h(z) > p together with ||h — hpslle < € yields
hps(x) > h(z) —e > p—e. Now let A be the unique cell of the partition Asg
satisfying « € A. By the definition of hps and p(A) > 0 we then obtain

(A82) [ hdu=P() = hrsl@)n(d) 2 (o= 2In(4),

where h : X — [0, 00) is an arbitrary pu-density of P. Next we show that there
exists an 2’ € M,_. N A. Suppose the converse holds, that is A C X \ M,_..
Then the assumed upper normality of P at the level p — ¢ yields

(Mye 5 {h > p—c}) =0,

and thus we find p(X \ M,—.) A{h<p—e})=0by ArB=(X\A4)A
(X \ B). Combining this with the assumed A C X \ M,_., we obtain

(AN {h < p—e}) < u((X\ My \ {h < p—c}) =0,

and this implies

/hdu: / hdp + / hdp = / hdp < (p—e)u(A).

A An{h<p—c} A\{h<p—ce} An{h<p—c}
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This contradicts (A.8.2), and hence there does exist an 2’ € M,_. N A. This
yields d(z, M,_.) < d(z,z’) < diam A < §, i.e. we have shown z € M:_‘SE. O

A.9. Proofs and Additional Material Related to the Consis-
tency. In this section we prove Theorem 4.1. Furthermore, it contains
additional material related to the assumptions made in that theorem.

LEMMA A.9.1. Let (X,d) be a metric space, p be a finite Borel measure
on X, and (A,)cr be a decreasing family of closed subsets of X. For p* € R,
we write

= U fip and Ap* = U A,.
p>p* p>p*

Then we have

- UUUa.

p>p*e>06>0

Moreover, the following statements are equivalent:

i) N(Ap* \Ap*) =0
i) For all € > 0, there exists a p. > p* such that, for all p € (p*, pe], we
have pu(A,\ A,) <e

PROOF OF LEMMA A.9.1. To show the first equality, we observe that
(A.3.1) implies

N NNEN A =) (| X\ Apie = () XV 4,

p>p* e>06>0 e>0 p>p* p>p*
Moreover, every set A C X satisfies X \ A = X \ A, and hence we obtain
ﬂ ﬂﬂ(X\Ap+a)+5 m X\AP):X\UAP'
p>p* e>06>0 p>p* p>p p>p*

Therefore, by taking the complement we find

U d=x0 (N N NE 4007 ) = U U R 4007)

p>p* p>p*e>06>0 p>p* e>086>0

= U UuUaz..

p>p*e>06>0
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i) = 4i). Let us fix an € > 0. Since /olp = Uy, /cip/ Ay for p N\, p*, the
o-continuity of finite measures yields a p. > p* such that ,u(flp* \/Olp) <e
for all p € (p*, pc]. Using A, C A, for p > p*, we then obtain the assertion

1(Ap\ Ap) < p(Ap- \ 4p) <e. . )
i) = i). Let us fix an ¢ > 0. For p € (p*, p], we then have A, C Ay,
and hence our assumption yields p(A, \ Ay+) < . In other words, we have
lim N o+ (A, \ Apx) = 0. Moreover, we have A, /t Ape for p N p*, and
hence the o-continuity of u yields lim,\ = (A, \ Ape) = p(Ap \ Ape). O

LEMMA A.9.2. Let f : (0,1] — (0,00) be a monotonously increasing
function and g : (0, f(1)] — [0, 1] be its generalized inverse, that is

g(y) = inf{z € (0,1] : f(z) >y}, y € (0,1].
Then we have lim,,_,o+g(y) = 0.

PrOOF OF LEMMA A.9.2. Let (y,) C (0, f(1)] be a sequence with y, —
0. For n > 1, we write E,, := {z € (0,1] : f(x) > yn}. Let us fix an € € (0, 1].
Since f is strictly positive, we then find f(e) > 0, and hence there exists an
no > 1 such that f(e) > y, for all n > ny. Thus, we have ¢ € E,, for all
n > ng, and from the latter we obtain g(y,) = inf E,, < ¢ for such n. O

Before we prove Theorem 4.1, let us briefly illustrate the additional as-
sumption p(AF U A3\ (A7 U A3)) = 0. To this end, we fix a p-density h of
P. Then Lemma A.1.2 tells us that

Auvds= Y Mc|Jzpc Y hzpr={n>p7.

p>p* p>p* p>p*

Using the normality in Assumption C, which implies (A.1.3), we then obtain

p(AFUAZ\ (ATUAY) < p({h > p 3\ {h > p"}) < u(@{h>p"})
= puo{h <p'}).

Consequently, the additional assumption is satisfied, if there exists a u-
density h of P such that u(0{h < p*}) = 0. In this respect recall, that
Lemma A.1.3 showed that P is normal, if, for all p € R, we have a u-density
h of P with u(8{h > p}) = 0.

PrROOF OF THEOREM 4.1. We fix an € > 0. For n > 1, 7 := 7,, and
€ := &y, we define ¢ by the right hand-side of (3.4). Then, Lemma A.9.2
shows 0 < & < eA (p** — p*)/9 for sufficiently large n. In addition, ¢,, and
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e, satisfy (3.2) for sufficiently large n by (4.1), and we also have §,, < dgnick
for sufficiently large n. Thus, there is an ng > 1 such that, for all n > ng, the
values ey, 0y, T, and €}, satisfy the assumptions of Theorem 3.1 and €}, <.

Let us now consider an n > ng and a data set D € X" satisfying both
the assertions i) - v) of Theorem A.6.2 and (2.10). By Theorem 3.1 and our
previous considerations we then know that the probability P™ of D is not
less than 1 — e™°. Now, part i) of Theorem A.6.2 yields p}, — p* > 2¢,, > 0
and

pp —p" <&l +5e, < 6e), < 6e,

i.e. we have shown the first convergence.

To prove the second convergence, we write A;, ¢ = 1,2, for the two topo-
logically connected components of M. For p € (p*, p**], we further define
Al = Cp(A;), where ¢y : C(Mp=+) — C(M)) is the CRM. In addition, we
write A, := () for p > p™* and A, := X for p < p*. Let us first show

(A.9.1) p(AL N\ ALy =0

for i = 1,2, where we used the notation of Lemma A.9.1. To this end, we
fix an € > 0. Since P is lower and upper normal at every level p € [p*, p**]
we find, for an arbitrary p-density h of P,

WL\ M) = p({h > p"} \ M) =0,

where we used (A.1.3), (A.1.4), and the notation of Lemma A.9.1. Lemma
A.9.1 then shows that there exists a p. > p* such that

(A.9.2) (M, \ Mp) <e

for all p € (p*, pe|, where we may assume without loss of generality that
pe < p**. Let us now fix a p € (p*, pe]. Then we obviously have A},UA% C M,.

To prove that the converse inclusion also holds, we pick an x € M »- Without
loss of generality we may assume that x € A}). Since A% is closed and thus

compact, we then have ¢ := d(x, A%) > 0. Moreover, since M, is open, there
exists a 6 € (0,¢) such that B(z,0) C Mp. This yields B(x,6) C A, U A%,
and by d(:v,AlZ)) > ¢, we conclude that B(zx,d) C A;. This shows z € /0127,
and hence we indeed have M o= A}) U/i%. Now we use this equality to obtain

M, \ M, = (AL\ (AL U A2)) U (A2\ (AL U A2)) = (AL\ AL) U (42 42).

By (A.9.2), this implies M(Aﬁ)\jiﬁ,) < ¢, and thus Lemma A.9.1 shows (A.9.1).
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Let us now fix an € > 0 and a ¢ > 1. By the equality of Lemma A.9.1
and the o-continuity of finite measures there then exist d. > 0, e > 0, and
pe € (p*, p**] such that, for all e € (0,e], 0 € (0,0¢], p € (p*, pe), and i = 1,2,
we have (A% \ (A,"DJFE)*‘;) < e. Combining this with A} = A%., which holds
by the definition of the clusters A}, and Equation (A.9.1) we then obtain

(A.93) w(AI\ (451 ™") = n(Ap \ (451 77) = n(Ap\ (4,00)77) <.

Moreover, our assumption p(AF U A5\ (ATUAS)) = 0 means p(Mye \ M) =
0, and since by part i) of Lemma A.3.1 we know that

N(U )" = Ui

6>0 “p>p* p>p*
we find
+4 ~
(U ) ) <«
p>p*
for all sufficiently small § > 0. From this it is easy to conclude that
(A.9.4) p(MP N\ M) < e

for all sufficiently small € > 0, § > 0 and all p > p* + . Without loss of
generality, we may thus assume that (A.9.4) also holds for all £ € (0,e],
d € (0,0 and all p > p* +¢.

For given 7 := 7, and € := ¢, we now define ¢}, by the right hand-side
of (3.4). Then, Lemma A.9.2 shows ¢, — 0, and hence we obtain e}, <
min{ 25~ *,e,ge} for all sufficiently large n. In addition, 4, and &, satisfy
(3.2) for sufficiently large n by (4.1), and we also have ¢, < € A g and
On < 0c A Otniek for sufficiently large n. Consequently, there exists an ng > 1
such that, for all n > ng, the values €, d,, 7, and €}, satisfy the assumptions
of Theorem 3.1 as well as &, < e A e, and 6, < I..

Let us now consider an n > ng and a data set D € X" satisfying both
the assertions i) - v) of Theorem A.6.2 and (2.10). By Theorem 3.1 and our
previous considerations we then know that the probability P™ of D is not
less than 1 —e™°. Now, part i) of Theorem A.6.2 gives both p}, > p* +2¢, >
p* +en and pj, < p* + ) + 5e, < p* + 6¢) < pe, and hence (A.9.3) and
(A.9.4) hold for € := €y, § := 6y, and p := p},. Consequently, (2.10) shows

u(B1(D) A A) + u(Ba(D) & A3) < 2u( AT\ (A1) %) +2p(A45\ (A2,.)70)
+ (M2 N\ {h > p*))
< 4e+ M(Mpt&e \ M)
< %€,
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where in the second to last step we also used (A.1.4). O

A.10. Additional Material Related to Rates. In this section, the
assumption made in Section 4 are discussed in some more detail.

Let us begin with the following lemma, which gives a sufficient condition
for a non-trivial separation exponent.

LEMMA A.10.1. Let X C R be compact and convez, || - || be some norm
on R?, and P be a Lebesque absolutely continuous distribution on X that can
be clustered between the levels p* and p**. Assume that P has a continuous
density h and that there exist constants ¢ > 0 and 6 € (0,00) such that

(A.10.1) |h(z) — h(z))| < ellz — 2|

forallz € {h < p*}, p € (p*, p**], and &’ € OxM,, where Ox M, denotes the
boundary of M, in X. Then the clusters of P have separation exponent 0.

PROOF OF LEMMA A.10.1. Let £ € (0,p* — p*] and A; and Ay be the
connected components of M« .. Since A; and A are closed, they are com-
pact, and hence there exist x1 € Ay and x5 € Ay with

(A.10.2) a = H.T}l — 1‘2” = d(Al, AQ) s
where we note that A;N Az = () implies a > 0. For ¢ € [0, 1], we now consider
x(t) ==tz + (1 —t)xg.

Since X is convex, we note that x(t) € X for all ¢ € [0, 1]. Our first goal is to
show that x; € Ox M, . for ¢ = 1,2. To this end, we assume the converse,
e.g. Tg € ]\Zp*+€. Then there exists an € € (0,a) with Bx(z2,€) C /12, where
Bx(x9,¢€) := {z € X : ||x — x2]| < €}. Now ||z(e/a) — x2|| = € implies
x(e/a) € Ay, while ||z(e/a) — z1|| = a — € shows ||z(e/a) — x1]| < d(A1, A3).
Together this contradicts (A.10.2).

For what follows, let us now observe that ¢ — z(t) is a continuous map
on [0, 1], and since h is continuous, there exists a t* € [0, 1] with h(z(t*)) =
minyepo,1) h(z(t)). Our next goal is to show that

(A.10.3) h(z(tY) < p*.

To this end, we assume the converse, that is h(x(t*)) > p*. Then there
exists a 0 € (0,¢] such that h(z(t)) > p* + 6 for all ¢ € [0, 1], and therefore
an application of Lemma A.1.2 using the continuity of h yields z(t) € M,
for all ¢ € [0,1]. In other words, 1 and x2 are path-connected in M« s,
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and since the connecting path is a straight line, it is easy to see that x;
and zo are T-connected for all 7 > 0. Let us pick a 7 < 37%(0) = 73 s
Since |C(M,+45)| = 2, part ii) of Proposition A.2.10 then shows C(M - +5)
Cr(Myeys5). Let Ay and A be the two topologically connected components
of Mpy;s. Our previous considerations then showed that A1 and Ag are
also the two 7-connected components of M, 5. Now, 6 < ¢ gives a CRM
¢ : C(Mprye) — C( »++5), which is bijective, since P can be clustered
between p* and p™. Without loss of generality we may thus assume that
C(A;) = A, fori = 1,2. This yields z; € A; C AZ, i.e. 1 and x5 do not belong
to the same 7- connected component of M, s. Clearly, this contradicts our
observation that z; and z9 are 7-connected, and hence (A.10.3) is proven.
Now assume without loss of generality that t* € [1/2,1). Since we have
already seen that 1 € dx M., our assumption (A.10.1) and (A.10.3) yield

[Pz (t*)) = h(z)| < e lla(t) — 1]
In addition, Lemma A.1.2 shows 1 € M, C {h > p* + ¢}. Combining
these estimates with (A.10.2) and d(A;1, As) = T}\k/[p*+6 = 37*(¢g), we find
pr e < h(z) < h(z(t') +cllz(t) — a1|® < p" + cllz(t) —
< p* + 02_0610(141, AQ)
=pt+c(3/2)7'77(e)’,
and from the latter the assertion easily follows. O
Note that (A.10.1) holds, if the density h in Lemma A.10.1 is actually 6-
Holder-continuous, and it is easy to see that the converse is, in general, not

true. Moreover, using the inclusion dx M, C {h = p} established in Lemma
A.1.2, it is easy to check that (A.10.1) is equivalent to

(A.10.4) |h(z) - p| < cd(x,0x M,)°

for all z € {h < p*} and p € (p*, p**]. Note that a localized but two-sided
version of this condition has been used in [8] for a level set estimator that
is adaptive with respect to the Hausdorff metric.

Our next goal is to discuss the assumptions made in Theorem 4.7 in more
detail. To this end, we need a couple of technical lemmata.

LEMMA A.10.2. Let X C R? be compact and convex and d be a metric
on X that is defined by a norm on R®. Then, we have

d(z,0xA) < d(z,X \ A)
for all A C X and x € A, where Ox A denotes the boundary of A in X.
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PROOF OF LEMMA A.10.2. Before we begin with the proof we note that

— __pd
B* = B" for all B C X since X is closed, i.e., taking the closure with

respect to X or R? is the same. Like in the statement of the lemma, we will
thus omit the superscript. Let us now write § := d(z, X \ A). Then there
exists a sequence (x,) C X \ A such that d(x,z,) — J. Since X is assumed
to be compact, so is X \ A, and thus there exists an xo, € X \ A such that
d(x,200) < 0. Obviously, it suffices to show zo, € OxA. Let us assume the
converse. Since x A = ANX \ A, we then have x,, & A, that is 7o, € X \ A.
Now, the latter set is open in X, and hence there exists an € > 0 such that
Bx(Zoo,€) C X \ A, where Bx (%0, €) denotes the closed ball in X that has
center T, and radius €. This € must satisfy € < §, since otherwise we would
find a contradiction to * € A by # € Bx(Zx,d) C Bx(%e0,e) C X \ A.
For t := /6 € (0,1) we now define 2’ := tx + (1 — t)x. The convexity of
X implies 2/ € X, and since d is defined by a norm, we have d(zoo,2') =
td(r,20) < €. Together, this yields 2’ € Bx(7o0,e) C X \ A C X \ A.
Consequently, d(z,2’) = (1 —t)d(z, o) < (1—1)d < § implies d(z, X \ 4) <
0, which contradicts the definition of é. O

LEMMA A.10.3. Let X C R? be compact and convex and d be a metric
on X that is defined by a norm on R%. Then, for all A C X and § > 0, we

have
A+6\A75 C (8XA)+5,

where the operations A0 and A=° as well as the boundary dx A are with
respect to the metric space (X,d).

PROOF OF LEMMA A.10.3. Let us fix an z € AT0\ A=% = AT N (X \
A)F If 2 € A, then Lemma A.10.2 immediately yields d(z, dx A) < d(z, X\
A) < 6, that is z € (9xA)T0. Tt thus suffices to consider the case x ¢ A.
Then we find x € X\ A C X\ A C X \ A, and hence another application of
Lemma A.10.2 yields d(z, 0x (X \A)) < d(z, A) < §. Now the assertion easily
follows from dx (X \ A) = X\ AN X\ (X\4) =X\ ANA=0xA. O

The next lemma shows that assuming an a-smooth boundary with a > 1
does not make sense. It further shows that, for each level set with rectifiable
boundary in the sense of [5, 3.2.14], the bound (4.9) holds with o = 1.

LEMMA A.10.4. Let \¢ be the d-dimensional Lebesque measure, He1
be the (d — 1)-dimensional Hausdorff measure on R?, and o4 be the volume
of the d-dimensional unit Euclidean ball in R®. Then, for every non-empty,
bounded, and measurable subset A C R the following statements hold:
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i) There exists a d4 > 0, such that for c, := dai/d)\d(g)lfl/dﬂ and all
d € (0,04], we have

(AN AT >y 0.

i) If OA is (d — 1)-rectifiable and H¥~1(0A) > 0, there exists a 54 > 0,
such that, for all § € (0,04], we have

A(ATON A7) < 4HH(BA) 6.

Proor OoF LEMMA A.10.4. Let us first recall that, for an integer 0 <
m < d, the upper and lower Minkowski content of a B C R? is defined by

/\d(B-M)

M*™(B) := limsup Si=m

§—0t Od—-m

d(p+o
M (B) := liminf AUB™)

550+ Og_mod—m’

where o4_,, denotes the A%~ ™-volume of the unit Euclidean ball in R4,
It is easy to check that these definitions coincide with those in [5, 3.2.37].

i). Since in the case A\%(A4) = 0 there is nothing to prove, we restrict our
considerations to the case A\%(4) > 0. Now, A is bounded, and hence we
have A\?(A4) < oo. The isoperimetric inequality [5, 3.2.43] thus yields

doy AU(A)HE < MITY(94)
and hence, there exists a d4 > 0, such that, for all 6 € (0,d4], we have

da;/d)\d@)pw . )\d((aA)Jré) . )\d(A+26\A726)
2 - 010 - 26 ’

where in the last estimate we used part viii) of Lemma A.3.1 and o1 = 2.
ii). Since 0A is closed and (d — 1)-rectifiable in the sense of [5, 3.2.14], we
find
M (9A) = HAHDA)

by [5, 3.2.39]. Moreover, since A is bounded, the boundary is contained

in a compact set X C R such that the relative boundary Ox A of A in X

equals OA and the sets AT and A~ considered in X equal the sets A19

and A~° when considered in R? for all § € (0,1]. By Lemma A.10.3 there
thus exists a d4 > 0 such that

d({ A+0 -0 d +0

N(AF\ A7) _ i((24)*)

20 - 010
for all 6 € (0,04]. O

< 2HTH(HA)



39

The next lemma shows that a bound (4.9) together with a regular behavior
of h around the level of interest ensures a non-trivial flatness exponent.

LEMMA A.10.5. Let (X,d) be a complete, separable metric space, p be
a finite Borel measure on X with suppp = X, and P be a p-absolutely
continuous distribution on X. Furthermore, let p > 0 be a level and h be a
p-density of P for which there exist constants ¢ > 0, a € (0,1], o > 0, and
6 € (0,00) such that

(A.10.5) p(MFP\ M) < c5®

for all § € (0,60] and

(A.10.6) d(z,0M,)? < c |h(m) —pl

for all x € {h > p}. Then P has flatness exponent /0 at level p.

PROOF OF LEMMA A.10.5. Let us fixan s > 0. Forx € {0 < h—p < s}
we then find d(z,0M,)? < cs by (A.10.6), that is € (9M,)*? for § :=
(cs)'/9. Using part viii) of Lemma A.3.1, we conclude that z € M;Q‘S\Mp*%.
In the case 26 < §y, we thus obtain

p({0<h—p<s}) < M(M;%\Mp_%) < 2% = 20 Tel050/0

and since p is a finite measure, it is then easy to see that we can increase
the constant on the right-hand side so that it holds for all s > 0. O

Appendix B. Continuous Densities in two Dimensions. In this ap-
pendix, we present a couple of two-dimensional examples that show that the
assumptions imposed in the paper are not only met by many discontinuous
densities, but also by many continuous densities.

B.1. Single Two-Dimensional Sets. In this section we consider the
operations @ and &6 for a specific class of sets A C R2.

We begin with an example of a set A C R2, for which we can compute A®°
and A9 explicitly. This example will be the base of all further examples.

EXAMPLE B.1.1. Let X :=[—1,1] X [-2,2] be equipped with the metric
defined by the supremums norm. Furthermore, for z* € (—0.6,—0.4) and
2% € (0.4,0.6) we fir two continuous functions f~, f+ : [~1,1] = [-1,1]
such that T is increasing on [—1,2F] U [0,21] and decreasing on [zF,0] U



40

[z, 1], while f~ is decreasing on [—1,2-]U[0,z ] and increasing on [z~ 0]U
[x1,1]. In addition, assume that {f~ < 0} = {f* > 0} and {f~ = 0} =
{fT =0} as well as f~(£0.5) < 0 and fT(£0.5) > 0. Now consider the
(non-empty) set A enveloped by f*, that is

A={(z,y)eX:ze[-1,1] and f~(z) <y < fH(2)}.

To describe A%° for § € (0,0.1], we define f%5 : [~1,1] — [~1,1] by

(-1 ifze[-1,-14)
fi;(:n) =< f%(0) if ©x € [-9,+]
(1) if x € [1—6,1]

and f~5(x) == f~(x — &)V f~(x + 0), respectively ffé(:r) = ff(x —30) A
fT(x +6) for the remaining x € [—1,1]. Then we have

A®® = {(z,y) e Xz e[-1,1] and f5(z) +6 <y < frs(z) —6}.
Moreover, to describe A®9, we define

20,1 := min{z € [—1 —0.5] : fH(z) — f~(x) >0}
+

20,0 := max{x € [-0.5,0] : fF(z) — f~(z) > 0}
20,40 := min{z € [0,0. 5] fHz) = f(z) >0}
20,41 = max{z € [0.5,1] : f*(z)— f~(z) >0},

where the minima are attained by the continuity of f* and the fact that all
sets are non-empty. Furthermore, we define fi; c[=1,1] — [-1,1] by

fHa+0) if xe[-1V(xo_1—0),z% — 7]
L L) if we ol - 6,0t 4]
fra(@) = fE (@) if ©elzt—06aT+0]
fEx—0) if x €[z +6, (w1 +0) A1
as well as f5(x) := f~(x—=0)Af~(x+06) and f{s(x) == fH(z—8)V [T (z+49)
for x € [z% 4, :ci — 4]\ (0,0 + 0, 20,+0 — 6) and fi:(s(x) = —26 for the

remaining x € [—1,1]. Then we have
A% — {(z,y) e Xz e [-1,1] and f 5(x) -0 <y < fl5(x)+0}.

Finally, we have |C(A)| < 2 with |C(A)| = 2 if and only if x0.—0 < To 40,
and in the latter case we further have T = xo 10 — T0,—0-
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PRrROOF OF EXAMPLE B.1.1. Let us fix a 0 € (0,1/10]. To simplify nota-
tions, we further write g~ := f~5; + 4 and gt := ffé — 9.
Proof of “A®% c ...”. By A9 = X \ (X \ A)® it suffices to show that

{(z,y)e Xz e[-1,1]and (y<g (z)ory > g (z))} C (X \A)®.

By symmetry, it further suffices to consider the case z > 0 and y > g*(z).
Moreover, to show the inclusion above, it finally suffices to find 2’ € [—1,1]
and y' € [—2,2] with |z —2'| <6, |y—9/| < and ¢/ > f+(2’). However, this
task is straightforward. Indeed, we can always set ¢’ := (y+0)A2, and if x €
[0, 6] then 2’ := 0 works, since y/ = (y+0)A2 > g (x)+d = fT(0) = fH(a'),
while for z € [1 — 4, 1], the choice 2’ := 1 does by an analogous argument.
Finally, if x € (5,1 — ), we set 2’ := 2 — ¢ if g*(z) = fT(z — ) — § and
2=z +6if gT(x) = fH(z+06) - 4.

Proof of “A®% > ...”. Again, it suffices to consider z > 0. Let us fix a y
with g~ (z) <y < g7 (z). Then, our goal is to show (z,y) & (X \ A), ie.,
(B.1.1) I(2,y) = (2", y)|oo > &

for all (2/,y") € X \ A. In the following, we thus fix a pair (z/,y') € X \ A
for which (B.1.1) is not true and show that this leads to a contradiction. We
begin by considering the case x € [0, ]. Since (B.1.1) is not true, we find
|z — 2’| <6, and hence 2= < 2’ < xF. Then, if ' > f¥(2), this leads to

y<g (@) =f0)-0<f"(@)-d<y -9,

which contradicts the assumed |y —y'| < 6. The case ¢y’ < f~(2’) analogously
leads to a contradiction. Now consider the case x € [1—4§, 1]. Then |[z—2/| < §
implies 2’ > azf Thus, v > f1(2') leads to another contradiction by

y<g'@=f"1)-0<fT@)-d<y -9,

and the case y' < f~(2) can be treated analogously. It thus remains to
consider the case x € [§,1 —d]. Then |z —2'| < implies x — 0 < 2’ <z +4.
For 2/ < z we thus find f(z — 6) < f¥(2'), while for 2/ > 2& we find
ft(x+96) < fH(a). For y > f*(2') we hence obtain a contradiction by

y<g'@=0T@-0)AfT@+d)-0<fT@a)-d<y —9,

and, again, the case y' < f~(2/) can be shown similarly.

Proof of “A®% C ...”. Let us fix a pair (z,y) € A®%. Without loss of
generality we restrict our considerations to the case y > 0 and = € [—1,0].
To show that y < fi(g(a;) + 6 we assume the converse, that is y > fjfé(:c) +90.
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Since (z,y) € A®? we then find (z/,y") € A with ||(z,y) — (2/,9)]ce < 6.
From the latter we infer that both x — § < 2’ < x + § and

(B.1.2) Yy >y—340> fi'é(x) .

Ifx € [-1,-1V (zg—1 —0)) we get a contradiction, since (z’,y") € A implies
x> —§ > x9_1— 8. Moreover, for z € [-1V (291 —6), 2T — 8], we obtain

fis@) = fT@+0) = fT) =y,

which contradicts (B.1.2). If x € [zT — 6,21 + ] we get a contradiction from
fhs@) =) > fH(@') >y, and if € [zF + 6,0 A (z0,—0 + )] we have

@) =M@ =)V T (@+0) > [Ta—0) > 1) =y

which again contradicts (B.1.2). Finally, if 2 € (0 A zg,—o + 9, 0] we obtain a
contradiction from x > zg _o + 0 > 2’ + 4.

Proof of “A®% 5 ...”. Let us fix a pair (z,y) € X with fs@)—d<y<
fia(x) + . Without loss of generality we again consider the case y > 0 and
x € [~1,0], only. To show (z,7) € A% we need to find a pair (z/,y') € A
with ||(z,y) — (', 1) |lco < 4. Let us assume that we have found an 2’ with
|z —2'| <§and f(2') >y — 9. For ¢ defined by

y = f(@') A (y +9)

we then immediately obtain ¢ < y + d. Moreover, if we actually have ¢ =
y + 9, then we obtain |y — ¢/| < J, while in the case ¢y <y + 0 we find 3/ =
f(2") > y—4, that is again |y—v'| < 0. Thus, it suffices to find an 2’ with the
properties above. To this end, we first observe that we can exclude the case
x € [-1,—-1V(xo,—1—9)), since for such x we have 0 < y < fi5($)+5 = 9.
Analogously, we can exclude the case z € (0 A (29,0 + 9),0]. Now consider
the case # € [-1V (w91 — ), 2T — §]. For 2’ := x + § we then have

f@)=flx+06) = fi(z) >y -9,

and hence 2’ satisfies the desired properties. Moreover, for x € [z+—6, 21 +6]
we define 2’ := ¥, which gives |z — 2’| < 4. In addition, we again have
fz") = f(zh) = fig(x) > y — 6. Finally, let us consider the case z €
[T + 6,0 A (w0,—0 + 6)]. Let us first assume that f(z — ) > f(z + J). For
2’ :=x — § we then obtain f(z') = f(z — ) = fI;(z) >y — 4. Analogously,
if f(x —9) < f(x+9), then 2’ := = + 0 has the desired properties.

Finally, |C(A)| < 2 is obvious, and so is the equivalence between [C(A)| = 2
and oo < xo+o0. In the latter case, A := {(z,y) € A : z < x0,—o} and
Ay :={(z,y) € A: x> x40} are the two components of A, and from this
it is easy to conclude that 7 = xg 10 — zo,—0- ]
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Our next example shows how to estimate the function 1% for the sets
considered in Example B.1.1

EXAMPLE B.1.2. Let us consider the situation of Fxample B.1.1. To
simplify the presentation, let us additionally assume that the monotonicity
of fT and f~ is actually strict and that A has sufficiently thick parts on
both sides of the y-axis in the sense of

(B.1.3) [-0.8,-0.2] U[0.2,0.8] C {f~ < —02}n{ft>0.2}.

Note that, for all 6 € (0,0.1], this condition in particular ensures that ASS
contains open neighborhoods around the points (—0.5,0) and (0,0.5). More-
over, for 6 € [0,0.1] we define

z5—1 :=min{z € [-1,-0.8] : f7(z) — [~ (z) > 26}
o

x50 = max{z € [-0.2,0] : fT(2) — [~ (x) > 26}
z540 :=min{z € [0,0.2] : f*(z) — f~(z) > 26}
z541 :=max{z € [0.8,1] : fT(z) — f(z) > 26},

where we note that the minima and mazima are attained by (B.1.3) and
the continuity of f*. For the same reason we further have 5,1 < —0.8,

xs5,—0 > —0.2, w510 < 0.2, and x5 1 > 0.8. Then, ffa has exactly two local

mazxima a:;_ and x;{_s_, satisfying x;{_ € [-1,0] and x;{+ € [0,1], and [~

has exactly two local minima Ty and Ts o satisfying Ty € [—1,0] and
x5, €[0,1]. Moreover, for all § € (0,0.1] we have
b5(6) < 6+ (max{|x5,i — 30| 1i € {=1,-0,+0,+1}}
vmax{|fi(@}) = fLs(a )| 45 € {~+}}).

The right hand-side of this inequality can be further estimated under some
reqularity assumptions. Indeed, if there exist ¢ > 0 and v € (0,1] such that

(B.1.4) |f*(2T) — fF(2)| < clzT — 2|7, z €[z —0.1,2% +0.1],
then, for all § € (0,0.1], we can bound the second maximum by
max{|f*(«}) — fLs(x5,)| 24,5 € {— +}} < e

In addition, if, for some i € {—1,-0,+40,4+1}, we write 26y := f*(x0;) —
[~ (z04), then |zs; — 04| = 0 for all 6 € (0,00], i.e. the corresponding term
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in the first mazimum disappears for these §. If oy < 0.1, and we additionally
assume, for example, that

(B.1.5) | (@) > Y wo, g — |7

for all x € [x9,—1,—0.8], then we have |x5_1 — xo—1| < 67 for all 6 €
(00, 0.1]. Combining these assumptions we obtain a variety of sets A satis-
fying ¥ (0) < (c+1)87 for all 6 € (0,0.1], and these examples of sets can
be even further extended by considering bi-Lipschitz transformations of X.

Before we can prove the assertions made in the example above, we need
to establish the following technical lemma.

LEmMMA B.1.3. Let z* € [2/5,3/5] and f : [0,1] :— R be a continuous
function that is strictly increasing on [0, 2*] and strictly decreasing on [x*, 1].
For § € (0,1/8] we define f_s:[0,1] = R by

f(0) if x € [0, 6]
foo(@) =4 fle—O) A flax+8) ifzels1-d]
£(1) ifzell-0a1].

Then there exists exactly one x5 € [0,1] such that f_s(x}) > f-s(x) for all
x € [0, 1]. Moreover, we have x§ € (x* —9§,2* 4 0) and x} is the only element
x € [0,1 — 0] that satisfies f(x —0) = f(x + ). Finally, we have

L [r@=0) e bag)
f-s(x) {f(m+5) if v € [x§,1—4].

Proor or LEMMA B.1.3. We first show that there is an zg € (2% —
d,z* + 9) such that f(zg — ) = f(zo + J). To this end, we observe g :
[x* — 0,2 + 0] — R defined by g := f(- —9) — f(- + J) is continuous, and
since g(z*—0) = f(z*—20)—f(2*) < 0 and g(z*49) = f(a*)—f(x*+25) > 0,
we find an zg € (z* — d,2* + §) such that g(z9) = 0 by the intermediate
value theorem.

Let us now show that f(z —0) < f(z + ) for all x € [d,z0] and f(x —
0) > f(x +6) for all z € [xg,1 — J]. Clearly, for x € [4,2* — ¢], the strict
monotonicity of f on [0,2*] yields f(z — d) < f(x + J). Moreover, for z €
(x* =6, x0), we have f(z—9) < f(xo—0) = f(zo+0) < f(x+7) since f(-—9) :
[z*—0, 2" +J] — Ris strictly increasing, while f(-+9) : [*—J,2*+J] — Ris
strictly decreasing. This shows the assertion for x € [, z¢], and the assertion
for x € [xg,1 — d] can be shown analogously.



45

Combining the two results above, we find that there exists exactly one
zo € [0,1 — ¢] satistying f(xo — ) = f(xo + J), and for this xy we further
know zg € (z* — 6,2 + J). In addition, these results show

[ f@—08) ifxe (8w
f—5(w)_{f(x+5) if € [zo,1 —4].

Let us now return to global maximizers of f_s. To this end, we first observe
that the existence of a global maximum of f_s follows from the continuity of
f-s and the compactness of [0, 1]. Let us now fix an x5 € [0, 1] at which this
global maximum is attained by f_s. We first observe that x5 € (4,1 — 9).
Indeed, if, e.g., we had zs > 1 — §, we would obtain f(1) = f_s(zs) >
fos(1—=20) = f1 =3 AN f(1—=0)=f(1—=20)> f(1) using 1 — 30 > z*,
and x5 < ¢ would similarly lead to a contradiction. We next show that we
actually have z5 € [2* — 0, 2* + §]. To this end, it suffices to show

(B.1.6) x5 >a" — 90 = x5 <z"+9.

To show one implication, assume that x5 > x* — §. Since f_s attains its
maximum at x5, we then obtain

Flas +8) = flas —0) A flws+0) = f-s(ws) = f-s(a” +0) = f(a* +26).

Now x5 + 0 < x* + 26 follows from the assumed x5 + 6 > z* and the strict
monotonicity of f on [z*,1]. Analogously, z5 < z*+ 6 = xs > x* — J can be
shown, and hence (B.1.6) is indeed true.

Finally, we can prove the remaining assertion. To this end, we pick again
an x5 at which f_s attains its maximum. Then we have already seen that
x5 € [2*—0,2* 4 J]. Now observe that assuming x5 < xg leads to f(zs—0) <
flxo —0) = f(xo+ ) < f(xs + 9) using xg, x5 € [z* — §, z* + 0], which in
turn yields the contradiction

fos(xs) = flas—0)Nf(xs+0) = f(xs—0) < f(xo—0)Af(xo+d) = f_5(x0) .

Analogously, we find a contradiction assuming x5 > ¢, and hence we have
x5 = xp. Consequently, s is unique and solves f(x — 0) = f(x + 9). O

ProOOF OF EXAMPLE B.1.2. We first note that the existence and unique-
ness of the local extrema is guaranteed by Lemma B.1.3. In addition, this
lemma actually shows a:j{_ € (v — 5,27 +9), z5_ € (22 —6,° +9),
x;f+ € (I‘I -0, xi + ), and T5, € (x — 6,25 4 0). Moreover, we have

¥i(5) = supd(z, A~°) < supd(z, A%°)
z€EA z€A



46

by A79 € A®°. We will thus estimate d(z, A9°) for z := (z,y) € A.

We begin with the case z € [—1,z5_;]. For later purposes, note that the
definition of A yields x > 7 1. By the monotonicity of f* on [~1, —0.8+ ]
we further know f5 (x4 ) = f*(x). We write 2/ := 25 _1 + J and

f(xs—1)+6 ify<f(ws—_1)+6
y =qv if y € [f(zs-1) + 0, fF(25-1) — J]
f+(:175?,1) — (5 lf Yy Z f+((135,,1) — 5 .
Ify < f~(x5-1)+9, we then obtain y < ¢' and v/ = f~(z5_1)+0 < [~ (x)+
d <y+4, that is |y — y/| < 4, and it is easy to check that the same is true in

the two other cases. Consequently, we have ||(z,y)—(2/,y)||cc = 5,1+ —2,
and our construction further ensures

y' € [f(w5-1) + 0, (ws1) = 8] = [[Z5(2") + 6, fF5(2") = 0.
By Example B.1.1 we conclude (z/,7') € A®%, and from this we easily find
(B.l.?) d(Z,Aeé) < 6+ €T5—-1— X < 0+ T§—1 — L0,—1 -

To show that (B.1.7) is also true in the case z € [x5_1,—0.8 + 4], we first
observe that the monotonicity of f* on [~1,—0.8 + 24] yields

fHa) = f (@) > fH(as-1) — [ (z5-1) = 26,

and consequently, we can define

ffle)+o0 fy<f(x)+4
Yy =1qy ify € [f~ () +0, [ (x) 9]
ffx)—6 ify>fH(z)—-94.

If y < f~(x) +J we then obtain y < ¢’ and v/ = f~(z) + 0 < y + 4, that
is |y — y/| < 4, and again it is easy to check that the same is true in the
two other cases. Writing 2/ := = + §, we thus have ||(z,y) — (2/, 9]0 = 9.
Moreover, the construction together with f;t (x +0) = f*(x) ensures

y €L (@)+0, () — 0] = [fZ5(2) + 6, f15(a) = 3],

and hence we find (2/,y) € A9 by Example B.1.1. Thus, we have shown
d(z,A®%) <6 < d+x5_1—x01,1e. (B.1.7) is true for all z € [—-1, —0.8+0].

Now consider the case x € [—0.8+ 0, —0.2 — §]. Here, we will focus on the
sub-case y > 0, since the subcase y < 0 can be treated analogously. For later
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purposes, note that we have f~(z+¢) < —24. Now, if x € [-0.849, l’;ﬁ —4],
we set 2’ ;=2 + 6 and i :=y A (f(z) — J). This gives v/ <y and y — 6 <
fH(z) — 0 <4/, and hence we again have ||(z,y) — (2, 9¥')||coc = J. Moreover,
our constructions together with Lemma B.1.3 ensures

"€ [0, [T (2) = 0] = [0, f5(a") — 6] C [fZ5(a") + 0, f5(a") — o],

that is (2/,3') € A, and hence (B.1.7) is true in this case, too. The next

case, we consider, is x € [I;__ — 0, :cj{_ + 4]. In this case we set z/ := x;{_

and y' :=y A (ffa(ng) — 0). This implies

e [=6, fHyat ) — 0] C [f75(a) + 6, 5(a) — ),

and hence (2',y') € A®%. We further have |x—2'| < § and, if y < fT5(z] ) —
5, we also have |y — ¢/| = 0. Conversely, if y > ffa(xg'f) — ¢, we find

y < fH@) < fPa0) =160 = (i) -0+,

that is [y — ¢/| < §+ f(2F) — fT5(zf_ ). Combining the latter two cases,
we therefore obtain ||(z,y) — (2,9 )|lco < 0+ fT(zF) — f5 (z3_), that is

d(z,A®°) <5+ fF(at)— f55 (a;5 ). Since all remaining cases can be treated
analogously, the proof of the general estimate of ¢ () is finished.
Now consider the additional assumptions of f*. For example, assume

[T (@T) = T (@) < cfa — 2]

for all x € [z —0.1,2F + 0.1]. LemmaB13showsx5 € (zt — 6,27 +9).
Without loss of generahty, we assume xgr_ € [xt, xf + 9). Using Lemma
B.1.3 and xg —d €zt —6,2F) C[vX —0.1,2F +0.1], we then obtain

@) = )] = @) = e = o) <clat —af_+0]" < e

Now assume that, for e.g. i := —1, we have dy > 0. For § € (0, dp] we then find
fT(xo—1)—f (wo,—1) > 26, and thus xg _1 = x5 1 = —1. Conversely, let § €
(80,0.1]. Then we have f*(zo_1)— f (x0,—1) < 28 and a simple application
of the intermediate value theorem thus yields f(xs_1) — f~(z5-1) = 20.
Using the additional assumption on f* around the point Zo,—1, we then find

2wy — wo |7 < |f (ws )|+ £ (ws,-1) = [T (ws—1) — £ (26,-1)
— 2,

that is |z5_1 — zo,—1| < 7. d
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B.2. Continuous Densities. In this section we present a class of con-
tinuous densities on R? that meet the assumptions made in the paper. The
first example, which represents the main result of this supplement, shows
that many continuous distributions satisfy our thickness assumption.

EXAMPLE B.2.1.  Let X := [—1,1] x [-2,2] be equipped with the metric
defined by the supremums norm. Moreover, let P be a Lebesgue absolutely
continuous distribution that has a continuous density h. Furthermore, as-
sume that there exists a p** > 0, such that, for all p € (0, p**], the level set
M, is of the form considered in Example B.1.2. In addition, we assume that
there is a constant K € (0,1) such that

(B.2.1) |h(z,y) — p* — 2% + y*| < K(2® +¢%)

for some p* € [0,p™*) and all (z,y) € {h > 0} N ([-0.2,0.2] x (—1.1,1.1)).
Moreover, assume that h is continuously differentiable on the sets

Api={h> 010 (((<0.7,-0.3) U (0.3,0.7)) x ((~1.1,-0.2) U (0:2,1.1)))
Ay = {h>0}N (((—1, ~0.8) U (0.8,1)) x ((—1.1,0) U (0.2, 1.1)))

1+ K }

Agi= (> 00 fle) € X € (-02,0)000,02) and yl< [ R

with hy = % #£0 on Ay and hy := % %0 on As U As. Finally, assume that
there is a constant C > 0 such that |hy| < Clhy| on Ay and |hy| < C|hy| on
Ao U As. Then P has thick levels of order v = 1 with S¢pick = 0.1 and

1+ K
Cthick — 1+ maX{C, ]_—_K} .
Moreover, P can be clustered between p* and p** and we have
(B.2.2) 2 Ve < 13 < 2 Ve € (0,p™ —p]
2. —Vve < T —/c, € ) —pl.
= TMpve = A0 e P P

VI-K

PROOF OF EXAMPLE B.2.1. Since we consider the Lebesgue measure on
X, we have My = X. Moreover, we have X% = X since we consider the
operation in X, and from this, we immediately see 1% (§) = 0 for all § > 0.
Consequently, there is nothing to prove for p = 0.

Let us now fix some p € (0, p**]. Moreover, let f* :[—1,1] — [~1,1] be
the two functions satisfying the assumptions of Example B.1.2 and

M,={(z,y) e X:z€[-1,1]and [~ (z) <y < fH(z)}.
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We pick an (z,y) € M, with y = f*(z) or y = f~ (). Then we find (z,y) €
OM,,, and thus we have h(z,y) = p by Lemma A.1.2, that is h(z, f=(z)) = p.

Our first goal is to verify (B.1.4). To this end, we solely focus without loss
of generality to the case xi and fT, since the other cases can be treated anal-
ogously. Let us fix an z € [z —0.1, 27 +0.1]. Then we have z € (0.3,0.7) and
thus f*(z) € (0.2,1.1) by (B.1.3). Consequently, h is continuously differen-
tiable in (z, fT(x)). By the implicit function theorem and the previously
shown h(z’, f* (")) = p for all 2’ € (0.3,0.7) we then conclude that f* is
continuously differentiable at x and

o Ok )‘1 Oh, .\ halz, [T(2))

B23) (@) = (Gl f1@) Gl s @) = e
Using |hy| < C|hy| on Ay, we thus find |(f*(z))'| < C, and hence fT is
Lipschitz continuous on (0.3,0.7) with Lipschitz constant smaller than or
equal to C. This implies (B.1.4) with constant C' and exponent v = 1.

Now consider the endpoints z( +1, where again it suffices to consider one
case, say Zo,—1, due to symmetry. Let us write 28 := f*(z0.—1) — f~ (z0,—1)-
Then, if 5y > 0.1, we have |z5_1 — 20,1 = 0 for all § € (0,0.1] by Example
B.1.2, and hence it suffice to show (B.1.5) in the case dp < 0.1. Observing
that it actually suffices to show (B.1.5) for all z € (x¢,—1, —0.8) by continuity,
we begin by fixing such an z. By monotonicity we then have 0 < f*(z) <
f7(0.8) < 1.1, and hence h is continuously differentiable at (z, f(x)). The
implicit function theorem and the previously shown h(z’, f*(z)) = p for
all 2’ € (x9,—1,—0.8), then shows that f* is continuously differentiable at x
and (B.2.3) holds. Using |hy| < C|hy| on Ag, we then find |(f(x))'| > 1/C,
and the fundamental theorem of calculus thus yields

[f7@) = fH@)] =

)dt‘>0 Yo' — x|

for all z,2’ € (zg,—1,—0.8). Now, letting x’ — x0,—1, we obtain
[fH (@) = fH () = [P (xo-1) = [fT(2) = fH(x0,-1)| = C o1 — 2]
for all z € (z9—1,—0.8), i.e. (B.1.5) holds with constant C' and v = 1.
Finally, let us consider the points zg +o, where yet another time, we only
focus on one case, say xo 9. For € [zg 40,0.2], we then have
(B24)  p=hiz, (@) < "+ (1+ K)? + (K - (@),
that is (f*(z))? < % + %mz Analogously, we can find a lower bound
on (f*(x))?, so that we end up having

o 1-K , p-—p 14K
B.2.5 + 2 P p 2 2
(B.2.5) ey e T T iyr g Tiok” |
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and an analogue result holds for (f~(z))2. Again, our goal is to show an
analogue of (B.1.5). To this end, we first consider the case p € (0, p*]. By
(B.2.1), we then know that h(0,0) = p* > p, and hence f*(0) > 0. Analo-
gously, we find f7(0) < 0, which together implies zp 49 = 0. Furthermore,
for x € [zg 40,0.2], (B.2.5) gives

pF—p 1—-—K 1-K 1-K
f+(x)2\/1+K+1+K:E2Z\/|CB|— 7 [Tor0 — 2,

that is (B.1.5) holds with constant /%% and exponent v = 1. Let us now
consider the case p € (p*, p**]. For = € (x 40,0.2), (B.2.5) then yields

*
fHa) < \/[1)_K’0+ ?_Lgxz < \/11LK|:U
and thus we find (z, fT(x)) € As. Consequently, h is continuously differen-
tiable at (z, fT(x)), and (B.2.3) holds. As for x¢ 1, we can then show that
(B.1.5) holds with constant C' and exponent vy = 1.

In order to show that P can be clustered between the levels p* and p**
we first note that the assumed continuity of A guarantees that P is normal
by Lemma A.1.3. Let us now fix a p € (p*, p**]. Since from (B.2.1) we infer
that h(0,0) = p*, we then obtain (0,0) & M,. The latter implies xo,_¢ <
0 < 0,40, where z9 _o and g o are the points defined in Example B.1.2 for
the set M,. By Example B.1.1 we then see that C(M,)| = 2. Analogously,
for p € [O p*], the equality h(0,0) = p* implies x99 = 0 = g 40, which
shows C(M,)| = 1. Finally, the bijectivity of ¢ : C(Mp«) — C(M,) follows
from the form of the connected components descrlbed in Example B.1.1.

Let us finally prove (B.2.2). To this end, we fix an ¢ € (0, p** — p| and
define p := p* + €. Then we have already observed that zo_o < 0 < x40,
and hence f*(z9+0) = 0. For = := z 19 we then obtain

p=h(z, f*(z)) < p"+ 1+ K)a®

by (B.2.4), and applying some simple transformations we thus find zo 1o =
x> 4/5 1+K H_—K. For z := x0 40 we further have

p=hiz, [*(2)) > p" + (1 - K)a?,

and thus x40 < | /155 Since analogous estimates can be derived for zo, o,

the formula T}qus = 20,40 —Z0,—0 found in Example B.1.1 gives (B.2.2). [
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The last example of this appendix shows that the distributions from the
previous example have a smooth boundary.

ExamMprLE B.2.2.  Let X and P be as in Example B.2.1. Then the clusters
have an a-smooth boundary for a« =1 and

1+ K

Chound = 8<10 +C + 1—K> .

Proor oF EXAMPLE B.2.2. Let us first consider the case 0 < d < 0.1.
To this end, we fix a p € (p*, p**]. Without loss of generality, we only consider
the connected component A with z < 0 for all (z,y) € A. We know that
ATO/2\ A=0/2 ¢ AP\ AD9 and the latter two sets have been calculated in
Example B.1.1. In the following, we will only estimate A2({(z,y) : y > 0} N
AP\ A9 the case y < 0 can be treated analogously. Our first intermediate
result towards the desired estimate is

A2([=1V (z0—1 — 8),ms-1] % [0,2] N APO\ A%?) < 2|(20,_1 — &) — w5 1|
<26 + 2’3?07_1 — a;57,1|
<2(1+C)5,

where in the last step we used that the proof of Example B.2.1 showed
(B.1.5) for ¢ = C and y = 1. Moreover, we have

zt -4
A2 ([w5,—1, 28 — 8] x [0,2] N A\ AP = / fH(@+0) — fT(z—0) + 20 dx
T§,—1
zT 46
<20 +/ f(z)dx
zt -6
<46

and analogously we obtain A2 ([zF 4 6,25 o] x [0,2] N A®9\ A9%) < 44. In
addition, we easily find A?([zF — 6,27 + 6] x [0,2] N A%\ A9%) < 46 and
finally, we have

A2 ([z5.-0, 0 A (20,0 + 6)] x [0,2] N AP0\ A®) < 2|25 g — 39,0 — 0|

1+ K

<20+2
< 20 + 11— K

9,
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where we used that the proof of Example B.2.1 showed (B.1.5) for ¢ = /1=

1-K

and v = 1. Combining all these estimates we obtain

1+ K
N2([1,0] % [0,2] N A®9\ 4%9) < 464 C + iiK 5

for all 6 € (0,0.05]. Moreover, for § € [0.05,1] we easily obtain

A2([=1,0] x [0,2] N A®O\ A®) <2 <404

Combining both estimates and adding the case y < 0, we then obtain the

assertion. O
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