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SUPPLEMENT TO “FULLY ADAPTIVE
DENSITY-BASED CLUSTERING”

By Ingo Steinwart

University of Stuttgart

In this supplement several auxiliary results, which are partially
taken from [9], are presented and the assumptions made in the
paper are discussed in more detail. This material is contained
in the sections A.1 to A.10. In addition, we present a couple
of two-dimensional examples that show that the assumptions
imposed in the paper are not only met by many discontinuous
densities, but also by many continuous densities. This material
is contained in the sections B.1 and B.2.

Appendix A. Remaining Proofs and Additional Material. In this
appendix, the auxiliary results from [9] are presented and the assumptions
are discussed in more detail than it was possible in the main paper.

A.1. Material Related to Level Sets. In this section we present
some additional results from [9] related to the definition of Mρ.

To begin with, we note that using the definition of the support of a mea-
sure it becomes obvious that Mρ can be expressed by

(A.1.1) Mρ =
{
x ∈ X : µρ(U) > 0 for all open neighborhoods U of x

}
.

Furthermore, if suppµ = X, we actually have Mρ = X for all ρ ≤ 0, but
typically we are, of course, interested in the case ρ > 0, only. The next
lemma shows that the sets Mρ are ordered in the usual way.

Lemma A.1.1. Let (X, d) be a complete separable metric space, µ be a
σ-finite measure on X, and P be a µ-absolutely continuous distribution on
X. Then, for all ρ1 ≤ ρ2, we have

Mρ2 ⊂Mρ1 .

Proof of Lemma A.1.1. We fix an x ∈ Mρ2 and an open set U ⊂ X
with x ∈ U . Moreover, we fix a µ-density h of P . Then we obtain

µρ1(U) = µ
(
{h ≥ ρ1} ∩ U

)
≥ µ

(
{h ≥ ρ2} ∩ U

)
= µρ2(U) > 0 ,

and hence we obtain x ∈Mρ1 by (A.1.1).

The following lemma describes the relationship betweenMρ and {h ≥ ρ}.
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Lemma A.1.2. Let (X, d) be a complete separable metric space, µ be a
σ-finite measure on X with suppµ = X, and P be a µ-absolutely continuous
distribution on X. Then, for all µ-densities h of P and all ρ ∈ R, we have

˚{h ≥ ρ} ⊂Mρ ⊂ {h ≥ ρ} .

If h is continuous, we even have {h>ρ} ⊂Mρ ⊂ {h≥ρ} and ∂Mρ ⊂ {h=ρ}.

Proof of Lemma A.1.2. By definition, Mρ is the smallest closed set A
satisfying µ({h ≥ ρ} \A) = 0. Moreover, we obviously have

µ
(
{h ≥ ρ} \ {h ≥ ρ}

)
= 0 ,

and hence we obtain Mρ ⊂ {h ≥ ρ}. To show the other inclusion, we fix an

x ∈ ˚{h ≥ ρ} and an open set U ⊂ X with x ∈ U . Then ˚{h ≥ ρ} ∩U is open
and non-empty, and hence suppµ = X yields

µρ(U) = µ
(
{h ≥ ρ} ∩ U

)
≥ µ

( ˚{h ≥ ρ} ∩ U
)
> 0 .

By (A.1.1) we conclude that x ∈Mρ, that is, we have shown ˚{h ≥ ρ} ⊂Mρ.
Now assume that h is continuous. Clearly, we have {h > ρ} ⊂ {h ≥ ρ}

and since {h > ρ} is open, we conclude that {h > ρ} ⊂ ˚{h ≥ ρ} ⊂ Mρ by
the previously shown inclusion. Moreover, since {h ≥ ρ} is closed, we find
Mρ ⊂ {h ≥ ρ} = {h ≥ ρ}. Recalling that Mρ is closed by definition, we
further find ∂Mρ ⊂ Mρ ⊂ {h ≥ ρ}, and thus it remains to show ∂Mρ ⊂
{h ≤ ρ}. Let us assume the converse, i.e., that there exists an x ∈ ∂Mρ such
that h(x) > ρ. By the continuity we then find an open neighborhood U of
x with U ⊂ {h > ρ}. Since x ∈ ∂Mρ, we further find an y ∈ U \Mρ, while
our construction together with the previously shown {h > ρ} ⊂ Mρ yields
the contradicting statement U \Mρ ⊂ {h > ρ} \Mρ = ∅.

The next lemma provides some simple sufficient conditions for normality.

Lemma A.1.3. Let (X, d) be a complete separable metric space, µ be a
σ-finite measure on X with suppµ = X, and P be a µ-absolutely continuous
distribution on X. Then the following statements hold:

i) If P has an upper semi-continuous µ-density, then it is upper normal
at every level.

ii) If P has a lower semi-continuous µ-density, then it is lower normal at
every level.

iii) If, for some ρ ≥ 0, P has a µ-density h such that µ(∂{h ≥ ρ}) = 0,
then P is normal at level ρ.
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Proof of Lemma A.1.3. i). Let us fix an upper semi-continuous µ-
density h of P . Then {h ≥ ρ} is closed, and hence Lemma A.1.2 shows
Mρ ⊂ {h ≥ ρ} = {h ≥ ρ}. Thus, P is upper normal at level ρ.

ii). Let h be a lower semi-continuous µ-density of P . By Lemma A.1.2 we

then know {h > ρ} = ˚{h > ρ} ⊂ ˚{h ≥ ρ} ⊂ M̊ρ. This yields the assertion.
iii). The upper normality follows from (2.3). To see that P is lower normal,

we use the inclusion {h > ρ} \ M̊ρ ⊂ {h ≥ ρ} \ ˚{h ≥ ρ} = ∂{h ≥ ρ} which
follows from Lemma A.1.2.

Let us now assume that P is upper normal at some level ρ. By (2.2) we
then immediately see that

(A.1.2) µ(Mρ △ {h ≥ ρ}) = 0

for all µ-densities h of P . In other words, up to µ-zero measures, Mρ equals
the ρ-level set of all µ-densities h of P . Moreover, if for some ρ∗ > 0 and
ρ∗∗ > ρ∗, the distribution P is upper normal at every level ρ ∈ (ρ∗, ρ∗∗],
then using the monotonicity of the sets Mρ and {h ≥ ρ} in ρ as well as
(∪i∈IAi) △ (∪i∈IBi) ⊂ ∪i∈I(Ai △ Bi), we find

(A.1.3) µ

(
{h>ρ∗}△

∪
ρ>ρ∗

Mρ

)
≤ µ

(∪
n∈N

(
{h≥ρ∗+1/n}△Mρ∗+1/n

))
= 0

for all µ-densities h of P , and if P has a continuous density h, we even have∪
ρ>ρ∗ Mρ = {h > ρ∗} by an easy consequence of Lemma A.1.2. Similarly, if

P is lower normal at every level ρ ∈ (ρ∗, ρ∗∗], we find

(A.1.4) µ

(
{h>ρ∗} \

∪
ρ>ρ∗

M̊ρ

)
≤ µ

(∪
n∈N

(
{h>ρ∗+1/n} \ M̊ρ∗+1/n

))
= 0 ,

and if in addition, (A.1.3) holds, we obtain µ(
∪
ρ>ρ∗ Mρ △

∪
ρ>ρ∗ M̊ρ) = 0.

A.2. Proofs and Material on Connected Components. This sec-
tion contains the proofs related to Subsection 2.2. In addition, we recall
several additional results on connected components from [9].

Lemma A.2.1. Let A ⊂ B be two non-empty sets with partitions P(A)
and P(B), respectively. Then the following statements are equivalent:

i) P(A) is comparable to P(B).
ii) There exists a ζ : P(A) → P(B) such that, for all A′ ∈ P(A), we have

(A.2.1) A′ ⊂ ζ(A′) .
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Moreover, if one these statements are true, the map ζ is uniquely determined
by (A.2.1). We call ζ the cell relating map (CRM) between A and B.

Proof of Lemma A.2.1. ii) ⇒ i). Trivial.
i) ⇒ ii). For A′ ∈ P(A) we find a B′ ∈ P(B) such that A′ ⊂ B′. Defining

ζ(A′) := B′ then gives the desired Property (A.2.1).
Finally, assume that ii) is true but ζ is not unique. Then there exist

A′ ∈ P(A) and B′, B′′ ∈ P(B) with B′ ̸= B′′ and both A′ ⊂ B′ and
A′ ⊂ B′′. Since A′ ̸= ∅, this yields B′ ∩ B′′ ̸= ∅, which in turn implies
B′ = B′′ as P(B) is a partition, i.e. we have found a contradiction.

Proof of Lemma 2.4. Clearly, ζ := ζB,C ◦ ζA,B maps from P(A) to
P(C). Moreover, for A′ ∈ P(A) we have A′ ⊂ ζA,B(A

′) and for B′ :=
ζA,B(A

′) ∈ P(B) we have B′ ⊂ ζB,C(B
′). Combining these inclusions we

find
A′ ⊂ ζA,B(A

′) ⊂ ζB,C(ζA,B(A
′)) = ζB,C ◦ ζA,B(A′) = ζ(A′)

for all A′ ∈ P(A). Consequently, P(A) is comparable to P(C) and by Lemma
A.2.1 we see that ζ is the CRM ζA,C , that is ζA,C = ζ = ζB,C ◦ ζA,B.

Lemma A.2.2. Let (X, d) be a metric space, A ⊂ X be a non-empty
subset and τ > 0. Then every τ -connected component of A is τ -connected.

Proof of Lemma A.2.2. Let A′ be a τ -connected component of A and
x, x′ ∈ A′. Then x and x′ are τ -connected in A, and hence there exist
x1, . . . , xn ∈ A such that x1 = x, xn = x′ and d(xi, xi+1) < τ for all
i = 1, . . . , n−1. Now, d(x1, x2) < τ shows that x1 and x2 are τ -connected in
A, and hence they belong to the same τ -connected component, i.e. we have
found x2 ∈ A′. Iterating this argument, we find xi ∈ A′ for all i = 1, . . . , n.
Consequently, x and x′ are not only τ -connected in A, but also τ -connected
in A′. This shows that A′ is τ -connected.

Lemma A.2.3. Let (X, d) be a metric space and A ⊂ B be two closed
non-empty subsets of X with |C(B)| <∞. Then C(A) is comparable to C(B).

Proof of Lemma A.2.3. Let us fix an A′ ∈ C(A). Since A ⊂ B and
|C(B)| < ∞ there then exist an m ≥ 1 and mutually distinct B1, . . . , Bm ∈
C(B) with A′ ⊂ B1 ∪ · · · ∪Bm and A′ ∩Bi ̸= ∅ for all i = 1, . . . ,m. Since A
and B are closed, A′ and the sets A′ ∩Bi are also closed. Consequently, the
sets A′ ∩Bi are also closed in A′ with respect to the relative topology of A′.
Let us now assume that m > 1. Then A′∩B1 and (A′∩B2)∪· · ·∪ (A′∩Bm)
are two disjoint relatively closed non-empty subsets of A′ whose union equals



5

A′. Consequently A′ is not connected, which contradicts A′ ∈ C(A). In other
words, we have m = 1, that is, C(A) is comparable to C(B).

Lemma A.2.4. Let (X, d) be a metric space, A ⊂ X be non-empty and
τ > 0. Then we have d(A′, A′′) ≥ τ for all A′, A′′ ∈ Cτ (A) with A′ ̸= A′′.
Moreover, if A is closed, all A′ ∈ Cτ (A) are closed, and if X is compact we
have |Cτ (A)| <∞.

Proof of Lemma A.2.4. Let A′ ̸= A′′ be two τ -connected components
of A. Then we have d(x′, x′′) ≥ τ for all x′ ∈ A′ and x′′ ∈ A′′, since otherwise
x′ and x′′ would be τ -connected in A. Thus, we have d(A′, A′′) ≥ τ , and from
the latter and the compactness of X, we conclude that |Cτ (A)| <∞. Finally,
let (xi) ⊂ A′ be a sequence in some component A′ ∈ Cτ (A) such that xi → x
for some x ∈ X. Since A is closed, we have x ∈ A, and hence x ∈ A′′ for
some A′′ ∈ Cτ (A). By construction we find d(A′, A′′) = 0, and hence we
obtain A′ = A′′ by the assertion that has been shown first.

Lemma A.2.5. Let (X, d) be a metric space, A ⊂ X be a non-empty
subset and τ > 0. Then the following statements are equivalent:

i) A is τ -connected.
ii) For all non-empty subsets A+ and A− of A with A+ ∪ A− = A and

A+ ∩A− = ∅ we have d(A+, A−) < τ .

Proof of Lemma A.2.5. i) ⇒ ii). We fix two subsets A+ and A− of A
with A+∪A− = A and A+∩A− = ∅. Let us further fix two points x+ ∈ A+

and x− ∈ A−. Since A is τ -connected, there then exist x1, . . . , xn ∈ A such
that x1 = x−, xn = x+ and d(xi, xi+1) < τ for all i = 1, . . . , n − 1. Then,
x+ ∈ A+ and x− ∈ A− imply the existence of an i ∈ {1, . . . , n − 1} with
xi ∈ A− and xi+1 ∈ A+. This yields d(A+, A−) ≤ d(xi, xi+1) < τ .

ii) ⇒ i). Assume that A is not τ -connected, that is |Cτ (A)| > 1. We
pick an A+ ∈ Cτ (A) and write A− := A \ A+. Since |Cτ (A)| > 1, both sets
are non-empty, and our construction ensures that they are also disjoint and
satisfy A+ ∪ A− = A. Moreover, for every A′ ∈ Cτ (A) with A′ ̸= A+ we
know d(A+, A′) ≥ τ by Lemma A.2.4 and since A− is the union of such A′,
we conclude d(A+, A−) ≥ τ .

Corollary A.2.6. Let (X, d) be a metric space, A ⊂ B ⊂ X be non-
empty subsets and τ > 0. If A is τ -connected, then there exists exactly one
τ -connected component B′ of B with A ∩ B′ ̸= ∅. Moreover, B′ is the only
τ -connected component B′′ of B that satisfies A ⊂ B′′.
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Proof of Corollary A.2.6. The second assertion is a direct conse-
quence of the first, and hence it suffice to show the first assertion. Let us
assume the first is not true. Since A ⊂ B there then exist B′, B′′ ∈ Cτ (B)
with B′ ̸= B′′, A ∩ B′ ̸= ∅, and A ∩ B′′ ̸= ∅. We write A− := A ∩ B′ and
A+ := A ∩ (B \ B′). Since B′′ ⊂ B \ B′, we obtain A+ ̸= ∅, and therefore,
Lemma A.2.5 shows d(A−, A+) < τ . Consequently, there exist x− ∈ A− and
x+ ∈ A+ with d(x+, x−) < τ . Now we obviously have x− ∈ B′, and by con-
struction, we also find a B′′′ ∈ Cτ (B) with x+ ∈ B′′′. Our previous inequality
then yields d(B′, B′′′) < τ , while Lemma A.2.4 shows d(B′, B′′′) ≥ τ , that
is, we have found a contradiction.

Lemma A.2.7. Let (X, d) be a metric space, A ⊂ B be two non-empty
subsets of X and τ > 0. Then Cτ (A) is comparable to Cτ (B).

Proof of Lemma A.2.7. For A′ ∈ Cτ (A), Corollary A.2.6 shows that
there is exactly B′ ∈ Cτ (B) with A′ ⊂ B′. Thus, Cτ (A) is comparable to
Cτ (B).

Lemma A.2.8. Let (X, d) be a metric space, A ⊂ X be a non-empty
subset and τ > 0. Then, for a partition A1, . . . , Am of A, the following
statements are equivalent:

i) Cτ (A) = {A1, . . . , Am}.
ii) Ai is τ -connected for all i = 1, . . . ,m, and d(Ai, Aj) ≥ τ for all i ̸= j.

Proof of Lemma A.2.8. i) ⇒ ii). Follows from Lemma A.2.4.
ii) ⇒ i). Let us fix an A′ ∈ Cτ (A) and an Ai with Ai∩A′ ̸= ∅. Since Ai is τ -

connected and A′ ∈ Cτ (A), Corollary A.2.6 applied to the sets Ai ⊂ A ⊂ X
yields Ai ⊂ A′. Moreover, A1, . . . , Am is a partition of A, and thus we
conclude that

A′ =
∪
i∈I

Ai ,

where I := {i : Ai ∩ A′ ̸= ∅}. Now let us assume that |I| ≥ 2. We fix an
i0 ∈ I and write A+ := Ai0 and A− :=

∪
i∈I\{i0}Ai. Since |I| ≥ 2, we obtain

A− ̸= ∅, and Lemma A.2.5 thus shows d(A+, A−) < τ . On the other hand,
our assumption ensures d(A+, A−) ≥ τ , and hence |I| ≥ 2 cannot be true.
Consequently, there exists a unique index i with A′ = Ai.

Lemma A.2.9. Let (X, d) be a compact metric space and A ⊂ X be a
non-empty closed subset. Then the following statements are equivalent:

i) A is connected.
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ii) A is τ -connected for all τ > 0.

Proof of Lemma A.2.9. i) ⇒ ii). Assume that A is not τ -connected
for some τ > 0. Then, by Lemma A.2.4, there are finitely many τ -connected
components A1, . . . , Am of A with m > 1. We write A′ := A1 and A′′ :=
A2 ∪ · · · ∪ Am. Then A′ and A′′ are non-empty, disjoint and A′ ∪ A′′ = A
by construction. Moreover, Lemma A.2.4 shows that A′ and A′′ are closed
since A is closed, and hence A cannot be connected.

ii) ⇒ i). Let us assume that A is not connected. Then there exist two non-
empty closed disjoint subsets of A with A′∪A′′ = A. Since X is compact, A′

and A′′ are also compact, and hence A′ ∩A′′ = ∅ implies τ := d(A′, A′′) > 0.
Lemma A.2.5 then shows that A is not τ -connected.

The next proposition investigates the relation between Cτ (A) and C(A).

Proposition A.2.10. Let (X, d) be a compact metric space and A ⊂ X
be a non-empty closed subset. Then the following statements hold:

i) For all τ > 0, C(A) is comparable to Cτ (A) and the CRM ζ : C(A) →
Cτ (A) is surjective.

ii) If |C(A)| <∞, we have

τ∗A := min
{
d(A′, A′′) : A′, A′′ ∈ C(A) with A′ ̸= A′′} > 0 ,

where min ∅ := ∞. Moreover, for all τ ∈ (0, τ∗A] ∩ (0,∞), we have
C(A) = Cτ (A) and, for such τ , the CRM ζ : C(A) → Cτ (A) is bijective.
Finally, if τ∗A <∞, that is, |C(A)| > 1, we have

τ∗A = max{τ > 0 : C(A) = Cτ (A)} .

Note that, in general, a closed subset of A may have infinitely many
topologically connected components as, e.g., the Cantor set shows. In this
case, the second assertion of the lemma above is, in general, no longer true.

Proof of Proposition A.2.10. i). Let A′ ∈ C(A) and τ > 0. Since
A is closed, so is A′, and hence A′ is τ -connected by Lemma A.2.9. Con-
sequently, Corollary A.2.6 shows that there exists an A′′ ∈ Cτ (A) with
A′ ⊂ A′′, i.e. C(A) is comparable to Cτ (A). Now we fix an A′′ ∈ Cτ (A).
Then there exists an x ∈ A′′, and to this x, there exists an A′ ∈ C(A) with
x ∈ A′. This yields A′ ∩ A′′ ̸= ∅, and since A′ is τ -connected by Lemma
A.2.9, Corollary A.2.6 shows A′ ⊂ A′′, i.e. we obtain ζ(A′) = A′′.

ii). Let A1, . . . , Am be the topologically connected components of A. Then
the components are closed, and sinceA is a closed and thus compact subset of
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X, the components are compact, too. This shows d(Ai, Aj) > 0 for all i ̸= j,
and consequently we obtain τ∗A > 0. Let us fix a τ ∈ (0, τ∗A] ∩ (0,∞). Then,
Lemma A.2.9 shows that each Ai is τ -connected, and therefore Lemma A.2.8
together with d(Ai, Aj) ≥ τ∗A ≥ τ for all i ̸= j yields Cτ (A) = {A1, . . . , Am}.
Consequently, we have proved C(A) = Cτ (A). The bijectivity of ζ now follows
from its surjectivity. For the proof of the last equation, we define τ∗ :=
sup{τ > 0 : C(A) = Cτ (A)}. Then we have already seen that τ∗A ≤ τ∗. Now
suppose that τ∗A < τ∗. Then there exists a τ ∈ (τ∗A, τ

∗) with C(A) = Cτ (A).
On the one hand, we then find d(Ai, Aj) ≥ τ for all i ̸= j by Lemma
A.2.4, while on the other hand τ > τ∗A shows that there exist i0 ̸= j0
with d(Ai0 , Aj0) < τ . In other words, the assumption τ∗A < τ∗ leads to a
contradiction, and hence we have τ∗A = τ∗.

The last lemma in this subsection shows the monotonicity of τ∗A.

Lemma A.2.11. Let (X, d) be a compact metric space and A ⊂ B be two
non-empty closed subsets of X with |C(A)| < ∞ and |C(B)| < ∞. If the
CRM ζ : C(A) → C(B) is injective, then we have τ∗A ≥ τ∗B.

Proof of Lemma A.2.11. Let us fix some A′, A′′ ∈ C(A) with A′ ̸= A′′.
Since ζ is injective, we then obtain ζ(A′) ̸= ζ(A′′). Combining this with
A′ ⊂ ζ(A′) and A′′ ⊂ ζ(A′′), we find

d(A′, A′′) ≥ d(ζ(A′), ζ(A′′)) ≥ τ∗B ,

where the last inequality follows from the definition of τ∗B. Taking the infi-
mum over all A′ and A′′ with A′ ̸= A′′ yields the assertion.

A.3. Additional Material Related to Tubes around Sets. This
section contains additional material on the operations A+δ and A−δ.

Let us begin by noting that in the literature there is another, closely
related concept for adding and cutting off δ-tubes, which is based on the
Minkowski addition. Namely, in generic metric spaces (X, d), we can define

A⊕δ := {x ∈ X : ∃y ∈ A with d(x, y) ≤ δ}
A⊖δ := {x ∈ X : B(x, δ) ⊂ A}

for A ⊂ X and δ > 0, where B(x, δ) := {y ∈ X : d(x, y) ≤ δ} denotes
the closed ball with radius δ and center x. Some simple considerations then
show A⊖(δ+ϵ) ⊂ A−δ ⊂ A⊖δ and A⊕δ ⊂ A+δ ⊂ A⊕(δ+ϵ) for all ϵ, δ > 0,
that is, the operations of both concepts almost coincide. In addition, it is
straightforward to check that A⊖δ = X \ (X \A)⊕δ.
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Usually, the operations ⊕δ and ⊖δ are considered for the special case
X := Rd equipped with the Euclidean norm. In this case, we immediately
obtain the more common expressions

A⊕δ = {x+ y : x ∈ A and y ∈ δBℓd2
}

A⊖δ = {x ∈ Rd : x+ δBℓd2
⊂ A} ,

where Bℓd2
denotes the closed unit Euclidean ball at the origin. Note that the

latter formulas remain true for sufficiently small δ > 0, if we consider the
“relative case” X ⊂ Rd and subsets A ⊂ X satisfying d(A,Rd \X) ∈ (0,∞).

In general, it is cumbersome to determine the exact forms of A+δ and
A−δ, respectively A⊕δ and A⊖δ for a given A. For a particular class of sets
A ⊂ R2, Example B.1.1 illustrates this by providing both A⊕δ and A⊖δ.

The next lemma establishes some basic properties of the introduced op-
erations.

Lemma A.3.1. Let (X, d) be a metric space and A,B ⊂ X be two subsets.
Then the following statements hold:

i) If A is compact, then A+δ = A⊕δ.
ii) We have d(A,B) ≤ d(A+δ, B+δ) + 2δ.
iii) We have

(A.3.1)
∩
δ>0

A+δ = A .

iv) We have (A ∪B)+δ = A+δ ∪B+δ and (A ∩B)+δ ⊂ A+δ ∩B+δ.
v) We have A−δ∪B−δ ⊂ (A∪B)−δ and, if d(A,B) > δ, we actually have

A−δ ∪B−δ = (A ∪B)−δ.
vi) For A1, A2 ⊂ X with A1∩A2 = ∅ and Bi ⊂ Ai with d(B1, B2) > δ, we

have

(A−δ
1 \B−δ

1 ) ∪ (A−δ
2 \B−δ

2 ) ⊂ (A1 ∪A2)
−δ \ (B1 ∪B2)

−δ ,

and equality holds, if d(A1, A2) > δ.
vii) For all δ > 0 and ϵ > 0, we have A ⊂ (A+δ+ϵ)−δ and (A−δ−ϵ)+δ ⊂ A.
viii) For all δ > 0 and ϵ > 0, we have (∂A)+δ ⊂ A+δ+ϵ \A−δ−ϵ.

Proof of Lemma A.3.1. i). Clearly, it suffices to prove A+δ ⊂ A⊕δ.
To prove this inclusion, we fix an x ∈ A+δ. Then there exists a sequence
(xn) ⊂ A with d(x, xn) ≤ δ+1/n for all n ≥ 1. Since A is compact, we may
assume without loss of generality that (xn) converges to some x′ ∈ A. Now
we easily obtain the assertion from d(x, x′) ≤ d(x, xn) + d(xn, x

′).
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ii). Let us fix an x ∈ A+δ and an y ∈ B+δ. Then there exist two sequences
(xn) ⊂ A and (yn) ⊂ B such that d(x, xn) ≤ δ+1/n and d(y, yn) ≤ δ+1/n
for all n ≥ 1. For n ≥ 1, this construction now yields

d(A,B) ≤ d(xn, yn) ≤ d(xn, x) + d(x, y) + d(y, yn) ≤ d(x, y) + 2δ + 2/n ,

and by first letting n → ∞ and then taking the infimum over all x ∈ A+δ

and y ∈ B+δ, we obtain the assertion.
iii). To show the inclusion⊃, we fix an x ∈ A. Then there exists a sequence

(xn) ⊂ A with xn → x for n → ∞. For δ > 0 there then exists an nδ such
that d(x, xn) ≤ δ for all n ≥ nδ. This shows d(x,A) ≤ δ, i.e. x ∈ A+δ. To
show the converse inclusion ⊂, we fix an x ∈ X that satisfies x ∈ A+1/n for
all n ≥ 1. Then there exists a sequence (xn) ⊂ A with d(x, xn) ≤ 1/n, and
hence we find xn → x for n→ ∞. This shows x ∈ A.

iv). If x ∈ (A∪B)+δ, there exists a sequence (xn) ⊂ A∪B with d(x, xn) ≤
δ + 1/n. Without loss of generality we may assume that (xn) ⊂ A, which
immediately yields x ∈ A+δ. The converse inclusion A+δ ∪B+δ ⊂ (A∪B)+δ

and the inclusion (A ∩B)+δ ⊂ A+δ ∩B+δ are trivial.
v). The first inclusion follows from part iv) and simple set algebra, namely

A−δ ∪B−δ = X \
(
(X \A)+δ ∩ (X \B)+δ

)
⊂ X \

(
(X \A) ∩ (X \B)

)+δ
= X \

(
X \ (A ∪B)

)+δ
= (A ∪B)−δ .

To show the converse inclusion, we fix an x ∈ (A∪B)−δ. Since (A∪B)−δ ⊂
A∪B, we may assume without loss of generality that x ∈ A. It then remains
to show that x ∈ A−δ, that is d(x,X \A) > δ. Obviously, A∩B = ∅, which
follows from d(A,B) > δ, implies

X \A = ((X \A) ∩ (X \B)) ∪ ((X \A) ∩B) = (X \ (A ∪B)) ∪B ,

and hence we obtain d(x,X \ A) = d(x,X \ (A ∪ B)) ∧ d(x,B) > δ ∧ δ = δ
where we used both x ∈ (A ∪B)−δ and d(A,B) > δ.

vi). Using the formula (A1∪A2)\ (B1∪B2) = (A1 \B1)∪ (A2 \B2), which
easily follows from Ai \Bj = Ai for i ̸= j, we obtain

(A−δ
1 \B−δ

1 ) ∪ (A−δ
2 \B−δ

2 ) = (A−δ
1 ∪A−δ

2 ) \ (B−δ
1 ∪B−δ

2 )

⊂ (A1 ∪A2)
−δ \ (B1 ∪B2)

−δ ,

where in the last step we used v). The second assertion also follows from v).
vii). Obviously, A ⊂ (A+δ+ϵ)−δ is equivalent to (X \ A+δ+ϵ)+δ ⊂ X \ A.

To prove the latter, we fix an x ∈ (X \ A+δ+ϵ)+δ. Then there exists a
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sequence (xn) ⊂ X \A+δ+ϵ with d(x, xn) ≤ δ+1/n for all n ≥ 1. Moreover,
(xn) ⊂ X \ A+δ+ϵ implies d(xn, x

′) > δ + ϵ for all n ≥ 1 and x′ ∈ A. Now
assume that we had x ∈ A. For an index n with 1/n ≤ ϵ, we would then
obtain δ + ϵ < d(xn, x) ≤ δ + ϵ, and hence x ∈ A cannot be true.

To show the second inclusion we fix an x ∈ (A−δ−ϵ)+δ. Then there exists
a sequence (xn) ⊂ A−δ−ϵ such that d(x, xn) ≤ δ + 1/n for all n ≥ 1. This
time, xn ∈ A−δ−ϵ implies xn ̸∈ (X \ A)+δ+ϵ, that is d(xn, x′) > δ + ε for all
n ≥ 1 and x′ ∈ X \A. Choosing an n with 1/n ≤ ϵ, we then find x ∈ A.

viii). We fix an x ∈ (∂A)⊕δ. By definition, there then exists an x′ ∈ ∂A
with d(x, x′) ≤ δ. Moreover, by the definition of the boundary, there exists an
x′′ ∈ A with d(x′, x′′) ≤ ϵ, and hence we find d(x, x′′) ≤ δ+ϵ, i.e. x ∈ A+δ+ϵ.
Since ∂A = ∂(X \ A), the same argument yields x ∈ (X \ A)+δ+ϵ, i.e. x ̸∈
A−δ−ϵ. Thus, we have shown (∂A)⊕δ ⊂ A+δ+ϵ \ A−δ−ϵ. Using (∂A)+δ ⊂
(∂A)⊕(δ+ϵ) and a simple change of variables then yields the assertion.

A.4. Additional Material Related to Persistence. In this section
we recall and prove two results of [9] that extend Theorem 2.7.

We begin with the following lemma, which shows that Cτ (A) is persistent
in Cτ (A+δ), if τ > 0 and δ > 0 are sufficiently small.

Lemma A.4.1. Let (X, d) be a compact metric space, and A ⊂ X be
non-empty. Then, for all δ > 0 and τ > δ, the following statements hold:

i) The set (A′)+δ is τ -connected for all A′ ∈ Cτ (A).
ii) The CRM ζ : Cτ (A) → Cτ (A+δ) is surjective.
iii) If A is closed, |C(A)| <∞, and τ ≤ τ∗A/3, then the CRM ζ : Cτ (A) →

Cτ (A+δ) is bijective and satisfies

(A.4.1) ζ(A′) = (A′)+δ , A′ ∈ Cτ (A).

Proof of Lemma A.4.1. i). Since τ > δ, there exist an ε > 0 with
δ + ε < τ . For x ∈ (A′)+δ, there thus exists an x′ ∈ A′ with d(x, x′) ≤
δ + ε < τ , i.e. x and x′ are τ -connected. Since A′ is τ -connected, it is then
easy to show that every pair x, x′′ ∈ (A′)+δ is τ -connected.

ii). Let us fix an A′ ∈ Cτ (A+δ) and an x ∈ A′. For n ≥ 1 there then exists
an xn ∈ A with d(x, xn) ≤ δ + 1/n and since by Lemma A.2.4 there only
exist finitely many τ -connected components of A, we may assume without
loss of generality that there exists an A′′ ∈ Cτ (A) with xn ∈ A′′ for all
n ≥ 1. This yields d(x,A′′) ≤ δ + 1/n for all n ≥ 1, and hence d(x,A′′) ≤ δ.
Consequently, we obtain x ∈ (A′′)+δ, i.e. we have (A′′)+δ ∩ A′ ̸= ∅. Since
(A′′)+δ ⊂ A+δ, we then conclude that (A′′)+δ ⊂ A′ by Corollary A.2.6 and
part i). Furthermore, we clearly have A′′ ⊂ (A′′)+δ, and hence ζ(A′′) = A′.
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iii). Let us first consider the case |C(A)| = 1. In this case, part i) of
Proposition A.2.10 shows |Cτ (A)| = 1, and thus |Cτ (A+δ)| = 1 by the already
established part ii). This makes the assertion obvious.

In the case |C(A)| > 1 we write A1, . . . , Am for the τ -connected compo-
nents of A. By part iv) of Lemma A.3.1 we then obtain

(A.4.2) A+δ =

m∪
i=1

A+δ
i .

Since |C(A)| > 1, we further have τ∗A <∞, and hence part ii) of Proposition
A.2.10 yields C(A) = Cτ (A). The definition of τ∗A thus gives d(Ai, Aj) ≥
τ∗A ≥ 3τ for all i ̸= j. Our first goal is to show that

(A.4.3) d(A+δ
i , A+δ

j ) ≥ τ , i ̸= j .

To this end, we fix i ̸= j and both an xi ∈ A+δ
i and an xj ∈ A+δ

j . Now, the
compactness of X yields the compactness of Ai and Aj by Lemma A.2.4, and
hence part i) of Lemma A.3.1 shows that there exist x′i ∈ Ai and x

′
j ∈ Aj

with d(xi, x
′
i) ≤ δ and d(xj , x

′
j) ≤ δ. This yields

3τ ≤ d(x′i, x
′
j) ≤ d(x′i, xi) + d(xi, xj) + d(xj , x

′
j) ≤ 2δ + d(xi, xj) ,

and the latter together with δ < τ implies (A.4.3).
Now i) showed that each A+δ

i , i = 1, . . . ,m, is τ -connected. Combining
this with (A.4.2), (A.4.3), and Lemma A.2.8, we see that A+δ

1 , . . . , A+δ
m are

the τ -connected components of A+δ. The bijectivity of ζ then follows from
the surjectivity and a cardinality argument, and (A.4.1) is obvious.

The following theorem is an extended version of the statements of Theo-
rem 2.7 that deal with Cτ (M+δ

ρ ).

Theorem A.4.2. Let (X, d) be a compact metric space, µ be a finite
Borel measure on X and P be a µ-absolutely continuous distribution on X
that can be clustered between ρ∗ and ρ∗∗. Then the function τ∗ defined by
(2.6) is monotonically increasing. Moreover, for all ε∗ ∈ (0, ρ∗∗−ρ∗], δ > 0,
τ ∈ (δ, τ∗(ε∗)], and all ρ ∈ [0, ρ∗∗], the following statements hold:

i) We have 1 ≤ |Cτ (M+δ
ρ )| ≤ 2.

ii) If ρ ≥ ρ∗ + ε∗, then |Cτ (M+δ
ρ )| = 2 and C(Mρ) ⊑ Cτ (M+δ

ρ ).

iii) If |Cτ (M+δ
ρ )| = 2, then ρ ≥ ρ∗ and Cτ (M+δ

ρ∗∗) ⊑ Cτ (M+δ
ρ ).

iv) If Cτ (M−δ
ρ∗∗) ⊑ Cτ (M+δ

ρ∗∗) and |Cτ (M−δ
ρ )| = 1, then ρ < ρ∗ + ε∗.
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Proof of Theorem A.4.2. Let us first show the assertions related to
the function τ∗. To this end, we first observe that for ε ∈ (0, ρ∗∗ − ρ∗] we
have |C(Mρ∗+ε)| = |C(Mρ∗∗)| = 2 by Definition 2.5. This shows τ∗(ε) <∞.

Let us now fix ε1, ε2 ∈ (0, ρ∗∗ − ρ∗] with ε1 ≤ ε2. Then Definition 2.5
guarantees that both Mρ∗+ε1 and Mρ∗+ε2 have two topologically connected
components and that the CRM ζ : C(Mρ∗+ε2) → C(Mρ∗+ε1) is bijective.
From Lemma A.2.11 we thus obtain

τ∗(ε2) =
1

3
τ∗Mρ∗+ε2

≥ 1

3
τ∗Mρ∗+ε1

= τ∗(ε1) .

i). Since ∅ ̸= Mρ ⊂ M+δ
ρ , we find |Cτ (M+δ

ρ )| ≥ 1. On the other hand,
since τ > δ, part ii) of Lemma A.4.1 and part i) of Proposition A.2.10 yield

(A.4.4) |Cτ (M+δ
ρ )| ≤ |Cτ (Mρ)| ≤ |C(Mρ)| ≤ 2 .

ii). Let us fix a ρ ∈ [ρ∗ + ε∗, ρ∗∗]. For ε := ρ− ρ∗, the monotonicity of τ∗

then gives τ∗(ε∗) ≤ τ∗(ε), and hence we obtain

τ ≤ 1

3
τ∗Mρ∗+ε∗

≤ 1

3
τ∗Mρ

<∞ .

Part ii) of Proposition A.2.10 thus shows that the CRM ζρ : C(Mρ) →
Cτ (Mρ) is bijective. Furthermore, δ < τ ≤ τ∗Mρ

/3 together with part iii)

of Lemma A.4.1 shows that the CRM ζδ : Cτ (Mρ) → Cτ (M+δ
ρ ) is bijective.

Consequently, the CRM ζ = ζδ ◦ ζρ : C(Mρ) → Cτ (M+δ
ρ ) is bijective, and

from the latter we conclude that |Cτ (M+δ
ρ )| = |C(Mρ)| = 2.

iii). Since |Cτ (M+δ
ρ )| = 2, the already established (A.4.4) yields |C(Mρ)| =

2, and hence Definition 2.5 implies both ρ ≥ ρ∗ and the bijectivity of the
CRM ζ∗∗ : C(Mρ∗∗) → C(Mρ). Moreover, for ρ∗∗, the already established
part ii) shows that the CRM ζM : Cτ (Mρ∗∗) → Cτ (M+δ

ρ∗∗) is bijective, and
the proof of ii) further showed C(Mρ∗∗) = Cτ (Mρ∗∗). Consequently, ζM equals
the CRM C(Mρ∗∗) → Cτ (M+δ

ρ∗∗). In addition, δ < τ together with part ii) of
Lemma A.4.1 and part i) of Proposition A.2.10 shows that the CRM ζρ :
C(Mρ) → Cτ (M+δ

ρ ) is surjective. Now, by Lemma 2.4 these maps commute
in the sense of the following diagram

C(Mρ∗∗) C(Mρ)

Cτ (M+δ
ρ∗∗) Cτ (M+δ

ρ )

-

? ?
-

ζ∗∗

ζM ζρ

ζ
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and consequently, the CRM ζ is surjective. Since |Cτ (M+δ
ρ∗∗)| = |C(Mρ∗∗)| = 2

and |Cτ (M+δ
ρ )| = 2, we then conclude that ζ is bijective.

iv). We proceed by contraposition. To this end, we fix an ρ ∈ [ρ∗+ε∗, ρ∗∗].
By the already established part ii) we then find |Cτ (M+δ

ρ )| = 2, and part iii)

thus shows that the CRM ζM : Cτ (M+δ
ρ∗∗) → Cτ (M+δ

ρ ) is bijective. Moreover,
Lemma 2.4 yields the following diagram

Cτ (M−δ
ρ∗∗) Cτ (M+δ

ρ∗∗)

Cτ (M−δ
ρ ) Cτ (M+δ

ρ )

-

? ?
-

ζ

ζV ζM

ζV,M

where ζ, ζV , and ζV,M are the corresponding CRMs. Now our assumption
guarantees that ζ is bijective, and hence the diagram shows that ζV,M ◦ ζV
is bijective. Consequently, ζV is injective, and from the latter we obtain
2 = |Cτ (M+δ

ρ )| = |Cτ (M−δ
ρ∗∗)| ≤ |Cτ (M−δ

ρ )|.

The next lemma investigates situations in which Cτ (A−δ) is persistent
in C(A). In particular, it shows that if τ is sufficiently large compared to
δ and |Cτ (A−δ)| = |C(A)|, then we obtain persistence. Informally speaking
this means that gluing δ-cuts by τ -connectivity may preserve the component
structure.

Lemma A.4.3. Let (X, d) be a compact metric space, and A ⊂ X be
non-empty and closed with |C(A)| <∞. We define ψ∗

A : (0,∞) → [0,∞] by

ψ∗
A(δ) := sup

x∈A
d(x,A−δ) , δ > 0.

Then, for all δ > 0 and all τ > 2ψ∗
A(δ), the following statements hold:

i) For all B′ ∈ C(A), there is at most one A′ ∈ Cτ (A−δ) with A′∩B′ ̸= ∅.
ii) We have |Cτ (A−δ)| ≤ |C(A)|.
iii) If |Cτ (A−δ)| = |C(A)|, then Cτ (A−δ) is persistent in C(A). Moreover,

for all B′, B′′ ∈ C(A) with B′ ̸= B′′ we have

(A.4.5) d(B′, B′′) ≥ τ − 2ψ∗
A(δ) .

Proof of Lemma A.4.3. i). Let us fix a ψ > 2ψ∗
A(δ) with ψ < τ and

a τ ′ ∈ (0, τ∗A) such that ψ + τ ′ < τ , where τ∗A is the constant defined in
Proposition A.2.10. Moreover, we fix a B′ ∈ C(A). By Proposition A.2.10
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we then see that C(A) = Cτ ′(A), and hence B′ is τ ′-connected. Now let
A1, . . . , Am be the τ -connected components of A−δ. Clearly, Lemma A.2.4
yields d(Ai, Aj) ≥ τ for all i ̸= j. Assume that i) is not true, that is, there
exist indices i0, j0 with i0 ̸= j0 such that Ai0∩B′ ̸= ∅ and Aj0∩B′ ̸= ∅. Thus,
there exist x′ ∈ Ai0 ∩ B′ and x′′ ∈ Aj0 ∩ B′, and since B′ is τ ′-connected,
there further exist x0, . . . , xn+1 ∈ B′ ⊂ A with x0 = x′, xn+1 = x′′ and
d(xi, xi+1) < τ ′ for all i = 0, . . . , n. Moreover, our assumptions guarantee
d(xi, A

−δ) < ψ/2 for all i = 0, . . . , n+ 1. For all i = 0, . . . , n+ 1, there thus
exists an index ℓi with

d(xi, Aℓi) < ψ/2 .

In addition, we have x0 ∈ Ai0 and xn+1 ∈ Aj0 by construction, and hence
we may actually choose ℓ0 = i0 and ℓn+1 = j0. Since we assumed ℓ0 ̸=
ℓn+1, there then exists an i ∈ {0, . . . , n} with ℓi ̸= ℓi+1. For this index, our
construction now yields

d(Aℓi , Aℓi+1
) ≤ d(xi, Aℓi) + d(xi, xi+1) + d(xi+1, Aℓi+1

) < ψ + τ ′ < τ ,

which contradicts the earlier established d(Aℓi , Aℓi+1
) ≥ τ .

ii). Since A−δ ⊂ A, there exists, for every A′ ∈ Cτ (A−δ), a B′ ∈ C(A) with
A′∩B′ ̸= ∅. We pick one such B′ and define ζ(A′) := B′. Now part i) shows
that ζ : Cτ (A−δ) → C(A) is injective, and hence we find |Cτ (A−δ)| ≤ |C(A)|.

iii). As mentioned in part ii), we have an injective map ζ : Cτ (A−δ) →
C(A) that satisfies

(A.4.6) A′ ∩ ζ(A′) ̸= ∅ , A′ ∈ Cτ (A−δ) .

Now, |Cτ (A−δ)| = |C(A)| together with the assumed |C(A)| <∞ implies that
ζ is actually bijective. Let us first show that ζ is the only map that satisfies
(A.4.6). To this end, assume the converse, that is, for some A′ ∈ Cτ (A−δ),
there exists an B′ ∈ C(A) with B′ ̸= ζ(A′) and A′ ∩ B′ ̸= ∅. Since ζ is
bijective, there then exists an A′′ ∈ Cτ (A−δ) with ζ(A′′) = B′, and hence
we have A′′ ∩ B′ ̸= ∅ by (A.4.6). By part i), we conclude that A′ = A′′,
which in turn yields ζ(A′) = ζ(A′′) = B′. In other words, we have found a
contradiction, and hence ζ is indeed the only map that satisfies (A.4.6).

Let us now show that Cτ (A−δ) is persistent in C(A). Since we assumed
|Cτ (A−δ)| = |C(A)|, it suffices to prove that the injective map ζ : Cτ (A−δ) →
C(A) defined by (A.4.6) is a CRM, i.e. it satisfies

(A.4.7) A′ ⊂ ζ(A′) , A′ ∈ Cτ (A−δ) .

To show (A.4.7), we pick an A′ ∈ Cτ (A−δ) and write B1, . . . , Bm for the
topologically connected components of A. Since A−δ ⊂ A, we then have
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A′ ⊂ B1∪· · ·∪Bm, where the latter union is disjoint. Now, we have just seen
that ζ(A′) ∈ {B1, . . . , Bm} is the only component satisfying A′ ∩ ζ(A′) ̸= ∅,
and therefore we can conclude A′ ⊂ ζ(A′).

Finally, let us show (A.4.5). To this end, we first prove that, for all A′ ∈
Cτ (A−δ) and x ∈ ζ(A′) we have

(A.4.8) d(x,A′) ≤ ψ∗
A(δ) ,

where ζ : Cτ (A−δ) → C(A) is the bijective CRM considered above. Let
us assume that (A.4.8) is not true, that is, there exist an A′ ∈ Cτ (A

−δ)
and an x ∈ ζ(A′) such that d(x,A′) > ψ∗

A(δ). Since d(x,A
−δ) ≤ ψ∗

A(δ),
there further exists an A′′ ∈ Cτ (A

−δ) with d(x,A′′) ≤ ψ∗
A(δ). Obviously,

this yields A′ ̸= A′′. Let us fix a τ ′ ∈ (0, τ∗A) with 2ψ∗
A(δ) + τ ′ < τ , and

an x′ ∈ A′. For B′ := ζ(A′), we then have x′ ∈ B′ by (A.4.7), and our
construction guarantees x ∈ B′. Now, the rest of the proof is similar to that
of i). Namely, since B′ is τ ′-connected, there exist x0, . . . , xn+1 ∈ B′ with
x0 = x, xn+1 = x′ and d(xi, xi+1) < τ ′ for all i = 0, . . . , n. Let A1, . . . , Am
be the τ -connected components of A−δ. Then, for all i = 0, . . . , n+ 1, there
exists an index ℓi with

d(xi, Aℓi) ≤ ψ∗
A(δ) ,

where we may choose Aℓ0 = A′′ and Aℓn+1 = A′. Since ℓ0 ̸= ℓn+1, there then
exists an i ∈ {0, . . . , n} with ℓi ̸= ℓi+1, and our construction yields

τ ≤ d(Aℓi , Aℓi+1
) ≤ d(xi, Aℓi)+d(xi, xi+1)+d(xi+1, Aℓi+1

) < 2ψ∗
A(δ)+τ

′ < τ .

To prove (A.4.5), we again assume the converse, that is, that there exist
B′, B′′ ∈ C(A) with B′ ̸= B′′ and d(B′, B′′) < τ − 2ψ∗

A(δ). Then there exist
x′ ∈ B′ and x′′ ∈ B′′ such that d(x′, x′′) < τ − 2ψ∗

A(δ). Now, since ζ is
bijective, there exists A′, A′′ ∈ Cτ (A

−δ) with A′ ̸= A′′, B′ = ζ(A′), and
B′′ = ζ(A′′). Using (A.4.8), we then obtain

τ ≤ d(A′, A′′) ≤ d(x′, A′)+d(x′, x′′)+d(x′′, A′′) < 2ψ∗
A(δ)+ τ −2ψ∗

A(δ) = τ ,

i.e. we again have found a contradiction.

The following theorem provides an extended version of the statements of
Theorem 2.7 that deal with Cτ (M−δ

ρ ).

Theorem A.4.4. Let Assumption C be satisfied and ε∗ ∈ (0, ρ∗∗ − ρ∗],
δ ∈ (0, δthick], τ ∈ (ψ(δ), τ∗(ε∗)], and ρ ∈ [0, ρ∗∗]. Then, we have:

i) We have 1 ≤ |Cτ (M−δ
ρ )| ≤ 2.
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ii) We have Cτ (M−δ
ρ∗∗) ⊑ Cτ (M+δ

ρ∗∗).

iii) If |Cτ (M−δ
ρ )| = 2, then ρ ≥ ρ∗ and Cτ (M−δ

ρ∗∗) ⊑ Cτ (M−δ
ρ ) ⊑ C(Mρ).

Proof of Theorem A.4.4. i). We first observe that δ ≤ δthick implies

sup
x∈Mρ

d(x,M−δ
ρ ) = ψ∗

Mρ
(δ) ≤ cthickδ

γ <∞ ,

and thus M−δ
ρ ̸= ∅, i.e. |Cτ (M−δ

ρ )| ≥ 1. Conversely, we have |Cτ (M−δ
ρ )| ≤

|C(Mρ)| ≤ 2, where the first inequality was established in part ii) of Lemma
A.4.3 and the second is ensured by Definition 2.5.

ii). The monotonicity of τ∗ established in Theorem A.4.2 yields δ <
ψ(δ) < τ ≤ τ∗(ε∗) ≤ τ∗Mρ∗∗

/3. By part iii) of Lemma A.4.1 we then

conclude that the CRM Cτ (Mρ∗∗) → Cτ (M+δ
ρ∗∗) is bijective, and part ii)

of Theorem A.4.2 shows |Cτ (Mρ∗∗)| = |Cτ (M+δ
ρ∗∗)| = 2. By Lemma 2.4 it

thus suffices to show that the CRM ζ : Cτ (M−δ
ρ∗∗) → Cτ (Mρ∗∗) is bijec-

tive. Furthermore, if |Cτ (M−δ
ρ∗∗)| = 1, this map is automatically injective,

and if |Cτ (M−δ
ρ∗∗)| = 2, the injectivity follows from the surjectivity and the

above proven |Cτ (Mρ∗∗)| = 2. Consequently, it actually suffices to show
that ζ is surjective. To this end, we fix a B′ ∈ Cτ (Mρ∗∗) and an x ∈ B′.
Then our assumption ensures d(x,M−δ

ρ∗∗) < ψ(δ), and hence there exists an

A′ ∈ Cτ (M−δ
ρ∗∗) with d(x,A

′) < ψ(δ). Therefore, ψ(δ) < τ implies that x and
A′ are τ -connected, which yields x ∈ A′. In other words, we have shown
A′ ∩ B′ ̸= ∅. By Lemma A.2.6 and the definition of ζ, we conclude that
ζ(A′) = B′.

iii). We have 2 = |Cτ (M−δ
ρ )| ≤ |C(Mρ)| ≤ 2, where the first inequality

was shown in part ii) of Lemma A.4.3 and the second is guaranteed by
Definition 2.5. We conclude that |C(Mρ)| = 2, and hence Definition 2.5
ensures both ρ ≥ ρ∗ and the bijectivity of the CRM ζtop : C(Mρ∗∗) → C(Mρ).
Furthermore, |Cτ (M−δ

ρ )| = |C(Mρ)|, which has been shown above, together

with part iii) of Lemma A.4.3 yields a bijective CRM ζρ : Cτ (M−δ
ρ ) →

C(Mρ), i.e. the second persistence Cτ (M
−δ
ρ ) ⊑ C(Mρ) is shown. Moreover,

part ii) of Theorem A.4.2 shows |Cτ (M+δ
ρ∗∗)| = 2, and hence the already

established bijectivity of ζ∗∗ : Cτ (M−δ
ρ∗∗) → Cτ (M+δ

ρ∗∗) gives |Cτ (M−δ
ρ∗∗)| =

|Cτ (M+δ
ρ∗∗)| = 2 = |C(Mρ∗∗)|. Consequently, part iii) of Lemma A.4.3 yields

a bijective CRM ζρ∗∗ : Cτ (M−δ
ρ∗∗) → C(Mρ∗∗). Then the CRM ζ : Cτ (M−δ

ρ∗∗) →
Cτ (M−δ

ρ ) enjoys the following diagram
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Cτ (M−δ
ρ∗∗) C(Mρ∗∗)

Cτ (M−δ
ρ ) C(Mρ)

-

? ?
-

ζρ∗∗

ζ ζtop

ζρ

whose commutativity follows from Lemma 2.4. Then the bijectivity of ζρ∗∗ ,
ζtop, and ζρ yields the bijectivity of ζ, which completes the proof.

A.5. Additional Material Related to Thickness. In this section
we discuss some aspects related to the thickness assumption introduced in
Definition 2.6.

To this end, let (X, d) be an arbitrary metric spaces and A ⊂ X. We then
define the function ψ∗

A : (0,∞) → [0,∞] by

ψ∗
A(δ) := sup

x∈Mρ

d(x,A−δ) , δ > 0.

Obviously, ψ∗
Mρ

coincides with the left-hand side of (2.5).
Our first observation is that the definition of ψ∗

A immediately yields A ⊂
(A−δ)+ψ

∗
A(δ) for all δ > 0 with ψ∗

A(δ) <∞, and it is also straightforward to
see that ψ∗

A(δ) is the smallest ψ > 0, for which this inclusion holds, that is

ψ∗
A(δ) = min

{
ψ ≥ 0 : A ⊂ (A−δ)+ψ

}
for all δ > 0. In other words, ψ∗

A(δ) gives the size of the smallest tube needed
to recover a superset of A from A−δ. In particular, if δ is too large, that is
A−δ = ∅, we obviously have ψ∗

A(δ) = ∞ and no recovery is possible.
Intuitively it is not surprising that ψ∗

A grows at least linearly, that is

(A.5.1) ψ∗
A(δ) ≥ δ

for all δ > 0 provided that d(A,X \ A) = 0. Indeed, ψ∗
A(δ) < δ for some

δ > 0 gives us an ϵ > 0 such that d(x,A−δ) < δ − ϵ for all x ∈ A. Since
d(A,X \ A) = 0 there then exists an x ∈ A with d(x,X \ A) < ϵ, and for
this x there exists an x′ ∈ A−δ with d(x, x′) < δ − ϵ. Now the definition of
A−δ gives d(x′, X \A) > δ, and hence we find a contradiction by

δ < d(x′, X \A) ≤ d(x′, x) + d(x,X \A) < δ .

For generic sets A, the function ψ∗
A is usually hard to bound, but for some

classes of sets, ψ∗
A can be computed precisely. For example, for an interval
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I = [a, b], we have ψ∗
I (δ) = δ for all δ ∈ (0, (b − a)/2], and ψ∗

I (δ) = ∞,
otherwise. Clearly, this example can be extended to finite unions of such
intervals and for intervals that are not closed, the only difference occurs at
δ = (b−a)/2. In higher dimensions, an interesting class of sets A with linear
behavior of ψ∗

A is described by Serra’s model, see [7, p. 144], that consist of
all compact sets A ⊂ Rd for which there is a δ0 > 0 with

A = (A⊖δ0)⊕δ0 = (A⊕δ0)⊖δ0 .

If, in addition, A is path-connected, then [11, Theorem 1] shows that this
relation also holds for all δ ∈ (0, δ0]. In this case, we then obtain

A = (A⊖(δ+ϵ))⊕(δ+ϵ) ⊂ (A⊖(δ+ϵ))+δ+ϵ ⊂ (A−δ)+δ+ϵ

for all δ ∈ (0, δ0) and 0 < ϵ ≤ δ0 − δ. In other words, we have ψ∗
A(δ) ≤ δ+ ϵ,

and letting ϵ → 0, we thus conclude ψ∗
A(δ) = δ for all δ ∈ (0, δ0). With the

help of Lemma A.3.1, it is not hard to see that this result generalizes to finite
unions of compact, path-connected sets, which has already been observed
in [11]. Finally, note that [11, Theorem 1] also provides some useful char-
acterizations of (path-connected) compact sets belonging to Serra’s model.
In a nutshell, these are the sets whose boundary is a (d − 1)-dimensional
sub-manifold of Rd with outward pointing unit normal vectors satisfying a
Lipschitz condition.

Fortunately, our analysis does not require the exact form of ψ∗
A, but only

its asymptotic behavior for δ → 0. Therefore, it is interesting to note that
ψ∗
A is also asymptotically invariant against bi-Lipschitz transformations. To

be more precise, let (X, d) and (Y, e) be two metric spaces and I : X → Y
be a bijective map for which there exists a constant C > 0 such that

C−1e(I(x), I(x′)) ≤ d(x, x′) ≤ Ce(I(x), I(x′))

for all x, x′ ∈ X. For A ⊂ X and δ > 0, we then have I(A+δ/C) ⊂ (I(A))+δ ⊂
I(A+Cδ), which in turn implies

C−1ψ∗
A(δ/C) ≤ ψ∗

I(A)(δ) ≤ Cψ∗
A(Cδ)

for all δ > 0. In particular, we have ψ∗
A(δ) ⪯ δγ for some γ ∈ (0, 1] if and

only if ψ∗
I(A)(δ) ⪯ δγ .

Last but not least we like to mention that based on the sets A ⊂ R2

considered in Example B.1.1, Example B.1.2 estimates ψ∗
A. In particular,

this example provides various sets A with ψ∗
A(δ) ∼ δ that do not belong

to Serra’s model, and this class of sets can be further expanded by using
bi-Lipschitz transformations as discussed above.
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Now consider Definition 2.6, which excludes thin cusps and bridges, where
the thinness and length of both is controlled by γ. Such assumptions have
been widely used in the literature on level set estimation and density-based
clustering. For example, a basically identical assumption has been made in
[8] for the exponent γ = 1, which can be taken, if, e.g., the level sets belong
to Serra’s model. Moreover, level sets belonging to Serra’s model have been
investigated in [10]. In particular, [10, Theorem 2] shows that most level
sets of a C1-density with Lipschitz continuous gradient belong to Serra’s
model. Unfortunately, however, levels at which the density has a saddle
point are excluded in this theorem, and some other elementary sets such
as cubes in Rd do not belong to Serra’s model, either. For this reason, we
allow constants cthick > 1 in Definition 2.6. Moreover, the exponent γ < 1 is
allowed to provide more flexibility in situations, in which very thin bridges
are expected. However, based on the discussion on ψ∗

A as well as the examples
provided in Section B.2, we strongly believe, that in most cases assuming
γ = 1 is reasonable. With the help of the discussion on ψ∗

A it is also easy to
see that we haveMρ ⊂ (M−δ)+ψ(δ)/2 for all δ ∈ (0, δthick] and all ρ ∈ (0, ρ∗∗].
In addition, it becomes clear that exponents γ > 1 are impossible as soon as
d(Mρ, X \Mρ) = 0 for some ρ ∈ (0, ρ∗∗]. Finally, recall that a less geometric
assumption excluding thin features has been used by various authors, see
e.g. [3, 2, 6] and the references therein, and an overview of these and similar
assumptions can be found in [1].

Understanding (2.5) in the one-dimensional case is very simple. Indeed, if
X ⊂ R is an interval and P can be topologically clustered between ρ∗ and
ρ∗∗, then, for all ρ ∈ [0, ρ∗∗], the level set Mρ consists of either one or two
closed intervals. Using this, the discussion on ψ∗

A shows that P actually has
thick levels of order γ = 1 up to the level ρ∗∗. Moreover, a possible thickness
function is ψ(δ) = 3δ for all δ ∈ (0, δthick], where δthick equals the smaller
radius of the two intervals at level ρ∗∗.

Finally, using the discussion on ψ∗
A it is not hard to construct distributions

with discontinuous densities that have thick levels of order, e.g. γ = 1. For
continuous densities, however, this task is significantly harder due to the
above mentioned saddle point effects at the critical level ρ∗. Therefore, we
have added Example B.2.1, which provides a large class of such densities in
the case X ⊂ R2.

A.6. Proofs and Results Related to Algorithm 2.1. The main
goals of this section is to prove Theorem 2.8 and to provide background
material from [9] for the proof of Theorem 2.9.
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Lemma A.6.1. Let (X, d) be a compact metric space and µ be a finite
Borel measure on X with suppµ = X. Moreover, let P be a µ-absolutely
continuous distribution on X, and (Lρ)ρ≥0 be a decreasing family of sets
Lρ ⊂ X such that

M−δ
ρ+ε ⊂ Lρ ⊂M+δ

ρ−ε

for some fixed δ > 0, ε ≥ 0, and all ρ ≥ 0. For some fixed ρ ≥ 0 and τ > 0,
let ζ : Cτ (M−δ

ρ+ε) → Cτ (Lρ) be the CRM. Then we have:

i) For all A′ ∈ Cτ (M−δ
ρ+ε) with A

′∩M−δ
ρ+3ε ̸= ∅ we have ζ(A′)∩Lρ+2ε ̸= ∅.

ii) For all B′ ∈ Cτ (Lρ) with B′ ̸∈ ζ(Cτ (M−δ
ρ+ε)), we have

B′ ⊂ (X \Mρ+ε)
+δ ∩M+δ

ρ−ε(A.6.1)

B′ ∩ Lρ+2ε ⊂ (X \Mρ+ε)
+δ ∩M+δ

ρ+ε .(A.6.2)

Proof of Lemma A.6.1. i). Using the CRM property A′ ⊂ ζ(A′) and
the inclusion M−δ

ρ+3ε ⊂ Lρ+2ε, we obtain

∅ ̸= A′ ∩M−δ
ρ+3ε ⊂ ξ(A′) ∩ Lρ+2ε .

ii). We fix a B′ ∈ Cτ (Lρ) \ ζ(Cτ (M−δ
ρ+ε)). For x ∈ B′ we then have

x ̸∈
∪

A′∈Cτ (M−δ
ρ+ε)

ζ(A′) ,

and hence the CRM property yields

x ̸∈
∪

A′∈Cτ (M−δ
ρ+ε)

A′ =M−δ
ρ+ε .

This shows x ∈ (X \Mρ+ε)
+δ, i.e. we have proved B′ ⊂ (X \Mρ+ε)

+δ. Now,
(A.6.1) follows from B′ ⊂ Lρ ⊂M+δ

ρ−ε, and (A.6.2) follows from B′∩Lρ+2ε ⊂
Lρ+2ε ⊂M+δ

ρ+ε.

Proof of Theorem 2.8. We first establish the following disjoint union:

Cτ (Lρ) = ζ(Cτ (M−δ
ρ+ε)) ∪

{
B′ ∈ Cτ (Lρ) \ ζ(Cτ (M−δ

ρ+ε)) : B
′ ∩ Lρ+2ε ̸= ∅

}
∪
{
B′ ∈ Cτ (Lρ) : B′ ∩ Lρ+2ε = ∅

}
.(A.6.3)

We begin by showing the auxiliary result

(A.6.4) A′ ∩M−δ
ρ+3ε ̸= ∅ , A′ ∈ Cτ (M−δ

ρ+ε).
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To this end, we observe that i) and ii) of Theorem A.4.2 yield |Cτ (M+δ
ρ∗∗)| = 2,

and hence part ii) of Theorem A.4.4 implies |Cτ (M−δ
ρ∗∗)| = 2. LetW ′ andW ′′

be the two τ -connected components ofM−δ
ρ∗∗ . We first assume thatM−δ

ρ+ε has

exactly one τ -connected component A′, i.e. A′ = M−δ
ρ+ε. Then ρ + 3ε ≤ ρ∗∗

and ρ+ ε ≤ ρ+ 3ε imply

∅ ̸=M−δ
ρ∗∗ ⊂M−δ

ρ+3ε =M−δ
ρ+ε ∩M−δ

ρ+3ε = A′ ∩M−δ
ρ+3ε ,

i.e. we have shown (A.6.4). Let us now assume that M−δ
ρ+ε has more than

one τ -component. Then it has exactly two such components A′ and A′′ by
ρ + ε < ρ∗∗ and part i) of Theorem A.4.4. By part iii) of Theorem A.4.4
we may then assume without loss of generality that we have W ′ ⊂ A′ and
W ′′ ⊂ A′′. Since ρ + 3ε ≤ ρ∗∗ implies M−δ

ρ∗∗ ⊂ M−δ
ρ+3ε, these inclusions yield

∅ ̸=W ′ =W ′∩M−δ
ρ∗∗ ⊂ A′∩M−δ

ρ+3ε and ∅ ̸=W ′′ =W ′′∩M−δ
ρ∗∗ ⊂ A′′∩M−δ

ρ+3ε.
Consequently, we have proved (A.6.4) in this case, too.

Now, from (A.6.4) we conclude by part i) of Lemma A.6.1 that B′ ∩
Lρ+2ε ̸= ∅ for all B′ ∈ ζ(Cτ (M−δ

ρ+ε)). This yields{
B′ ∈ Cτ (Lρ) \ ζ(Cτ (M−δ

ρ+ε)) : B
′ ∩ Lρ+2ε = ∅

}
=
{
B′ ∈ Cτ (Lρ) : B′ ∩ Lρ+2ε = ∅

}
,

which in turn implies (A.6.3).
Let us now show (2.8). Clearly, by (A.6.3) it remains to show

B′ ∩ Lρ+2ε = ∅ ,

for all B′ ∈ Cτ (Lρ) \ ζ(Cτ (M−δ
ρ+ε)). Let us assume the converse, that is, there

exists a B′ ∈ Cτ (Lρ)\ζ(Cτ (M−δ
ρ+ε)) with B

′∩Lρ+2ε ̸= ∅. Since Lρ+2ε ⊂M+δ
ρ+ε,

there then exists an x ∈ B′ ∩M+δ
ρ+ε. By part i) of Lemma A.3.1 this gives

an x′ ∈Mρ+ε with d(x, x
′) ≤ δ, and hence we obtain

d(x′,M−δ
ρ+ε) ≤ ψ∗

Mρ+ε
(δ) ≤ cthickδ

γ < 2cthickδ
γ .

From this inequality we conclude that there exists an x′′ ∈ M−δ
ρ+ε satisfying

d(x′, x′′) < 2cthickδ
γ . Let A′′ ∈ Cτ (M−δ

ρ+ε) be the unique τ -connected compo-
nent satisfying x′′ ∈ A′′. The CRM property then yields x′′ ∈ A′′ ⊂ ζ(A′′) =:
B′′, and thus, using c ≥ 1, we find

d(B′, B′′) ≤ d(x, x′′) ≤ d(x, x′) + d(x′, x′′) < δ + 2cthickδ
γ ≤ 3cthickδ

γ < τ .

However, since B′ ̸∈ ζ(Cτ (M−δ
ρ+ε)) and B

′′ ∈ ζ(Cτ (M−δ
ρ+ε)) we obtain B

′ ̸= B′′,
and hence Lemma A.2.4 yields d(B′, B′′) ≥ τ .
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Theorem A.6.2. Let Assumption C be satisfied. Furthermore, let ε∗ ≤
(ρ∗∗ − ρ∗)/9 , δ ∈ (0, δthick], τ ∈ (ψ(δ), τ∗(ε∗)], and ε ∈ (0, ε∗]. In addition,
let D be a data set and (LD,ρ)ρ≥0 be a decreasing family satisfying

M−δ
ρ+ε ⊂ LD,ρ ⊂M+δ

ρ−ε

for all ρ ≥ 0. Furthermore, assume that Algorithm 2.1 receives the parame-
ters τ , ε, and (LD,ρ)ρ≥0. Then, the following statements are true:

i) The returned level ρ∗D satisfies ρ∗D ∈ [ρ∗ + 2ε, ρ∗ + ε∗ + 5ε].
ii) We have |Cτ (M−δ

ρ∗D+ε)| = 2 and the CRM ζ : Cτ (M−δ
ρ∗D+ε) → Cτ (LD,ρ∗D)

is injective.
iii) Algorithm 2.1 returns the two τ -connected components of ζ(Cτ (M

−δ
ρ∗D+ε)).

iv) There exist CRMs ζρ∗∗ : Cτ (M−δ
ρ∗∗) → C(Mρ∗∗) and ζρ∗D+ε : Cτ (M−δ

ρ∗D+ε) →
C(Mρ∗D+ε) such that we have a commutative diagram of bijective CRMs:

Cτ (M−δ
ρ∗∗) C(Mρ∗∗)

Cτ (M−δ
ρ∗D+ε)

C(Mρ∗D+ε)

-

? ?
-

ζρ∗∗

ζρ∗∗,ρ∗D+ε ζ̃

ζρ∗D+ε

Proof of Theorem A.6.2. We begin with some general observations.
To this end, let ρ ∈ [0, ρ∗∗ − 4ε] be the level that is currently considered
in Line 3 of Algorithm 2.1. Then, Theorem 2.8 shows that Algorithm 2.1
identifies exactly the τ -connected components of LD,ρ that belong to the set
ζ(Cτ (M−δ

ρ+ε)), where ζ : Cτ (M−δ
ρ+ε) → Cτ (LD,ρ) is the CRM. In the following,

we thus consider the set ζ(Cτ (M−δ
ρ+ε)). Moreover, we note that the returned

level ρ∗D always satisfies ρ∗D ≥ ρ + 3ε by Line 4 and Line 6, and equality
holds if and only if |ζ(Cτ (M−δ

ρ+ε))| ̸= 1.
i). Let us first consider the case ρ ∈ [0, ρ∗ − ε). Then ρ+ ε < ρ∗ together

with part i) and iii) of Theorem A.4.4 shows |Cτ (M−δ
ρ+ε)| = 1, and hence

|ζ(Cτ (M−δ
ρ+ε))| = 1. Our initial consideration then show, that Algorithm 2.1

does not leave its loop, and thus ρ∗D ≥ ρ∗ + 2ε.
Let us now consider the case ρ ∈ [ρ∗ + ε∗ + ε, ρ∗ + ε∗ + 2ε]. Here we

first note that Algorithm 2.1 actually inspects such an ρ, since it iteratively
inspects all ρ = iε, i = 0, 1, . . . , and the width of the interval above is ε.
Moreover, our assumptions on ε∗ and ε guarantee ρ∗ + ε∗ + 2ε ≤ ρ∗∗ − 4ε,
and hence we have ρ ∈ [ρ∗ + ε∗ + ε, ρ∗∗ − 4ε], i.e., we are in the situation
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described at the beginning of the proof. We write ζV : Cτ (M−δ
ρ∗∗) → Cτ (M−δ

ρ+ε),

ζM : Cτ (M+δ
ρ∗∗) → Cτ (M+δ

ρ−ε), and ζV,M : Cτ (M−δ
ρ+ε) → Cτ (M+δ

ρ−ε) for the CRMs
between the involved sets. We then obtain the commutative diagram

Cτ (M−δ
ρ+ε) Cτ (M+δ

ρ−ε)

Cτ (M−δ
ρ∗∗) Cτ (M+δ

ρ∗∗)

-

6 6

-

ζV,M

ζV ζM

ζ∗∗

where the CRM ζ∗∗ is bijective by part ii) of Theorem A.4.4. Moreover,
ρ−ε ≥ ρ∗+ε∗ together with part ii) of Theorem A.4.2 shows |Cτ (M+δ

ρ−ε)| = 2,
and by iii) of Theorem A.4.2 we conclude that ζM is bijective. Similarly,
ρ + ε ≥ ρ∗ + ε∗ and the bijectivity of ζ∗∗ show by iv) of Theorem A.4.2
that |Cτ (M−δ

ρ+ε)| = 2, and thus ζV is bijective by part iii) of Theorem
A.4.4. Consequently, ζV,M is bijective. Let us further consider the CRM
ζ ′ : Cτ (LD,ρ) → Cτ (M+δ

ρ−ε). Then Lemma 2.4 yields another diagram:

Cτ (M−δ
ρ+ε) Cτ (M+δ

ρ−ε)

Cτ (LD,ρ)

-

@
@

@
@@R �

�
�

���

ζV,M

ζ ζ ′

Since ζV,M is bijective, we then find that ζ is injective, and since we have
already seen that M−δ

ρ+ε has two τ -connected components, we conclude that

ζ(Cτ (M−δ
ρ+ε)) contains two elements. Consequently, the stopping criterion of

Algorithm 2.1 is satisfied, that is, ρ∗D = ρ+ 3ε ≤ ρ∗ + ε∗ + 5ε.
ii). Theorem 2.8 shows that in its last run through the loop Algorithm

2.1 identifies exactly the τ -connected components of LD,ρ that belong to the
set ζ−3ε(Cτ (M−δ

ρ+ε), where ρ := ρ∗D − 3ε and ζ−3ε : Cτ (M−δ
ρ+ε) → Cτ (LD,ρ)

is the CRM. Moreover, since Algorithm 2.1 stops at ρ∗D − 3ε, we have
|ζ−3ε(Cτ (M−δ

ρ+ε))| ̸= 1 by our remarks at the beginning of the proof, and

thus |Cτ (M−δ
ρ+ε)| ̸= 1. From the already proven part i) we further know that

ρ + ε = ρ∗D − 2ε ≤ ρ∗ + ε∗ + 3ε ≤ ρ∗ + 4ε∗ ≤ ρ∗∗, and part i) of Theorem
A.4.4 hence gives |Cτ (M−δ

ρ+ε)| = 2. For later purposes, note that the latter

together with |ζ−3ε(Cτ (M−δ
ρ+ε))| ̸= 1 implies the injectivity of ζ−3ε. Now, part

iii) of Theorem A.4.4 shows that the CRM ζρ∗∗,ρ+ε : Cτ (M−δ
ρ∗∗) → Cτ (M−δ

ρ+ε)
is bijective. Let us consider the following commutative diagram:
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Cτ (M−δ
ρ∗∗) Cτ (M−δ

ρ+ε)

Cτ (M−δ
ρ∗D+ε)

-

@
@

@
@@R �

�
�

���

ζρ∗∗,ρ+ε

ζρ∗∗,ρ∗D+ε ζ̃

where the remaining two maps are the corresponding CRMs, whose existence
is guaranteed by ρ∗D + ε ≤ ρ∗D + 7ε∗ ≤ ρ∗∗ and ρ+ ε ≤ ρ∗D + ε, respectively.
Now the bijectivity of ζρ∗∗,ρ+ε shows that ζρ∗∗,ρ∗D+ε is injective. Moreover,

ρ∗D + ε ≤ ρ∗∗ implies |Cτ (M−δ
ρ∗D+ε)| ≤ 2 by part i) of Theorem A.4.4, while

ρ∗∗ ≥ ρ∗ + ε∗ implies |Cτ (M−δ
ρ∗∗)| = 2 by part iv) of Theorem A.4.2 and part

ii) of Theorem A.4.4. Therefore, ζρ∗∗,ρ∗D+ε is actually bijective. This yields

both |Cτ (M−δ
ρ∗D+ε)| = 2, which is the first assertion, and the bijectivity of ζ̃.

Let us consider yet another commutative diagram

Cτ (M−δ
ρ∗D+ε) Cτ (M−δ

ρ+ε)

Cτ ((LD,ρ∗D) Cτ (LD,ρ)

-

? ?
-

ζ̃

ζ ζ−3ε

ζ ′

where again, all occurring maps are the CRMs between the respective sets.
Now we have already shown that ζ−3ε is injective and that ζ̃ is bijective.
Consequently, ζ is injective.

iii). This assertions follows from Theorem 2.8 and the inequality ρ∗D ≤
ρ∗∗ − 3ε, which follows from part i).

iv). We have already seen in the proof of part ii) that |Cτ (M−δ
ρ∗∗)| = 2, and

consequently part iii) of Lemma A.4.3 shows that there exists a bijective
CRM ζρ∗∗ : Cτ (M−δ

ρ∗∗) → C(Mρ∗∗). Moreover, part ii) shows |Cτ (M−δ
ρ∗D+ε)| =

2, thus part iii) of Lemma A.4.3 yields another bijective CRM ζρ∗D+ε :

Cτ (M−δ
ρ∗D+ε) → C(Mρ∗D+ε). Furthermore, in the proof of part ii) we have

already seen that CRM ζρ∗∗,ρ∗D+ε is bijective. This gives the diagram.

A.7. Additional Material Related to Assumption A. In this sec-
tion we discuss Assumption A, which describes the partitions needed for our
histogram approach, in more detail.

We begin with an example of partitions satisfying Assumption A.
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Example A.7.1. Let X := [0, 1]d be equipped with the metric defined by
the supremum norm ∥ · ∥ℓd∞, and λd be the Lebesgue measure. For δ ∈ (0, 1],

there then exists a unique ℓ ∈ N with 1
ℓ+1 < δ ≤ 1

ℓ . We define h := 1
1+ℓ and

write Aδ for the usual partition of [0, 1]d into hypercubes of side-length h.
Then, for each Ai ∈ Aδ, we have diamAi = h ≤ δ and λd(Ai) = hd ≥ 2−dδd.
Moreover, we obviously have |Aδ| = h−d ≤ 2dδ−d, and hence (Aδ)δ∈(0,1]
satisfies Assumption A with cpart := 2d.

The next lemma describes a general situation in which there exist parti-
tions satisfying Assumption A. For its formulation, recall that the covering
numbers of a compact metric space (X, d) are defined by

N (X, d, δ) := min

{
n ≥ 1 : ∃x1, . . . , xn ∈ X with X ⊂

n∪
i=1

B(xi, δ)

}
, δ > 0,

where again B(x, δ) denotes the closed ball with center x and radius δ.

Lemma A.7.2. Let (X, d) be a compact metric space for which there exist
constants c > 0 and d > 0 such that

N (X, d, δ) ≤ cδ−d , δ ∈ (0, 1/4].

Moreover, assume that there exists a finite measure µ on X such that

µ(B(x, δ)) ≥ c−1δd

for all x ∈ X and δ ∈ (0, 1/4]. Then Assumption A is satisfied for d and
cpart = 4dc.

Note that the unit spheres Sd ⊂ Rd+1 together with their surface measures
satisfy the assumptions for d = d− 1, see also Corollary A.7.3.

Proof of Lemma A.7.2. Let us recall that a δ-packing in X is a family
y1, . . . , ym ∈ X with d(yi, yj) > 2δ for all i ̸= j. Let us write

M(X, d, δ) := max
{
m ≥ 1 : ∃δ-packing y1, . . . , ym in X

}
for the size of the largest possible δ-packing in X. Then it is well-known
that we have the following inequalities between these packing numbers and
the covering numbers:

(A.7.1) M(X, d, δ) ≤ N (X, d, δ) ≤ M(X, d, δ/2) , δ > 0.
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Let us now fix a δ ∈ (0, 1] and a maximal δ/4-packing y1, . . . , ym in X. By
(A.7.1) we conclude that

m = M(X, d, δ/4) ≤ N (X, d, δ/4) ≤ 4dcδ−d .

To construct the partition Aδ, we consider a Voronoi partition A1, . . . , Am
that corresponds to the points y1, . . . , ym, where the behavior of the cells on
their boundary may be arbitrary, i.e. ties may be arbitrarily resolved. Our
next goal is to show

(A.7.2) B(yi, δ/4) ⊂ Ai ⊂ B(yi, δ/2) , i = 1, . . . ,m.

To prove the left inclusion, we fix an x ∈ B(yi, δ/4). For j ̸= i, we then find

δ/2 < d(yi, yj) ≤ d(yi, x) + d(x, yj) ≤ δ/4 + d(x, yj) ,

and hence d(x, yj) > δ/4 ≥ d(x, yi). From the latter we conclude that x ∈ Ai.
For the proof of the right inclusion, we assume that it does not hold

for some index i ∈ {1, . . . ,m}. Then there exists an x ∈ Ai such that
d(x, yi) > δ/2. On the hand, since y1, . . . , ym is a maximal δ/4-packing in
X, there exists a j ∈ {1, . . . ,m} with d(x, yj) ≤ 2δ/4 = δ/2, and hence we
have d(x, yj) ≤ δ/2 < d(x, xi). This implies x ̸∈ Ai, i.e. we have found a
contradiction.

Now, using (A.7.2), we obtain both µ(Ai) ≥ µ(B(yi, δ/4)) ≥ 4−dc−1δd

and diamAi ≤ diamB(yi, δ/2) ≤ δ.

The next corollary in particular shows that one of the assumptions made
in Lemma A.7.2 can be omitted if the measure behaves regularly on balls.

Corollary A.7.3. Let (X, d) be a compact metric space and µ be a
finite measure on X for which there exists a constant K ≥ 1 such hat

K−1 ≤ µ(B(y, δ))

µ(B(x, δ))
≤ K , x, y ∈ X, δ ∈ (0, 1/4].

If there exist constants c > 0 and d > 0 such that

N (X, d, δ) ≤ cδ−d , δ ∈ (0, 1/4],

then Assumption A is satisfied for d and cpart = 4dcK. Similarly, if

µ(B(x, δ)) ≥ c−1δd , δ ∈ (0, 1/8],

holds true, then Assumption A is satisfied for d and cpart = 8dcK.
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If (X, d, ·) is a compact group with invariant metric d and µ is its Haar
measure, then we have K = 1. Moreover, if X ⊂ Rd is a sufficiently smooth
manifold and µ is its surface measure, then the corollary is also applicable.

Proof of Corollary A.7.3. To show the first assertion, we fix a δ ∈
(0, 1/4] and a minimal δ-net x1, . . . , xn of X. For an x ∈ X we then obtain

1 = µ(X) ≤
n∑
i=1

µ(B(xi, δ)) ≤ nKµ(B(x, δ)) ≤ cKδ−dµ(B(x, δ)) .

By Lemma A.7.2 we thus obtain the first assertion.
To prove the second assertion we fix a δ ∈ (0, 1/4] and a maximal δ/2-

packing y1, . . . , ym of X. Then B(yi, δ/2) ∩B(yj , δ/2) = ∅ for i ̸= j implies

1 = µ(X) ≥
m∑
i=1

µ(B(yi, δ/2)) ≥ mK−1µ(B(x, δ/2)) ≥ m2−dc−1K−1δd ,

and hence N (X, d, δ) ≤ M(X, d, δ/2) = m ≤ 2dcKδ−d by (A.7.1). Lemma
A.7.2 then yields the second assertion.

A.8. Material Related to Basic Properties of Histograms. The
goal of this section is to establish the key inclusion (2.7) for our histogram-
based approach. The material of this section is taken from [9].

Our first result shows that hD,δ uniformly approximates its infinite-sample
counterpart

hP,δ(x) :=
m∑
j=1

P (Aj)

µ(Aj)
· 1Aj (x) , x ∈ X,

with high probability, where Aδ = (A1, . . . , Am) for a fixed δ > 0.

Theorem A.8.1. Let Assumption A be satisfied and P be a distribution
on X. Then, for all n ≥ 1, ε > 0, and δ > 0, we have

Pn
({
D ∈ Xn : ∥hD,δ − hP,δ∥∞ ≥ ε

})
≤ 2cpart exp

(
−d ln δ − 2nε2δ2d

c2part

)
.

In addition, if P is µ-absolutely continuous and there exists a bounded µ-
density h of P , then, for all n ≥ 1, ε > 0, and δ > 0, we have

Pn
(
D ∈ Xn : ∥hD,δ−hP,δ∥∞ ≥ ε

)
≤2cpart exp

(
ln δ−d− 3nε2δd

cpart(6∥h∥∞ + 2ε)

)
.
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Proof of Theorem A.8.1. We fix anA ∈ Aδ and write f := µ(A)−11A.
Then f is non-negative and our assumptions ensure ∥f∥∞ ≤ cpartδ

−d. Con-
sequently, Hoeffding’s inequality, see e.g. [4, Theorem 8.1], yields

Pn
({

D ∈ Xn :
∣∣∣ 1
n

n∑
i=1

f(xi)− EP f
∣∣∣ < ε

})
≥ 1− 2 exp

(
−2nε2δ2d

c2part

)
for all n ≥ 1 and ε > 0, where we assumed D = (x1, . . . , xn). Furthermore,
we have 1

n

∑n
i=1 f(xi) = µ(A)−1D(A) and EP f = µ(A)−1P (A). By a union

bound argument and |Aδ| ≤ cpartδ
−d, we thus obtain

Pn
({
D ∈ Xn : sup

A∈Aδ

∣∣∣D(A)

µ(A)
−P (A)
µ(A)

∣∣∣ < ε
})

≥ 1−2cpartδ
−d exp

(
−2nε2δ2d

c2part

)
.

Since, for x ∈ X and A ∈ Aδ with x ∈ A, we have hD,δ(x) = µ(A)−1D(A)
and hP,δ(x) = µ(A)−1P (A), we then find the first assertion.

To show the second inequality, we write f := µ(A)−1(1A − P (A)) for a
fixed A ∈ Aδ. This yields EP f = 0, ∥f∥∞ ≤ cpartδ

−d, and

EP f2 ≤ µ(A)−2P (A) ≤ µ(A)−1∥h∥∞ ≤ cpartδ
−d∥h∥∞ .

Consequently, Bernstein’s inequality, see e.g. [4, Theorem 8.2], yields

Pn
({

D ∈ Xn :
∣∣∣ 1
n

n∑
i=1

f(xi)
∣∣∣ < ε

})
≥ 1− 2 exp

(
− 3nε2δd

cpart(6∥h∥∞ + 2ε)

)
.

Using 1
n

∑n
i=1 f(xi) = (D(A) − P (A))µ(A)−1, the rest of the proof follows

the lines of the proof of the first inequality.

The next result specifies the vertical and horizontal uncertainty of a plug-
in level set estimate {ĥ ≥ ρ}, if ĥ is a uniform approximation of hP,δ.

Lemma A.8.2. Let Assumption A be satisfied, P be a µ-absolutely con-
tinuous distribution on X, and ĥ : X → R be a function with ∥ĥ−hP,δ∥∞ ≤ ε
for some ε ≥ 0. Then, for all ρ ≥ 0, the following statements hold:

i) If P is upper normal at the level ρ+ ε, then we have M−δ
ρ+ε ⊂ {ĥ ≥ ρ}.

ii) If P is upper normal at the level ρ− ε, then we have {ĥ ≥ ρ} ⊂M+δ
ρ−ε.

Proof of Lemma A.8.2. i).We will show the equivalent inclusion {ĥ <
ρ} ⊂ (X \Mρ+ε)

+δ. To this end, we fix an x ∈ X with ĥ(x) < ρ. If x ∈
X \Mρ+ε, we immediately obtain x ∈ (X \Mρ+ε)

+δ, and hence we may
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restrict our considerations to the case x ∈ Mρ+ε. Then, ĥ(x) < ρ together

with ∥ĥ − hP,δ∥∞ ≤ ε implies hP,δ(x) ≤ ĥ(x) + ε < ρ + ε. Now let A be
the unique cell of the partition Aδ satisfying x ∈ A. The definition of hP,δ
together with the assumed 0 < µ(A) <∞ then yields

(A.8.1)

∫
A
h dµ = P (A) = hP,δ(x)µ(A) < (ρ+ ε)µ(A) ,

where h : X → [0,∞) is an arbitrary µ-density of P . Our next goal is
to show that there exists an x′ ∈ (X \Mρ+ε) ∩ A. Suppose the converse,
that is A ⊂ Mρ+ε. Then the upper normality of P at the level ρ + ε yields
µ(A \ {h ≥ ρ + ε}) ≤ µ(Mρ+ε \ {h ≥ ρ + ε}) = 0, and hence we conclude
that µ(A ∩ {h ≥ ρ+ ε}) = µ(A). This leads to∫
A

h dµ =

∫
A∩{h≥ρ+ε}

h dµ+

∫
A\{h≥ρ+ε}

h dµ =

∫
A∩{h≥ρ+ε}

h dµ ≥ (ρ+ ε)µ(A) .

However, this inequality contradicts (A.8.1), and hence there does exist an
x′ ∈ (X \Mρ+ε) ∩ A. This implies d(x,X \Mρ+ε) ≤ d(x, x′) ≤ diamA ≤ δ,
i.e. we have shown x ∈ (X \Mρ+ε)

+δ.

ii). Let us fix an x ∈ X with ĥ(x) ≥ ρ. If x ∈ Mρ−ε, we immediately
obtain x ∈ M+δ

ρ−ε, and hence it remains to consider the case x ∈ X \Mρ−ε.
Clearly, if ρ− ε ≤ 0, this case is impossible, and hence we may additionally
assume ρ − ε > 0. Then, ĥ(x) ≥ ρ together with ∥ĥ − hP,δ∥∞ ≤ ε yields

hP,δ(x) ≥ ĥ(x)− ε ≥ ρ− ε. Now let A be the unique cell of the partition Aδ

satisfying x ∈ A. By the definition of hP,δ and µ(A) > 0 we then obtain

(A.8.2)

∫
A
h dµ = P (A) = hP,δ(x)µ(A) ≥ (ρ− ε)µ(A) ,

where h : X → [0,∞) is an arbitrary µ-density of P . Next we show that there
exists an x′ ∈Mρ−ε ∩A. Suppose the converse holds, that is A ⊂ X \Mρ−ε.
Then the assumed upper normality of P at the level ρ− ε yields

µ(Mρ−ε △ {h ≥ ρ− ε}) = 0 ,

and thus we find µ((X \Mρ−ε) △ {h < ρ− ε}) = 0 by A △ B = (X \ A) △
(X \B). Combining this with the assumed A ⊂ X \Mρ−ε, we obtain

µ
(
A \ {h < ρ− ε}

)
≤ µ

(
(X \Mρ−ε) \ {h < ρ− ε}

)
= 0 ,

and this implies∫
A

h dµ =

∫
A∩{h<ρ−ε}

h dµ+

∫
A\{h<ρ−ε}

h dµ =

∫
A∩{h<ρ−ε}

h dµ < (ρ− ε)µ(A) .
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This contradicts (A.8.2), and hence there does exist an x′ ∈Mρ−ε ∩A. This
yields d(x,Mρ−ε) ≤ d(x, x′) ≤ diamA ≤ δ, i.e. we have shown x ∈M+δ

ρ−ε.

A.9. Proofs and Additional Material Related to the Consis-
tency. In this section we prove Theorem 4.1. Furthermore, it contains
additional material related to the assumptions made in that theorem.

Lemma A.9.1. Let (X, d) be a metric space, µ be a finite Borel measure
on X, and (Aρ)ρ∈R be a decreasing family of closed subsets of X. For ρ∗ ∈ R,
we write

Ȧρ∗ :=
∪
ρ>ρ∗

Åρ and Âρ∗ :=
∪
ρ>ρ∗

Aρ .

Then we have

Ȧρ∗ =
∪
ρ>ρ∗

∪
ε>0

∪
δ>0

A−δ
ρ+ε .

Moreover, the following statements are equivalent:

i) µ(Âρ∗ \ Ȧρ∗) = 0.
ii) For all ε > 0, there exists a ρε > ρ∗ such that, for all ρ ∈ (ρ∗, ρϵ], we

have µ(Aρ \ Åρ) ≤ ε.

Proof of Lemma A.9.1. To show the first equality, we observe that
(A.3.1) implies∩

ρ>ρ∗

∩
ε>0

∩
δ>0

(X \Aρ+ε)+δ =
∩
ε>0

∩
ρ>ρ∗

X \Aρ+ε =
∩
ρ>ρ∗

X \Aρ .

Moreover, every set A ⊂ X satisfies X \A = X \ Å, and hence we obtain∩
ρ>ρ∗

∩
ε>0

∩
δ>0

(X \Aρ+ε)+δ =
∩
ρ>ρ∗

X \Aρ =
∩
ρ>ρ∗

(X \ Åρ) = X \
∪
ρ>ρ∗

Åρ .

Therefore, by taking the complement we find∪
ρ>ρ∗

Åρ = X\
( ∩
ρ>ρ∗

∩
ε>0

∩
δ>0

(X \Aρ+ε)+δ
)

=
∪
ρ>ρ∗

∪
ε>0

∪
δ>0

(
X \ (X \Aρ+ε)+δ

)
=
∪
ρ>ρ∗

∪
ε>0

∪
δ>0

A−δ
ρ+ε .
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i) ⇒ ii). Let us fix an ε > 0. Since Åρ =
∪
ρ′≥ρ Åρ′ ↗ Ȧρ∗ for ρ↘ ρ∗, the

σ-continuity of finite measures yields a ρε > ρ∗ such that µ(Âρ∗ \ Åρ) ≤ ε
for all ρ ∈ (ρ∗, ρε]. Using Aρ ⊂ Âρ∗ for ρ > ρ∗, we then obtain the assertion
µ(Aρ \ Åρ) ≤ µ(Âρ∗ \ Åρ) ≤ ε.

ii) ⇒ i). Let us fix an ε > 0. For ρ ∈ (ρ∗, ρε], we then have Åρ ⊂ Ȧρ∗ ,
and hence our assumption yields µ(Aρ \ Ȧρ∗) ≤ ε. In other words, we have
limρ↘ρ∗ µ(Aρ \ Ȧρ∗) = 0. Moreover, we have Aρ ↗ Âρ∗ for ρ ↘ ρ∗, and

hence the σ-continuity of µ yields limρ↘ρ∗ µ(Aρ \ Ȧρ∗) = µ(Âρ∗ \ Ȧρ∗).

Lemma A.9.2. Let f : (0, 1] → (0,∞) be a monotonously increasing
function and g : (0, f(1)] → [0, 1] be its generalized inverse, that is

g(y) := inf
{
x ∈ (0, 1] : f(x) ≥ y

}
, y ∈ (0, 1].

Then we have limy→0+g(y) = 0.

Proof of Lemma A.9.2. Let (yn) ⊂ (0, f(1)] be a sequence with yn →
0. For n ≥ 1, we write En := {x ∈ (0, 1] : f(x) ≥ yn}. Let us fix an ε ∈ (0, 1].
Since f is strictly positive, we then find f(ε) > 0, and hence there exists an
n0 ≥ 1 such that f(ε) ≥ yn for all n ≥ n0. Thus, we have ε ∈ En for all
n ≥ n0, and from the latter we obtain g(yn) = inf En ≤ ε for such n.

Before we prove Theorem 4.1, let us briefly illustrate the additional as-
sumption µ(A∗

i ∪A∗
2 \ (A∗

1 ∪ A∗
2)) = 0. To this end, we fix a µ-density h of

P . Then Lemma A.1.2 tells us that

A∗
i ∪A∗

2 =
∪
ρ>ρ∗

Mρ ⊂
∪
ρ>ρ∗

{h ≥ ρ} ⊂
∪
ρ>ρ∗

{h ≥ ρ} = {h > ρ∗} .

Using the normality in Assumption C, which implies (A.1.3), we then obtain

µ
(
A∗
i ∪A∗

2 \ (A
∗
1 ∪A∗

2)
)
≤ µ

(
{h > ρ∗} \ {h > ρ∗}

)
≤ µ(∂{h > ρ∗})
= µ(∂{h ≤ ρ∗}) .

Consequently, the additional assumption is satisfied, if there exists a µ-
density h of P such that µ(∂{h ≤ ρ∗}) = 0. In this respect recall, that
Lemma A.1.3 showed that P is normal, if, for all ρ ∈ R, we have a µ-density
h of P with µ(∂{h ≥ ρ}) = 0.

Proof of Theorem 4.1. We fix an ϵ > 0. For n ≥ 1, τ := τn, and
ε := εn, we define ε∗n by the right hand-side of (3.4). Then, Lemma A.9.2
shows 0 < ε∗n ≤ ϵ ∧ (ρ∗∗ − ρ∗)/9 for sufficiently large n. In addition, δn and
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εn satisfy (3.2) for sufficiently large n by (4.1), and we also have δn ≤ δthick
for sufficiently large n. Thus, there is an n0 ≥ 1 such that, for all n ≥ n0, the
values εn, δn, τn and ε∗n satisfy the assumptions of Theorem 3.1 and ε∗n ≤ ϵ.

Let us now consider an n ≥ n0 and a data set D ∈ Xn satisfying both
the assertions i) - v) of Theorem A.6.2 and (2.10). By Theorem 3.1 and our
previous considerations we then know that the probability Pn of D is not
less than 1− e−ς . Now, part i) of Theorem A.6.2 yields ρ∗D − ρ∗ ≥ 2εn > 0
and

ρ∗D − ρ∗ ≤ ε∗n + 5εn ≤ 6ε∗n ≤ 6ϵ ,

i.e. we have shown the first convergence.
To prove the second convergence, we write Ai, i = 1, 2, for the two topo-

logically connected components of Mρ∗∗ . For ρ ∈ (ρ∗, ρ∗∗], we further define
Aiρ := ζρ(Ai), where ζρ : C(Mρ∗∗) → C(Mρ) is the CRM. In addition, we
write Aiρ := ∅ for ρ > ρ∗∗ and Aiρ := X for ρ ≤ ρ∗. Let us first show

(A.9.1) µ(Âiρ∗ \ Ȧiρ∗) = 0

for i = 1, 2, where we used the notation of Lemma A.9.1. To this end, we
fix an ϵ > 0. Since P is lower and upper normal at every level ρ ∈ [ρ∗, ρ∗∗]
we find, for an arbitrary µ-density h of P ,

µ(M̂ρ∗ \ Ṁρ∗) = µ
(
{h > ρ∗} \ Ṁρ∗

)
= 0 ,

where we used (A.1.3), (A.1.4), and the notation of Lemma A.9.1. Lemma
A.9.1 then shows that there exists a ρϵ > ρ∗ such that

(A.9.2) µ(Mρ \ M̊ρ) ≤ ϵ

for all ρ ∈ (ρ∗, ρϵ], where we may assume without loss of generality that
ρϵ ≤ ρ∗∗. Let us now fix a ρ ∈ (ρ∗, ρϵ]. Then we obviously have Å1

ρ∪Å2
ρ ⊂ M̊ρ.

To prove that the converse inclusion also holds, we pick an x ∈ M̊ρ. Without
loss of generality we may assume that x ∈ A1

ρ. Since A
2
ρ is closed and thus

compact, we then have ε := d(x,A2
ρ) > 0. Moreover, since M̊ρ is open, there

exists a δ ∈ (0, ε) such that B(x, δ) ⊂ M̊ρ. This yields B(x, δ) ⊂ A1
ρ ∪ A2

ρ,

and by d(x,A2
ρ) > δ, we conclude that B(x, δ) ⊂ A1

ρ. This shows x ∈ Å1
ρ,

and hence we indeed have M̊ρ = Å1
ρ∪Å2

ρ. Now we use this equality to obtain

Mρ \ M̊ρ =
(
A1
ρ \ (Å1

ρ ∪ Å2
ρ)
)
∪
(
A2
ρ \ (Å1

ρ ∪ Å2
ρ)
)
= (A1

ρ \ Å1
ρ) ∪ (A2

ρ \ Å2
ρ) .

By (A.9.2), this implies µ(Aiρ\Åiρ) ≤ ϵ, and thus Lemma A.9.1 shows (A.9.1).
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Let us now fix an ϵ > 0 and a ς ≥ 1. By the equality of Lemma A.9.1
and the σ-continuity of finite measures there then exist δϵ > 0, εϵ > 0, and
ρϵ ∈ (ρ∗, ρ∗∗] such that, for all ε ∈ (0, εϵ], δ ∈ (0, δϵ], ρ ∈ (ρ∗, ρϵ], and i = 1, 2,
we have µ(Ȧiρ∗ \ (Aiρ+ε)−δ) ≤ ϵ. Combining this with A∗

i = Âiρ∗ , which holds
by the definition of the clusters A∗

i , and Equation (A.9.1) we then obtain

(A.9.3) µ
(
A∗
i \ (Aiρ+ε)−δ

)
= µ

(
Âiρ∗ \ (Aiρ+ε)−δ

)
= µ

(
Ȧiρ∗ \ (Aiρ+ε)−δ

)
≤ ϵ .

Moreover, our assumption µ(A∗
i ∪A∗

2\(A∗
1∪A∗

2)) = 0 means µ(M̂ρ∗ \M̂ρ∗) =
0, and since by part iii) of Lemma A.3.1 we know that∩

δ>0

( ∪
ρ>ρ∗

Mρ

)+δ

=
∪
ρ>ρ∗

Mρ = M̂ρ∗

we find

µ
(( ∪

ρ>ρ∗

Mρ

)+δ
\ M̂ρ∗

)
≤ ϵ

for all sufficiently small δ > 0. From this it is easy to conclude that

(A.9.4) µ(M+δ
ρ−ε \ M̂ρ∗) ≤ ϵ

for all sufficiently small ε > 0, δ > 0 and all ρ > ρ∗ + ε. Without loss of
generality, we may thus assume that (A.9.4) also holds for all ε ∈ (0, εϵ],
δ ∈ (0, δϵ] and all ρ > ρ∗ + ε.

For given τ := τn and ε := εn we now define ε∗n by the right hand-side
of (3.4). Then, Lemma A.9.2 shows ε∗n → 0, and hence we obtain ε∗n ≤
min{ρϵ−ρ

∗

9 , ϵ, εϵ} for all sufficiently large n. In addition, δn and εn satisfy
(3.2) for sufficiently large n by (4.1), and we also have εn ≤ ϵ ∧ εϵ and
δn ≤ δϵ ∧ δthick for sufficiently large n. Consequently, there exists an n0 ≥ 1
such that, for all n ≥ n0, the values εn, δn, τn and ε∗n satisfy the assumptions
of Theorem 3.1 as well as εn ≤ ϵ ∧ εϵ and δn ≤ δϵ.

Let us now consider an n ≥ n0 and a data set D ∈ Xn satisfying both
the assertions i) - v) of Theorem A.6.2 and (2.10). By Theorem 3.1 and our
previous considerations we then know that the probability Pn of D is not
less than 1−e−ς . Now, part i) of Theorem A.6.2 gives both ρ∗D ≥ ρ∗+2εn >
ρ∗ + εn and ρ∗D ≤ ρ∗ + ε∗n + 5εn ≤ ρ∗ + 6ε∗n ≤ ρϵ, and hence (A.9.3) and
(A.9.4) hold for ε := εn, δ := δn, and ρ := ρ∗D. Consequently, (2.10) shows

µ(B1(D)△A∗
1) + µ(B2(D)△A∗

2) ≤ 2µ
(
A∗

1 \ (A1
ρ+ε)

−δ)+ 2µ
(
A∗

2 \ (A2
ρ+ε)

−δ)
+ µ

(
M+δ
ρ−ε \ {h > ρ∗}

)
≤ 4ϵ+ µ

(
M+δ
ρ−ε \ M̂ρ∗

)
≤ 5ϵ ,



35

where in the second to last step we also used (A.1.4).

A.10. Additional Material Related to Rates. In this section, the
assumption made in Section 4 are discussed in some more detail.

Let us begin with the following lemma, which gives a sufficient condition
for a non-trivial separation exponent.

Lemma A.10.1. Let X ⊂ Rd be compact and convex, ∥ · ∥ be some norm
on Rd, and P be a Lebesgue absolutely continuous distribution on X that can
be clustered between the levels ρ∗ and ρ∗∗. Assume that P has a continuous
density h and that there exist constants c > 0 and θ ∈ (0,∞) such that

(A.10.1)
∣∣h(x)− h(x′)| ≤ c ∥x− x′∥θ

for all x ∈ {h ≤ ρ∗}, ρ ∈ (ρ∗, ρ∗∗], and x′ ∈ ∂XMρ, where ∂XMρ denotes the
boundary of Mρ in X. Then the clusters of P have separation exponent θ.

Proof of Lemma A.10.1. Let ε ∈ (0, ρ∗∗ − ρ∗] and A1 and A2 be the
connected components of Mρ∗+ε. Since A1 and A2 are closed, they are com-
pact, and hence there exist x1 ∈ A1 and x2 ∈ A2 with

(A.10.2) a := ∥x1 − x2∥ = d(A1, A2) ,

where we note that A1∩A2 = ∅ implies a > 0. For t ∈ [0, 1], we now consider

x(t) := tx1 + (1− t)x2 .

Since X is convex, we note that x(t) ∈ X for all t ∈ [0, 1]. Our first goal is to
show that xi ∈ ∂XMρ∗+ε for i = 1, 2. To this end, we assume the converse,
e.g. x2 ∈ M̊ρ∗+ε. Then there exists an ϵ ∈ (0, a) with BX(x2, ϵ) ⊂ Å2, where
BX(x2, ϵ) := {x ∈ X : ∥x − x2∥ ≤ ϵ}. Now ∥x(ϵ/a) − x2∥ = ϵ implies
x(ϵ/a) ∈ A2, while ∥x(ϵ/a)− x1∥ = a− ϵ shows ∥x(ϵ/a)− x1∥ < d(A1, A2).
Together this contradicts (A.10.2).

For what follows, let us now observe that t 7→ x(t) is a continuous map
on [0, 1], and since h is continuous, there exists a t∗ ∈ [0, 1] with h(x(t∗)) =
mint∈[0,1] h(x(t)). Our next goal is to show that

(A.10.3) h(x(t∗)) ≤ ρ∗ .

To this end, we assume the converse, that is h(x(t∗)) > ρ∗. Then there
exists a δ ∈ (0, ε] such that h(x(t)) > ρ∗ + δ for all t ∈ [0, 1], and therefore
an application of Lemma A.1.2 using the continuity of h yields x(t) ∈Mρ∗+δ

for all t ∈ [0, 1]. In other words, x1 and x2 are path-connected in Mρ∗+δ,
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and since the connecting path is a straight line, it is easy to see that x1
and x2 are τ -connected for all τ > 0. Let us pick a τ ≤ 3τ∗(δ) = τ∗Mρ∗+δ

.

Since |C(Mρ∗+δ)| = 2, part ii) of Proposition A.2.10 then shows C(Mρ∗+δ) =
Cτ (Mρ∗+δ). Let Ã1 and Ã2 be the two topologically connected components
of Mρ∗+δ. Our previous considerations then showed that Ã1 and Ã2 are
also the two τ -connected components of Mρ∗+δ. Now, δ ≤ ε gives a CRM
ζ : C(Mρ∗+ε) → C(Mρ∗+δ), which is bijective, since P can be clustered
between ρ∗ and ρ∗∗. Without loss of generality we may thus assume that
ζ(Ai) = Ãi for i = 1, 2. This yields xi ∈ Ai ⊂ Ãi, i.e. x1 and x2 do not belong
to the same τ -connected component of Mρ∗+δ. Clearly, this contradicts our
observation that x1 and x2 are τ -connected, and hence (A.10.3) is proven.

Now assume without loss of generality that t∗ ∈ [1/2, 1). Since we have
already seen that x1 ∈ ∂XMρ∗+ε, our assumption (A.10.1) and (A.10.3) yield∣∣h(x(t∗))− h(x1)

∣∣ ≤ c ∥x(t∗)− x1∥θ .

In addition, Lemma A.1.2 shows x1 ∈ Mρ∗+ε ⊂ {h ≥ ρ∗ + ε}. Combining
these estimates with (A.10.2) and d(A1, A2) = τ∗Mρ∗+ε

= 3τ∗(ε), we find

ρ∗ + ε ≤ h(x1) ≤ h(x(t∗)) + c ∥x(t∗)− x1∥θ ≤ ρ∗ + c ∥x(t∗)− x1∥θ

≤ ρ∗ + c 2−θdθ(A1, A2)

= ρ∗ + c (3/2)−θτ∗(ε)θ ,

and from the latter the assertion easily follows.

Note that (A.10.1) holds, if the density h in Lemma A.10.1 is actually θ-
Hölder-continuous, and it is easy to see that the converse is, in general, not
true. Moreover, using the inclusion ∂XMρ ⊂ {h = ρ} established in Lemma
A.1.2, it is easy to check that (A.10.1) is equivalent to

(A.10.4)
∣∣h(x)− ρ| ≤ c d(x, ∂XMρ)

θ

for all x ∈ {h ≤ ρ∗} and ρ ∈ (ρ∗, ρ∗∗]. Note that a localized but two-sided
version of this condition has been used in [8] for a level set estimator that
is adaptive with respect to the Hausdorff metric.

Our next goal is to discuss the assumptions made in Theorem 4.7 in more
detail. To this end, we need a couple of technical lemmata.

Lemma A.10.2. Let X ⊂ Rd be compact and convex and d be a metric
on X that is defined by a norm on Rd. Then, we have

d(x, ∂XA) ≤ d(x,X \A)

for all A ⊂ X and x ∈ A, where ∂XA denotes the boundary of A in X.
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Proof of Lemma A.10.2. Before we begin with the proof we note that

B
X

= B
Rd

for all B ⊂ X since X is closed, i.e., taking the closure with
respect to X or Rd is the same. Like in the statement of the lemma, we will
thus omit the superscript. Let us now write δ := d(x,X \ A). Then there
exists a sequence (xn) ⊂ X \A such that d(x, xn) → δ. Since X is assumed
to be compact, so is X \A, and thus there exists an x∞ ∈ X \A such that
d(x, x∞) ≤ δ. Obviously, it suffices to show x∞ ∈ ∂XA. Let us assume the
converse. Since ∂XA = A∩X \A, we then have x∞ ̸∈ A, that is x∞ ∈ X \A.
Now, the latter set is open in X, and hence there exists an ε > 0 such that
BX(x∞, ε) ⊂ X \A, where BX(x∞, ε) denotes the closed ball in X that has
center x∞ and radius ε. This ε must satisfy ε < δ, since otherwise we would
find a contradiction to x ∈ A by x ∈ BX(x∞, δ) ⊂ BX(x∞, ε) ⊂ X \ A.
For t := ε/δ ∈ (0, 1) we now define x′ := tx + (1 − t)x∞. The convexity of
X implies x′ ∈ X, and since d is defined by a norm, we have d(x∞, x

′) =
td(x, x∞) ≤ ε. Together, this yields x′ ∈ BX(x∞, ε) ⊂ X \ A ⊂ X \ A.
Consequently, d(x, x′) = (1− t)d(x, x∞) ≤ (1− t)δ < δ implies d(x,X \A) <
δ, which contradicts the definition of δ.

Lemma A.10.3. Let X ⊂ Rd be compact and convex and d be a metric
on X that is defined by a norm on Rd. Then, for all A ⊂ X and δ > 0, we
have

A+δ \A−δ ⊂ (∂XA)
+δ ,

where the operations A+δ and A−δ as well as the boundary ∂XA are with
respect to the metric space (X, d).

Proof of Lemma A.10.3. Let us fix an x ∈ A+δ \ A−δ = A+δ ∩ (X \
A)+δ. If x ∈ A, then Lemma A.10.2 immediately yields d(x, ∂XA) ≤ d(x,X\
A) ≤ δ, that is x ∈ (∂XA)

+δ. It thus suffices to consider the case x ̸∈ A.
Then we find x ∈ X \A ⊂ X \A ⊂ X \A, and hence another application of
Lemma A.10.2 yields d(x, ∂X(X\A)) ≤ d(x,A) ≤ δ. Now the assertion easily
follows from ∂X(X \A) = X \A ∩X \ (X \A) = X \A ∩A = ∂XA.

The next lemma shows that assuming an α-smooth boundary with α > 1
does not make sense. It further shows that, for each level set with rectifiable
boundary in the sense of [5, 3.2.14], the bound (4.9) holds with α = 1.

Lemma A.10.4. Let λd be the d-dimensional Lebesgue measure, Hd−1

be the (d− 1)-dimensional Hausdorff measure on Rd, and σd be the volume
of the d-dimensional unit Euclidean ball in Rd. Then, for every non-empty,
bounded, and measurable subset A ⊂ Rd the following statements hold:
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i) There exists a δA > 0, such that for cA := dσ
1/d
d λd(A)1−1/d/2 and all

δ ∈ (0, δA], we have

λd(A+δ \A−δ) ≥ cA · δ .

ii) If ∂A is (d − 1)-rectifiable and Hd−1(∂A) > 0, there exists a δA > 0,
such that, for all δ ∈ (0, δA], we have

λd
(
A+δ \A−δ) ≤ 4Hd−1(∂A) · δ .

Proof of Lemma A.10.4. Let us first recall that, for an integer 0 ≤
m ≤ d, the upper and lower Minkowski content of a B ⊂ Rd is defined by

M∗m(B) := lim sup
δ→0+

λd(B+δ)

σd−mδd−m

Mm
∗ (B) := lim inf

δ→0+

λd(B+δ)

σd−mδd−m
,

where σd−m denotes the λd−m-volume of the unit Euclidean ball in Rd−m.
It is easy to check that these definitions coincide with those in [5, 3.2.37].

i). Since in the case λd(A) = 0 there is nothing to prove, we restrict our
considerations to the case λd(A) > 0. Now, A is bounded, and hence we
have λd(A) <∞. The isoperimetric inequality [5, 3.2.43] thus yields

dσ
1/d
d λd(A)1−1/d ≤ Md−1

∗ (∂A) ,

and hence, there exists a δA > 0, such that, for all δ ∈ (0, δA], we have

dσ
1/d
d λd(A)1−1/d

2
≤
λd
(
(∂A)+δ

)
σ1δ

≤
λd
(
A+2δ \A−2δ

)
2δ

,

where in the last estimate we used part viii) of Lemma A.3.1 and σ1 = 2.
ii). Since ∂A is closed and (d− 1)-rectifiable in the sense of [5, 3.2.14], we

find
M∗(d−1)(∂A) = Hd−1(∂A)

by [5, 3.2.39]. Moreover, since ∂A is bounded, the boundary is contained
in a compact set X ⊂ Rd such that the relative boundary ∂XA of A in X
equals ∂A and the sets A+δ and A−δ considered in X equal the sets A+δ

and A−δ when considered in Rd for all δ ∈ (0, 1]. By Lemma A.10.3 there
thus exists a δA > 0 such that

λd
(
A+δ \A−δ)

2δ
≤
λd
(
(∂A)+δ

)
σ1δ

≤ 2Hd−1(∂A)

for all δ ∈ (0, δA].
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The next lemma shows that a bound (4.9) together with a regular behavior
of h around the level of interest ensures a non-trivial flatness exponent.

Lemma A.10.5. Let (X, d) be a complete, separable metric space, µ be
a finite Borel measure on X with suppµ = X, and P be a µ-absolutely
continuous distribution on X. Furthermore, let ρ ≥ 0 be a level and h be a
µ-density of P for which there exist constants c > 0, α ∈ (0, 1], δ0 > 0, and
θ ∈ (0,∞) such that

(A.10.5) µ(M+δ
ρ \M−δ

ρ ) ≤ cδα

for all δ ∈ (0, δ0] and

(A.10.6) d(x, ∂Mρ)
θ ≤ c

∣∣h(x)− ρ|

for all x ∈ {h > ρ}. Then P has flatness exponent α/θ at level ρ.

Proof of Lemma A.10.5. Let us fix an s > 0. For x ∈ {0 < h− ρ < s}
we then find d(x, ∂Mρ)

θ ≤ cs by (A.10.6), that is x ∈ (∂Mρ)
+δ for δ :=

(cs)1/θ. Using part viii) of Lemma A.3.1, we conclude that x ∈M+2δ
ρ \M−2δ

ρ .
In the case 2δ ≤ δ0, we thus obtain

µ
(
{0 < h− ρ < s}

)
≤ µ

(
M+2δ
ρ \M−2δ

ρ

)
≤ 2αc δα = 2αc1+α/θsα/θ ,

and since µ is a finite measure, it is then easy to see that we can increase
the constant on the right-hand side so that it holds for all s > 0.

Appendix B. Continuous Densities in two Dimensions. In this ap-
pendix, we present a couple of two-dimensional examples that show that the
assumptions imposed in the paper are not only met by many discontinuous
densities, but also by many continuous densities.

B.1. Single Two-Dimensional Sets. In this section we consider the
operations ⊕δ and ⊖δ for a specific class of sets A ⊂ R2.

We begin with an example of a set A ⊂ R2, for which we can compute A⊕δ

and A⊖δ explicitly. This example will be the base of all further examples.

Example B.1.1. Let X := [−1, 1] × [−2, 2] be equipped with the metric
defined by the supremums norm. Furthermore, for x±− ∈ (−0.6,−0.4) and
x±+ ∈ (0.4, 0.6) we fix two continuous functions f−, f+ : [−1, 1] → [−1, 1]
such that f+ is increasing on [−1, x+−] ∪ [0, x++] and decreasing on [x+−, 0] ∪
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[x++, 1], while f
− is decreasing on [−1, x−−]∪[0, x−+] and increasing on [x−−, 0]∪

[x−+, 1]. In addition, assume that {f− < 0} = {f+ > 0} and {f− = 0} =
{f+ = 0} as well as f−(±0.5) < 0 and f+(±0.5) > 0. Now consider the
(non-empty) set A enveloped by f±, that is

A :=
{
(x, y) ∈ X : x ∈ [−1, 1] and f−(x) ≤ y ≤ f+(x)

}
.

To describe A⊖δ for δ ∈ (0, 0.1], we define f±−δ : [−1, 1] → [−1, 1] by

f±−δ(x) :=


f±(−1) if x ∈ [−1,−1 + δ]

f±(0) if x ∈ [−δ,+δ]
f±(1) if x ∈ [1− δ, 1]

and f−−δ(x) := f−(x − δ) ∨ f−(x + δ), respectively f+−δ(x) := f+(x − δ) ∧
f+(x+ δ) for the remaining x ∈ [−1, 1]. Then we have

A⊖δ =
{
(x, y) ∈ X : x ∈ [−1, 1] and f−−δ(x) + δ ≤ y ≤ f+−δ(x)− δ

}
.

Moreover, to describe A⊕δ, we define

x0,−1 := min
{
x ∈ [−1,−0.5] : f+(x)− f−(x) ≥ 0

}
x0,−0 := max

{
x ∈ [−0.5, 0] : f+(x)− f−(x) ≥ 0

}
x0,+0 := min

{
x ∈ [0, 0.5] : f+(x)− f−(x) ≥ 0

}
x0,+1 := max

{
x ∈ [0.5, 1] : f+(x)− f−(x) ≥ 0

}
,

where the minima are attained by the continuity of f± and the fact that all
sets are non-empty. Furthermore, we define f±+δ : [−1, 1] → [−1, 1] by

f±+δ(x) :=


f±(x+ δ) if x ∈ [−1 ∨ (x0,−1 − δ), x±− − δ]

f±(x±−) if x ∈ [x±− − δ, x±− + δ]

f±(x±+) if x ∈ [x±+ − δ, x±+ + δ]

f±(x− δ) if x ∈ [x±+ + δ, (x0,+1 + δ) ∧ 1]

as well as f−+δ(x) := f−(x−δ)∧f−(x+δ) and f++δ(x) := f+(x−δ)∨f+(x+δ)
for x ∈ [x±− + δ, x±+ − δ] \ (x0,−0 + δ, x0,+0 − δ) and f±+δ(x) := −2δ for the
remaining x ∈ [−1, 1]. Then we have

A⊕δ =
{
(x, y) ∈ X : x ∈ [−1, 1] and f−+δ(x)− δ ≤ y ≤ f++δ(x) + δ

}
.

Finally, we have |C(A)| ≤ 2 with |C(A)| = 2 if and only if x0,−0 < x0,+0,
and in the latter case we further have τ∗A = x0,+0 − x0,−0.
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Proof of Example B.1.1. Let us fix a δ ∈ (0, 1/10]. To simplify nota-
tions, we further write g− := f−−δ + δ and g+ := f+−δ − δ.

Proof of “A⊖δ ⊂ . . . ”. By A⊖δ = X \ (X \A)⊕δ it suffices to show that{
(x, y) ∈ X : x ∈ [−1, 1] and

(
y < g−(x) or y > g+(x)

)}
⊂ (X \A)⊕δ .

By symmetry, it further suffices to consider the case x ≥ 0 and y > g+(x).
Moreover, to show the inclusion above, it finally suffices to find x′ ∈ [−1, 1]
and y′ ∈ [−2, 2] with |x−x′| ≤ δ, |y−y′| ≤ δ and y′ > f+(x′). However, this
task is straightforward. Indeed, we can always set y′ := (y+δ)∧2, and if x ∈
[0, δ] then x′ := 0 works, since y′ = (y+δ)∧2 > g+(x)+δ = f+(0) = f+(x′),
while for x ∈ [1 − δ, 1], the choice x′ := 1 does by an analogous argument.
Finally, if x ∈ (δ, 1 − δ), we set x′ := x − δ if g+(x) = f+(x − δ) − δ and
x′ := x+ δ if g+(x) = f+(x+ δ)− δ.

Proof of “A⊖δ ⊃ . . . ”. Again, it suffices to consider x ≥ 0. Let us fix a y
with g−(x) ≤ y ≤ g+(x). Then, our goal is to show (x, y) ̸∈ (X \A)⊕δ, i.e.,

(B.1.1) ∥(x, y)− (x′, y′)∥∞ > δ

for all (x′, y′) ∈ X \ A. In the following, we thus fix a pair (x′, y′) ∈ X \ A
for which (B.1.1) is not true and show that this leads to a contradiction. We
begin by considering the case x ∈ [0, δ]. Since (B.1.1) is not true, we find
|x− x′| ≤ δ, and hence x±− ≤ x′ ≤ x±+. Then, if y

′ > f+(x′), this leads to

y ≤ g+(x) = f+(0)− δ ≤ f+(x′)− δ < y′ − δ ,

which contradicts the assumed |y−y′| ≤ δ. The case y′ < f−(x′) analogously
leads to a contradiction. Now consider the case x ∈ [1−δ, 1]. Then |x−x′| ≤ δ
implies x′ ≥ x±+. Thus, y

′ > f+(x′) leads to another contradiction by

y ≤ g+(x) = f+(1)− δ ≤ f+(x′)− δ < y′ − δ ,

and the case y′ < f−(x′) can be treated analogously. It thus remains to
consider the case x ∈ [δ, 1− δ]. Then |x− x′| ≤ δ implies x− δ ≤ x′ ≤ x+ δ.
For x′ ≤ x++ we thus find f+(x − δ) ≤ f+(x′), while for x′ ≥ x++ we find
f+(x+ δ) ≤ f+(x′). For y′ > f+(x′) we hence obtain a contradiction by

y ≤ g+(x) = (f+(x− δ) ∧ f+(x+ δ))− δ ≤ f+(x′)− δ < y′ − δ ,

and, again, the case y′ < f−(x′) can be shown similarly.
Proof of “A⊕δ ⊂ . . . ”. Let us fix a pair (x, y) ∈ A⊕δ. Without loss of

generality we restrict our considerations to the case y ≥ 0 and x ∈ [−1, 0].
To show that y ≤ f++δ(x)+ δ we assume the converse, that is y > f++δ(x)+ δ.



42

Since (x, y) ∈ A⊕δ we then find (x′, y′) ∈ A with ∥(x, y) − (x′, y′)∥∞ ≤ δ.
From the latter we infer that both x− δ ≤ x′ ≤ x+ δ and

(B.1.2) y′ ≥ y − δ > f++δ(x) .

If x ∈ [−1,−1∨ (x0,−1− δ)) we get a contradiction, since (x′, y′) ∈ A implies
x ≥ x′−δ ≥ x0,−1−δ. Moreover, for x ∈ [−1∨ (x0,−1−δ), x+−−δ], we obtain

f++δ(x) = f+(x+ δ) ≥ f+(x′) ≥ y′ ,

which contradicts (B.1.2). If x ∈ [x+−−δ, x+−+δ] we get a contradiction from
f++δ(x) = f+(x+−) ≥ f+(x′) ≥ y′, and if x ∈ [x+− + δ, 0 ∧ (x0,−0 + δ)] we have

f++δ(x) = f+(x− δ) ∨ f+(x+ δ) ≥ f+(x− δ) ≥ f+(x′) ≥ y′

which again contradicts (B.1.2). Finally, if x ∈ (0∧ x0,−0 + δ, 0] we obtain a
contradiction from x > x0,−0 + δ ≥ x′ + δ.

Proof of “A⊕δ ⊃ . . . ”. Let us fix a pair (x, y) ∈ X with f−+δ(x)− δ ≤ y ≤
f++δ(x) + δ. Without loss of generality we again consider the case y ≥ 0 and

x ∈ [−1, 0], only. To show (x, y) ∈ A⊕δ we need to find a pair (x′, y′) ∈ A
with ∥(x, y)− (x′, y′)∥∞ ≤ δ. Let us assume that we have found an x′ with
|x− x′| ≤ δ and f(x′) ≥ y − δ. For y′ defined by

y′ := f(x′) ∧ (y + δ)

we then immediately obtain y′ ≤ y + δ. Moreover, if we actually have y′ =
y + δ, then we obtain |y − y′| ≤ δ, while in the case y′ < y + δ we find y′ =
f(x′) ≥ y−δ, that is again |y−y′| ≤ δ. Thus, it suffices to find an x′ with the
properties above. To this end, we first observe that we can exclude the case
x ∈ [−1,−1∨(x0,−1−δ)), since for such x we have 0 ≤ y ≤ f++δ(x)+δ = −δ.
Analogously, we can exclude the case x ∈ (0 ∧ (x0,−0 + δ), 0]. Now consider
the case x ∈ [−1 ∨ (x0,−1 − δ), x+− − δ]. For x′ := x+ δ we then have

f(x′) = f(x+ δ) = f++δ(x) ≥ y − δ ,

and hence x′ satisfies the desired properties. Moreover, for x ∈ [x+−−δ, x+−+δ]
we define x′ := x+−, which gives |x − x′| ≤ δ. In addition, we again have
f(x′) = f(x+−) = f++δ(x) ≥ y − δ. Finally, let us consider the case x ∈
[x+− + δ, 0 ∧ (x0,−0 + δ)]. Let us first assume that f(x − δ) ≥ f(x + δ). For
x′ := x− δ we then obtain f(x′) = f(x− δ) = f++δ(x) ≥ y − δ. Analogously,
if f(x− δ) ≤ f(x+ δ), then x′ := x+ δ has the desired properties.

Finally, |C(A)| ≤ 2 is obvious, and so is the equivalence between |C(A)| = 2
and x0,−0 < x0,+0. In the latter case, A1 := {(x, y) ∈ A : x ≤ x0,−0} and
A2 := {(x, y) ∈ A : x ≥ x0,+0} are the two components of A, and from this
it is easy to conclude that τ∗A = x0,+0 − x0,−0.
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Our next example shows how to estimate the function ψ∗
A for the sets

considered in Example B.1.1

Example B.1.2. Let us consider the situation of Example B.1.1. To
simplify the presentation, let us additionally assume that the monotonicity
of f+ and f− is actually strict and that A has sufficiently thick parts on
both sides of the y-axis in the sense of

(B.1.3) [−0.8,−0.2] ∪ [0.2, 0.8] ⊂ {f− ≤ −0.2} ∩ {f+ ≥ 0.2} .

Note that, for all δ ∈ (0, 0.1], this condition in particular ensures that A⊖δ

contains open neighborhoods around the points (−0.5, 0) and (0, 0.5). More-
over, for δ ∈ [0, 0.1] we define

xδ,−1 := min
{
x ∈ [−1,−0.8] : f+(x)− f−(x) ≥ 2δ

}
xδ,−0 := max

{
x ∈ [−0.2, 0] : f+(x)− f−(x) ≥ 2δ

}
xδ,+0 := min

{
x ∈ [0, 0.2] : f+(x)− f−(x) ≥ 2δ

}
xδ,+1 := max

{
x ∈ [0.8, 1] : f+(x)− f−(x) ≥ 2δ

}
,

where we note that the minima and maxima are attained by (B.1.3) and
the continuity of f±. For the same reason we further have xδ,−1 < −0.8,
xδ,−0 > −0.2, xδ,+0 < 0.2, and xδ,+1 > 0.8. Then, f+−δ has exactly two local

maxima x+δ,− and x+δ,+, satisfying x
+
δ,− ∈ [−1, 0] and x+δ,+ ∈ [0, 1], and f−−δ

has exactly two local minima x−δ,− and x−δ,+, satisfying x−δ,− ∈ [−1, 0] and

x−δ,+ ∈ [0, 1]. Moreover, for all δ ∈ (0, 0.1] we have

ψ∗
A(δ) ≤ δ +

(
max

{
|xδ,i − x0,i| : i ∈ {−1,−0,+0,+1}

}
∨max

{
|f i(xij)− f i−δ(x

i
δ,j)| : i, j ∈ {−,+}

})
.

The right hand-side of this inequality can be further estimated under some
regularity assumptions. Indeed, if there exist c > 0 and γ ∈ (0, 1] such that

(B.1.4) |f±(x±±)− f±(x)| ≤ c|x±± − x|γ , x ∈ [x±± − 0.1, x±± + 0.1] ,

then, for all δ ∈ (0, 0.1], we can bound the second maximum by

max
{
|f i(xij)− f i−δ(x

i
δ,j)| : i, j ∈ {−,+}

}
≤ cδγ .

In addition, if, for some i ∈ {−1,−0,+0,+1}, we write 2δ0 := f+(x0,i) −
f−(x0,i), then |xδ,i − x0,i| = 0 for all δ ∈ (0, δ0], i.e. the corresponding term
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in the first maximum disappears for these δ. If δ0 < 0.1, and we additionally
assume, for example, that

(B.1.5) |f±(x)| ≥ c−1/γ |x0,−1 − x|1/γ

for all x ∈ [x0,−1,−0.8], then we have |xδ,−1 − x0,−1| ≤ cδγ for all δ ∈
(δ0, 0.1]. Combining these assumptions we obtain a variety of sets A satis-
fying ψ∗

A(δ) ≤ (c + 1)δγ for all δ ∈ (0, 0.1], and these examples of sets can
be even further extended by considering bi-Lipschitz transformations of X.

Before we can prove the assertions made in the example above, we need
to establish the following technical lemma.

Lemma B.1.3. Let x∗ ∈ [2/5, 3/5] and f : [0, 1] :→ R be a continuous
function that is strictly increasing on [0, x∗] and strictly decreasing on [x∗, 1].
For δ ∈ (0, 1/8] we define f−δ : [0, 1] → R by

f−δ(x) :=


f(0) if x ∈ [0, δ]

f(x− δ) ∧ f(x+ δ) if x ∈ [δ, 1− δ]

f(1) if x ∈ [1− δ, 1] .

Then there exists exactly one x∗δ ∈ [0, 1] such that f−δ(x
∗
δ) ≥ f−δ(x) for all

x ∈ [0, 1]. Moreover, we have x∗δ ∈ (x∗−δ, x∗+δ) and x∗δ is the only element
x ∈ [δ, 1− δ] that satisfies f(x− δ) = f(x+ δ). Finally, we have

f−δ(x) =

{
f(x− δ) if x ∈ [δ, x∗δ ]

f(x+ δ) if x ∈ [x∗δ , 1− δ] .

Proof of Lemma B.1.3. We first show that there is an x0 ∈ (x∗ −
δ, x∗ + δ) such that f(x0 − δ) = f(x0 + δ). To this end, we observe g :
[x∗ − δ, x∗ + δ] → R defined by g := f( · − δ)− f( · + δ) is continuous, and
since g(x∗−δ) = f(x∗−2δ)−f(x∗) < 0 and g(x∗+δ) = f(x∗)−f(x∗+2δ) > 0,
we find an x0 ∈ (x∗ − δ, x∗ + δ) such that g(x0) = 0 by the intermediate
value theorem.

Let us now show that f(x − δ) < f(x + δ) for all x ∈ [δ, x0] and f(x −
δ) > f(x + δ) for all x ∈ [x0, 1 − δ]. Clearly, for x ∈ [δ, x∗ − δ], the strict
monotonicity of f on [0, x∗] yields f(x − δ) < f(x + δ). Moreover, for x ∈
(x∗−δ, x0), we have f(x−δ) < f(x0−δ) = f(x0+δ) < f(x+δ) since f( · −δ) :
[x∗−δ, x∗+δ] → R is strictly increasing, while f( ·+δ) : [x∗−δ, x∗+δ] → R is
strictly decreasing. This shows the assertion for x ∈ [δ, x0], and the assertion
for x ∈ [x0, 1− δ] can be shown analogously.
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Combining the two results above, we find that there exists exactly one
x0 ∈ [δ, 1 − δ] satisfying f(x0 − δ) = f(x0 + δ), and for this x0 we further
know x0 ∈ (x∗ − δ, x∗ + δ). In addition, these results show

f−δ(x) =

{
f(x− δ) if x ∈ [δ, x0]

f(x+ δ) if x ∈ [x0, 1− δ] .

Let us now return to global maximizers of f−δ. To this end, we first observe
that the existence of a global maximum of f−δ follows from the continuity of
f−δ and the compactness of [0, 1]. Let us now fix an xδ ∈ [0, 1] at which this
global maximum is attained by f−δ. We first observe that xδ ∈ (δ, 1 − δ).
Indeed, if, e.g., we had xδ ≥ 1 − δ, we would obtain f(1) = f−δ(xδ) ≥
f−δ(1 − 2δ) = f(1 − 3δ) ∧ f(1 − δ) = f(1 − δ) > f(1) using 1 − 3δ > x∗,
and xδ ≤ δ would similarly lead to a contradiction. We next show that we
actually have xδ ∈ [x∗ − δ, x∗ + δ]. To this end, it suffices to show

(B.1.6) xδ ≥ x∗ − δ ⇐⇒ xδ ≤ x∗ + δ .

To show one implication, assume that xδ ≥ x∗ − δ. Since f−δ attains its
maximum at xδ, we then obtain

f(xδ + δ) ≥ f(xδ − δ) ∧ f(xδ + δ) = f−δ(xδ) ≥ f−δ(x
∗ + δ) = f(x∗ + 2δ) .

Now xδ + δ ≤ x∗ + 2δ follows from the assumed xδ + δ ≥ x∗ and the strict
monotonicity of f on [x∗, 1]. Analogously, xδ ≤ x∗+ δ ⇒ xδ ≥ x∗− δ can be
shown, and hence (B.1.6) is indeed true.

Finally, we can prove the remaining assertion. To this end, we pick again
an xδ at which f−δ attains its maximum. Then we have already seen that
xδ ∈ [x∗−δ, x∗+δ]. Now observe that assuming xδ < x0 leads to f(xδ−δ) <
f(x0 − δ) = f(x0 + δ) < f(xδ + δ) using x0, xδ ∈ [x∗ − δ, x∗ + δ], which in
turn yields the contradiction

f−δ(xδ) = f(xδ−δ)∧f(xδ+δ) = f(xδ−δ) < f(x0−δ)∧f(x0+δ) = f−δ(x0) .

Analogously, we find a contradiction assuming xδ > x0, and hence we have
xδ = x0. Consequently, xδ is unique and solves f(x− δ) = f(x+ δ).

Proof of Example B.1.2. We first note that the existence and unique-
ness of the local extrema is guaranteed by Lemma B.1.3. In addition, this
lemma actually shows x+δ,− ∈ (x+− − δ, x+− + δ), x−δ,− ∈ (x−− − δ, x−− + δ),

x+δ,+ ∈ (x++ − δ, x++ + δ), and x−δ,+ ∈ (x−+ − δ, x−+ + δ). Moreover, we have

ψ∗
A(δ) = sup

z∈A
d(z,A−δ) ≤ sup

z∈A
d(z,A⊖δ)
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by A−δ ⊂ A⊖δ. We will thus estimate d(z,A⊖δ) for z := (x, y) ∈ A.
We begin with the case x ∈ [−1, xδ,−1]. For later purposes, note that the

definition of A yields x ≥ x0,−1. By the monotonicity of f± on [−1,−0.8+δ]
we further know f±δ (x+ δ) = f±(x). We write x′ := xδ,−1 + δ and

y′ :=


f−(xδ,−1) + δ if y ≤ f−(xδ,−1) + δ

y if y ∈ [f−(xδ,−1) + δ, f+(xδ,−1)− δ]

f+(xδ,−1)− δ if y ≥ f+(xδ,−1)− δ .

If y ≤ f−(xδ,−1)+δ, we then obtain y ≤ y′ and y′ = f−(xδ,−1)+δ ≤ f−(x)+
δ ≤ y+ δ, that is |y−y′| ≤ δ, and it is easy to check that the same is true in
the two other cases. Consequently, we have ∥(x, y)−(x′, y′)∥∞ = xδ,−1+δ−x,
and our construction further ensures

y′ ∈ [f−(xδ,−1) + δ, f+(xδ,−1)− δ] = [f−−δ(x
′) + δ, f+−δ(x

′)− δ] .

By Example B.1.1 we conclude (x′, y′) ∈ A⊖δ, and from this we easily find

(B.1.7) d(z,A⊖δ) ≤ δ + xδ,−1 − x ≤ δ + xδ,−1 − x0,−1 .

To show that (B.1.7) is also true in the case x ∈ [xδ,−1,−0.8+ δ], we first
observe that the monotonicity of f± on [−1,−0.8 + 2δ] yields

f+(x)− f−(x) ≥ f+(xδ,−1)− f−(xδ,−1) ≥ 2δ ,

and consequently, we can define

y′ :=


f−(x) + δ if y ≤ f−(x) + δ

y if y ∈ [f−(x) + δ, f+(x)− δ]

f+(x)− δ if y ≥ f+(x)− δ .

If y ≤ f−(x) + δ we then obtain y ≤ y′ and y′ = f−(x) + δ ≤ y + δ, that
is |y − y′| ≤ δ, and again it is easy to check that the same is true in the
two other cases. Writing x′ := x + δ, we thus have ∥(x, y) − (x′, y′)∥∞ = δ.
Moreover, the construction together with f±δ (x+ δ) = f±(x) ensures

y′ ∈ [f−(x) + δ, f+(x)− δ] = [f−−δ(x
′) + δ, f+−δ(x

′)− δ] ,

and hence we find (x′, y′) ∈ A⊖δ by Example B.1.1. Thus, we have shown
d(z,A⊖δ) ≤ δ ≤ δ+xδ,−1−x0,−1, i.e. (B.1.7) is true for all x ∈ [−1,−0.8+δ].

Now consider the case x ∈ [−0.8+ δ,−0.2− δ]. Here, we will focus on the
sub-case y ≥ 0, since the subcase y ≤ 0 can be treated analogously. For later
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purposes, note that we have f−(x±δ) ≤ −2δ. Now, if x ∈ [−0.8+δ, x+δ,−−δ],
we set x′ := x+ δ and y′ := y ∧ (f+(x)− δ). This gives y′ ≤ y and y − δ ≤
f+(x)− δ ≤ y′, and hence we again have ∥(x, y)− (x′, y′)∥∞ = δ. Moreover,
our constructions together with Lemma B.1.3 ensures

y′ ∈ [−δ, f+(x)− δ] = [−δ, f+−δ(x
′)− δ] ⊂ [f−−δ(x

′) + δ, f+−δ(x
′)− δ] ,

that is (x′, y′) ∈ A⊖δ, and hence (B.1.7) is true in this case, too. The next
case, we consider, is x ∈ [x+δ,− − δ, x+δ,− + δ]. In this case we set x′ := x+δ,−
and y′ := y ∧ (f+−δ(x

+
δ,−)− δ). This implies

y′ ∈ [−δ, f+−δ(x
+
δ,−)− δ] ⊂ [f−−δ(x

′) + δ, f+−δ(x
′)− δ] ,

and hence (x′, y′) ∈ A⊖δ. We further have |x−x′| ≤ δ and, if y ≤ f+−δ(x
+
δ,−)−

δ, we also have |y − y′| = 0. Conversely, if y ≥ f+−δ(x
+
δ,−)− δ, we find

y ≤ f+(x) ≤ f+(x+−) = f+(x+−)− (f+−δ(x
+
δ,−)− δ) + y′ ,

that is |y − y′| ≤ δ + f+(x+−) − f+−δ(x
+
δ,−). Combining the latter two cases,

we therefore obtain ∥(x, y) − (x′, y′)∥∞ ≤ δ + f+(x+−) − f+−δ(x
+
δ,−), that is

d(z,A⊖δ) ≤ δ+f+(x+−)−f+−δ(x
+
δ,−). Since all remaining cases can be treated

analogously, the proof of the general estimate of ψ∗
A(δ) is finished.

Now consider the additional assumptions of f±. For example, assume

|f+(x+−)− f+(x)| ≤ c|x+− − x|γ

for all x ∈ [x+− − 0.1, x+− + 0.1]. Lemma B.1.3 shows x+δ,− ∈ (x+− − δ, x+− + δ).

Without loss of generality, we assume x+δ,− ∈ [x+−, x
+
− + δ). Using Lemma

B.1.3 and x+δ,− − δ ∈ [x+− − δ, x+−) ⊂ [x+− − 0.1, x+− + 0.1], we then obtain∣∣f+(x+−)− f+−δ(x
+
δ,−)
∣∣ = ∣∣f+(x+−)− f+(x+δ,− − δ)

∣∣ ≤ c
∣∣x+− − x+δ,− + δ

∣∣γ ≤ cδγ .

Now assume that, for e.g. i := −1, we have δ0 > 0. For δ ∈ (0, δ0] we then find
f+(x0,−1)−f−(x0,−1) ≥ 2δ, and thus x0,−1 = xδ,−1 = −1. Conversely, let δ ∈
(δ0, 0.1]. Then we have f+(x0,−1)−f−(x0,−1) < 2δ and a simple application
of the intermediate value theorem thus yields f+(xδ,−1) − f−(xδ,−1) = 2δ.
Using the additional assumption on f± around the point x0,−1, we then find

2c−1/γ |xδ,−1 − x0,−1|1/γ ≤ |f−(xδ,−1)|+|f+(xδ,−1)| = f+(xδ,−1)− f−(xδ,−1)

= 2δ ,

that is |xδ,−1 − x0,−1| ≤ cδγ .
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B.2. Continuous Densities. In this section we present a class of con-
tinuous densities on R2 that meet the assumptions made in the paper. The
first example, which represents the main result of this supplement, shows
that many continuous distributions satisfy our thickness assumption.

Example B.2.1. Let X := [−1, 1] × [−2, 2] be equipped with the metric
defined by the supremums norm. Moreover, let P be a Lebesgue absolutely
continuous distribution that has a continuous density h. Furthermore, as-
sume that there exists a ρ∗∗ > 0, such that, for all ρ ∈ (0, ρ∗∗], the level set
Mρ is of the form considered in Example B.1.2. In addition, we assume that
there is a constant K ∈ (0, 1) such that

(B.2.1)
∣∣h(x, y)− ρ∗ − x2 + y2

∣∣ ≤ K(x2 + y2)

for some ρ∗ ∈ [0, ρ∗∗) and all (x, y) ∈ {h > 0} ∩
(
[−0.2, 0.2] × (−1.1, 1.1)

)
.

Moreover, assume that h is continuously differentiable on the sets

A1 := {h > 0} ∩
((

(−0.7,−0.3) ∪ (0.3, 0.7)
)
×
(
(−1.1,−0.2) ∪ (0.2, 1.1)

))
A2 := {h > 0} ∩

((
(−1,−0.8) ∪ (0.8, 1)

)
×
(
(−1.1, 0) ∪ (0.2, 1.1)

))
A3 := {h > 0} ∩

{
(x, y) ∈ X : x ∈ (−0.2, 0) ∪ (0, 0.2) and |y|<

√
1+K

1−K
|x|
}

with hy :=
∂h
∂y ̸= 0 on A1 and hx := ∂h

∂x ̸= 0 on A2∪A3. Finally, assume that
there is a constant C > 0 such that |hx| ≤ C|hy| on A1 and |hy| ≤ C|hx| on
A2 ∪A3. Then P has thick levels of order γ = 1 with δthick = 0.1 and

cthick = 1 +max

{
C,

√
1 +K

1−K

}
.

Moreover, P can be clustered between ρ∗ and ρ∗∗ and we have

(B.2.2)
2√

1−K

√
ε ≤ τ∗Mρ∗+ε

≤ 2√
1 +K

√
ε , ε ∈ (0, ρ∗∗ − ρ].

Proof of Example B.2.1. Since we consider the Lebesgue measure on
X, we have M0 = X. Moreover, we have X−δ = X since we consider the
operation in X, and from this, we immediately see ψ∗

X(δ) = 0 for all δ > 0.
Consequently, there is nothing to prove for ρ = 0.

Let us now fix some ρ ∈ (0, ρ∗∗]. Moreover, let f± : [−1, 1] → [−1, 1] be
the two functions satisfying the assumptions of Example B.1.2 and

Mρ =
{
(x, y) ∈ X : x ∈ [−1, 1] and f−(x) ≤ y ≤ f+(x)

}
.
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We pick an (x, y) ∈Mρ with y = f+(x) or y = f−(x). Then we find (x, y) ∈
∂Mρ, and thus we have h(x, y) = ρ by Lemma A.1.2, that is h(x, f±(x)) = ρ.

Our first goal is to verify (B.1.4). To this end, we solely focus without loss
of generality to the case x++ and f+, since the other cases can be treated anal-
ogously. Let us fix an x ∈ [x++−0.1, x+++0.1]. Then we have x ∈ (0.3, 0.7) and
thus f+(x) ∈ (0.2, 1.1) by (B.1.3). Consequently, h is continuously differen-
tiable in (x, f+(x)). By the implicit function theorem and the previously
shown h(x′, f+(x′)) = ρ for all x′ ∈ (0.3, 0.7) we then conclude that f+ is
continuously differentiable at x and

(B.2.3) (f+(x))′ = −
(
∂h

∂y

(
x, f+(x)

))−1

· ∂h
∂x

(
x, f+(x)

)
=
hx(x, f

+(x))

hy(x, f+(x))
.

Using |hx| ≤ C|hy| on A1, we thus find |(f+(x))′| ≤ C, and hence f+ is
Lipschitz continuous on (0.3, 0.7) with Lipschitz constant smaller than or
equal to C. This implies (B.1.4) with constant C and exponent γ = 1.

Now consider the endpoints x0,±1, where again it suffices to consider one
case, say x0,−1, due to symmetry. Let us write 2δ0 := f+(x0,−1)−f−(x0,−1).
Then, if δ0 ≥ 0.1, we have |xδ,−1 − x0,−1| = 0 for all δ ∈ (0, 0.1] by Example
B.1.2, and hence it suffice to show (B.1.5) in the case δ0 < 0.1. Observing
that it actually suffices to show (B.1.5) for all x ∈ (x0,−1,−0.8) by continuity,
we begin by fixing such an x. By monotonicity we then have 0 < f+(x) <
f+(0.8) < 1.1, and hence h is continuously differentiable at (x, f+(x)). The
implicit function theorem and the previously shown h(x′, f+(x′)) = ρ for
all x′ ∈ (x0,−1,−0.8), then shows that f+ is continuously differentiable at x
and (B.2.3) holds. Using |hy| ≤ C|hx| on A2, we then find |(f+(x))′| ≥ 1/C,
and the fundamental theorem of calculus thus yields∣∣f+(x′)− f+(x)

∣∣ = ∣∣∣∣∫ x′

x
(f+(t))′dt

∣∣∣∣ ≥ C−1|x′ − x|

for all x, x′ ∈ (x0,−1,−0.8). Now, letting x′ → x0,−1, we obtain

|f+(x)| ≥ f+(x)− f+(x0,−1) =
∣∣f+(x)− f+(x0,−1)

∣∣ ≥ C−1|x0,−1 − x|

for all x ∈ (x0,−1,−0.8), i.e. (B.1.5) holds with constant C and γ = 1.
Finally, let us consider the points x0,±0, where yet another time, we only

focus on one case, say x0,+0. For x ∈ [x0,+0, 0.2], we then have

(B.2.4) ρ = h(x, f+(x)) ≤ ρ∗ + (1 +K)x2 + (K − 1)(f+(x))2 ,

that is (f+(x))2 ≤ ρ∗−ρ
1−K + 1+K

1−Kx
2. Analogously, we can find a lower bound

on (f+(x))2, so that we end up having

(B.2.5) (f+(x))2 ∈
[
ρ∗ − ρ

1 +K
+

1−K

1 +K
x2,

ρ∗ − ρ

1−K
+

1 +K

1−K
x2
]
,
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and an analogue result holds for (f−(x))2. Again, our goal is to show an
analogue of (B.1.5). To this end, we first consider the case ρ ∈ (0, ρ∗]. By
(B.2.1), we then know that h(0, 0) = ρ∗ ≥ ρ, and hence f+(0) ≥ 0. Analo-
gously, we find f−(0) ≤ 0, which together implies x0,+0 = 0. Furthermore,
for x ∈ [x0,+0, 0.2], (B.2.5) gives

f+(x) ≥
√
ρ∗ − ρ

1 +K
+

1−K

1 +K
x2 ≥

√
1−K

1 +K
|x| =

√
1−K

1 +K
|x0,+0 − x| ,

that is (B.1.5) holds with constant
√

1+K
1−K and exponent γ = 1. Let us now

consider the case ρ ∈ (ρ∗, ρ∗∗]. For x ∈ (x0,+0, 0.2), (B.2.5) then yields

f+(x) ≤
√
ρ∗ − ρ

1−K
+

1 +K

1−K
x2 <

√
1 +K

1−K
|x| ,

and thus we find (x, f+(x)) ∈ A3. Consequently, h is continuously differen-
tiable at (x, f+(x)), and (B.2.3) holds. As for x0,−1, we can then show that
(B.1.5) holds with constant C and exponent γ = 1.

In order to show that P can be clustered between the levels ρ∗ and ρ∗∗,
we first note that the assumed continuity of h guarantees that P is normal
by Lemma A.1.3. Let us now fix a ρ ∈ (ρ∗, ρ∗∗]. Since from (B.2.1) we infer
that h(0, 0) = ρ∗, we then obtain (0, 0) ̸∈ Mρ. The latter implies x0,−0 <
0 < x0,+0, where x0,−0 and x0,+0 are the points defined in Example B.1.2 for
the set Mρ. By Example B.1.1 we then see that C(Mρ)| = 2. Analogously,
for ρ ∈ [0, ρ∗], the equality h(0, 0) = ρ∗ implies x0,−0 = 0 = x0,+0, which
shows C(Mρ)| = 1. Finally, the bijectivity of ζ : C(Mρ∗∗) → C(Mρ) follows
from the form of the connected components described in Example B.1.1.

Let us finally prove (B.2.2). To this end, we fix an ε ∈ (0, ρ∗∗ − ρ] and
define ρ := ρ∗ + ε. Then we have already observed that x0,−0 < 0 < x0,+0,
and hence f±(x0,±0) = 0. For x := x0,+0 we then obtain

ρ = h(x, f+(x)) ≤ ρ∗ + (1 +K)x2

by (B.2.4), and applying some simple transformations we thus find x0,+0 =

x ≥
√

ρ−ρ∗
1+K =

√
ε

1+K . For x := x0,+0 we further have

ρ = h(x, f+(x)) ≥ ρ∗ + (1−K)x2 ,

and thus x0,+0 ≤
√

ε
1−K . Since analogous estimates can be derived for x0,−0,

the formula τ∗Mρ∗+ε
= x0,+0−x0,−0 found in Example B.1.1 gives (B.2.2).
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The last example of this appendix shows that the distributions from the
previous example have a smooth boundary.

Example B.2.2. Let X and P be as in Example B.2.1. Then the clusters
have an α-smooth boundary for α = 1 and

cbound = 8

(
10 + C +

√
1 +K

1−K

)
.

Proof of Example B.2.2. Let us first consider the case 0 < δ ≤ 0.1.
To this end, we fix a ρ ∈ (ρ∗, ρ∗∗]. Without loss of generality, we only consider
the connected component A with x < 0 for all (x, y) ∈ A. We know that
A+δ/2 \ A−δ/2 ⊂ A⊕δ \ A⊖δ and the latter two sets have been calculated in
Example B.1.1. In the following, we will only estimate λ2({(x, y) : y ≥ 0} ∩
A⊕δ \A⊖δ), the case y ≤ 0 can be treated analogously. Our first intermediate
result towards the desired estimate is

λ2
(
[−1 ∨ (x0,−1 − δ), xδ,−1]× [0, 2] ∩A⊕δ \A⊖δ) ≤ 2|(x0,−1 − δ)− xδ,−1|

≤ 2δ + 2|x0,−1 − xδ,−1|
≤ 2(1 + C)δ ,

where in the last step we used that the proof of Example B.2.1 showed
(B.1.5) for c = C and γ = 1. Moreover, we have

λ2
(
[xδ,−1, x

+
− − δ]× [0, 2] ∩A⊕δ \A⊖δ) = x+−−δ∫

xδ,−1

f+(x+δ)− f+(x−δ) + 2δ dx

≤ 2δ +

∫ x+−+δ

x+−−δ
f(x) dx

≤ 4δ

and analogously we obtain λ2
(
[x+− + δ, xδ,−0] × [0, 2] ∩ A⊕δ \ A⊖δ) ≤ 4δ. In

addition, we easily find λ2
(
[x+− − δ, x+− + δ] × [0, 2] ∩ A⊕δ \ A⊖δ) ≤ 4δ and

finally, we have

λ2
(
[xδ,−0, 0 ∧ (x0,−0 + δ)]× [0, 2] ∩A⊕δ \A⊖δ) ≤ 2

∣∣xδ,−0 − x0,−0 − δ
∣∣

≤ 2δ + 2

√
1 +K

1−K
δ ,
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where we used that the proof of Example B.2.1 showed (B.1.5) for c =
√

1+K
1−K

and γ = 1. Combining all these estimates we obtain

λ2
(
[−1, 0]× [0, 2] ∩A⊕δ \A⊖δ) ≤ 4

(
6 + C +

√
1 +K

1−K

)
δ

for all δ ∈ (0, 0.05]. Moreover, for δ ∈ [0.05, 1] we easily obtain

λ2
(
[−1, 0]× [0, 2] ∩A⊕δ \A⊖δ) ≤ 2 ≤ 40δ .

Combining both estimates and adding the case y ≤ 0, we then obtain the
assertion.
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