
SUPPLEMENT TO “SEMIPARAMETRIC GEE ANALYSIS
IN PARTIALLY LINEAR SINGLE-INDEX MODELS FOR

LONGITUDINAL DATA”

By Jia Chen, Degui Li, Hua Liang, and Suojin Wang

University of York, University of York, George Washington University,
Texas A&M University

APPENDIX C: SOME AUXILIARY LEMMAS AND PROOF OF
THEOREM 3

This appendix first gives some technical lemmas which have been used to
prove the main results in Appendix B. It then gives the proof of Theorem
3 in Section 4. As in Appendix B, let C denote a generic positive constant
whose value may change from line to line. Define

Vij(u,θ, κ) =
1

h

(X>ijθ − u
h

)κ
K
(X>ijθ − u

h

)
, κ = 0, 1, 2, . . . ,

for i = 1, . . . , n and j = 1, . . . ,mi.

C.1. Some lemmas. We next give the uniform consistency results of
the weighted nonparametric kernel-based estimators for the longitudinal
data, which are of independent interest.

Lemma 1. Suppose that Assumptions 1, 2(ii) and 3(i) in Appendix A
are satisfied and

(C.1) h→ 0,
n2

Nn(h) log n
→∞, log n

h2Nn(h)
= O(1),

where Nn(h) =
∑n

i=1 1/(mih). Then we have, for any integer κ ≥ 0 and as
n→∞,
(C.2)

sup
(u,θ>)>∈U(Θ)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

Vij(u,θ, κ)−fθ(u)µκ

∣∣∣ = OP

(
hτκ+

√
Nn(h) log n

n

)
,

where U(Θ) =
{

(u,θ>)> : u ∈ U , θ ∈ Θ
}

, U and fθ(·) were defined in
Assumption 3(i), Θ is a compact parameter space, µκ =

∫
vκK(v)dv, τκ = 1

if κ is odd, and τκ = 2 if κ is even.
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2 J. CHEN, D. LI, H. LIANG AND S. WANG

Proof. For simplicity, let εn =

√
Nn(h) logn

n . To prove (C.2), it suffices to
show that

(C.3) sup
(u,θ>)>∈U(Θ)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

{
Vij(u,θ, κ)− E[Vij(u,θ, κ)]

}∣∣∣ = OP (εn)

and

(C.4) sup
(u,θ>)>∈U(Θ)

∣∣∣E[Vij(u,θ, κ)]− fθ(u)µκ

∣∣∣ = O(hτκ).

By Assumptions 1, 2(ii) and 3(i) in Appendix A, we have

E[Vij(u,θ, κ)] =
1

h

∫ (u1 − u
h

)κ
K
(u1 − u

h

)
fθ(u1)du1

=

∫
vκK(v)fθ(u+ hv)dv

= fθ(u)µκ + ḟθ(u)µκ+1h+O(h2)

uniformly for (u,θ>)> ∈ U(Θ), where ḟθ(·) is the first-order derivative of
fθ(·). Hence, we can prove that (C.4) holds.

Let us now turn to the proof of (C.3). The main idea is to consider covering
the set U(Θ) by a finite number of subsets S(k), which are centered at

s>k ≡
(
uk,θ

>
k

)
with radius r = o(h2). Let Nn be the total number of such

subsets, S(k), k = 1, 2, . . . , Nn. Then Nn = O(r−(p+1)). It is easy to show
that

sup
(u,θ>)>∈U(Θ)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

{
Vij(u,θ, κ)− E[Vij(u,θ, κ)]

}∣∣∣
≤ max

1≤k≤Nn

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

{
Vij(sk, κ)− E[Vij(sk, κ)]

}∣∣∣
+ max

1≤k≤Nn

sup
(u,θ>)>∈S(k)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

[
Vij(u,θ, κ)− Vij(sk, κ)

]∣∣∣
+ max

1≤k≤Nn

sup
(u,θ>)>∈S(k)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

{
E[Vij(u,θ, κ)]− E[Vij(sk, κ)]

}∣∣∣
≡ Πn1 + Πn2 + Πn3,(C.5)

where Vij(sk, κ) = Vij(uk,θk, κ).
Noting that K(·) is Lipschitz continuous by Assumption 1 and taking

r = Cεnh
2 for some positive constant C, we have

(C.6) Πn2 = OP
( r
h2

)
= OP (εn), Πn3 = O(εn).
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SINGLE-INDEX LONGITUDINAL DATA MODELS 3

For Πn1, we apply the Bernstein inequality for i.i.d. random variables (see,
for example, Lemma 2.2.9 in van der Vaart and Wellner, 1996) to obtain the
convergence rate. Note that by Assumptions 1, 2(ii) and 3(i),

(C.7)
1

mi

mi∑
j=1

∣∣∣Vij(sk, κ)− E[Vij(sk, κ)]
∣∣∣ ≤ C

h
for some C > 0,

and

(C.8) Var
[ 1

mi

mi∑
i=1

Vij(sk, κ)
]

=
1

m2
i

·Var
[ mi∑
i=1

Vij(sk, κ)
]
≤ C

mih
.

By (C.7), (C.8), Assumption 2(ii) and the Bernstein inequality, we have, for
some sufficiently large positive constant Cε,

P(Πn1 > Cεεn) ≤ Nn exp
{ −n2C2

ε ε
2
n(

2CNn(h) + 2CCεnεn
3h

)}
≤ Nn exp

{ −n2C2
ε ε

2
n

C
3/2
ε Nn(h)

}
≤ Nn exp{−C1/2

ε log n} = o(1),(C.9)

which implies that

(C.10) Πn1 = OP (εn).

In view of (C.5), (C.6) and (C.10), we have shown (C.3), completing the
proof of Lemma 1.

Lemma 2. Suppose that Assumptions 1, 2(ii), 3 and 5 are satisfied. Then
we have

(C.11) sup
(u,θ>)>∈U(Θ)

∣∣∣ n∑
i=1

si(u|θ)Zi − ρZ(u|θ)
∣∣∣ = OP

(
h2 + εn

)
,

where si(u|θ) was defined in Section 2, ρZ(u|θ) = E
[
Zij |X>ijθ = u

]
, εn =√

Nn(h) logn

n and Nn(h) was defined in Lemma 1.

Proof. It is easy to show that the bandwidth conditions in Assumption 5
imply that the bandwidth conditions in (C.1) are satisfied. Hence, by letting
H = diag(1, h) and Lemma 1 we have
(C.12)

H−1
[ 1

n

n∑
i=1

X
>
i (u|θ)Ki(u|θ)Xi(u|θ)

]
H−1 = fθ(u) diag(1, µ2) + oP (1),
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4 J. CHEN, D. LI, H. LIANG AND S. WANG

uniformly for (u,θ>)> ∈ U(Θ), where Xi(u|θ) and Ki(u|θ) were defined in
Section 2.

We then use arguments similar to those in the proof of Lemma 1 to show
that
(C.13)

sup
(u,θ>)>∈U(Θ)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

Vij,Z(u,θ, κ)− fθ(u)µκρZ(u|θ)
∣∣∣ = OP (hτκ + εn),

where

Vij,Z(u,θ, κ) =
Zij
h

(X>ijθ − u
h

)κ
K
(X>ijθ − u

h

)
, κ = 0, 1, . . . .

To prove (C.13), we need only to show that
(C.14)

sup
(u,θ>)>∈U(Θ)

1

n

n∑
i=1

1

mi

mi∑
j=1

{
Vij,Z(u,θ, κ)− E[Vij,Z(u,θ, κ)]

}
= OP (εn)

and

(C.15) sup
(u,θ>)>∈U(Θ)

∣∣∣E[Vij,Z(u,θ, κ)]− fθ(u)µκρZ(u|θ)
∣∣∣ = OP

(
hτκ
)
.

By Assumptions 1, 2(ii) and 3(ii), we have

E[Vij,Z(u,θ, κ)] =
1

h

∫ (u1 − u
h

)κ
K
(u1 − u

h

)
fθ(u1)ρZ(u1|θ)du1

=

∫
vκK(v)fθ(u+ hv)ρZ(u+ hv|θ)dv

= fθ(u)ρZ(u|θ)µκ + ḟθ(u|θ)ρZ(u|θ)µκ+1h

+fθ(u)ρ̇Z(u|θ)µκ+1h+O(h2)

uniformly in (u,θ>)> ∈ U(Θ), which implies (C.15).
As in the proof of Lemma 1, the main idea in proving (C.14) is to consider

covering the set U(Θ) by a finite number of subsets S(k) centered at sk with
radius r = o(h2). Letting sk and Nn be defined as in the proof of Lemma 1,
it is easy to show that

sup
(u,θ>)>∈U(Θ)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

{
Vij,Z(u,θ, κ)− E[Vij,Z(u,θ, κ)]

}∣∣∣
≤ max

1≤k≤Nn

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

{
Vij,Z(sk, κ)− E[Vij,Z(sk, κ)]

}∣∣∣
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SINGLE-INDEX LONGITUDINAL DATA MODELS 5

+ max
1≤k≤Nn

sup
(u,θ>)>∈S(k)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

[
Vij,Z(u,θ, κ)− Vij,Z(sk, κ)

]∣∣∣
+ max

1≤k≤Nn

sup
(u,θ>)>∈S(k)

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

{
E[Vij,Z(u,θ, κ)]− E[Vij,Z(sk, κ)]

}∣∣∣
≡ Πn4 + Πn5 + Πn6,

(C.16)

where Vij,Z(sk, κ) = Vij,Z(uk,θk, κ).
Similarly to the proof of (C.6) above, taking r = O

(
εnh

2
)
, we have

(C.17) Πn5 + Πn6 = OP

( r
h2

)
= OP (εn).

We next obtain the convergence rate for Πn4, which is slightly more com-
plicated than its counterpart in the proof of Lemma 1. As Zij may be un-
bounded, we apply a truncation method. For this purpose, we define

V ij,Z(k) = Vij,Z(sk, κ)I
{
‖Zij‖ ≤MT

1
2+δ
n

}
and

Ṽij,Z(k) = Vij,Z(sk, κ)− V ij,Z(k),

where I{·} is an indicator function, Tn =
∑n

i=1mi, and M is a positive
constant which will be specified later. It is easy to show that

Πn4 ≤ max
1≤k≤Nn

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

(V ij,Z(k)− E[V ij,Z(k)])
∣∣∣

+ max
1≤k≤Nn

∣∣∣ 1
n

n∑
i=1

1

mi

mi∑
j=1

(Ṽij,Z(k)− E[Ṽij,Z(k)])
∣∣∣

≡ Πn4,1 + Πn4,2.(C.18)

Note that for C∗ > 0 and any ε > 0,

P
(

Πn4,2 > C∗εn

)
≤ P

(
max

1≤k≤Nn
max

1≤i≤n,1≤j≤mi
|Ṽij,Z(k)| > 0

)
≤

n∑
i=1

mi∑
j=1

P
(
‖Zij‖ > MT

1
2+δ
n

)
≤ M−(2+δ)E

[
‖Zij‖2+δ

]
< ε,

if we choose M > E
[
‖Zij‖2+δ

]1/(2+δ)
ε−1/(2+δ). Then by letting ε be arbi-

trarily small, we have shown that

(C.19) Πn4,2 = OP (εn).
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6 J. CHEN, D. LI, H. LIANG AND S. WANG

We next use the Bernstein inequality to deal with the convergence of
Πn4,1. Note that for any k, we have

1

mi

mi∑
j=1

∣∣∣V ij,Z(k)− E[V ij,Z(k)]
∣∣∣ ≤ CT

1
2+δ
n

h
,(C.20)

Var
[ 1

mi

mi∑
j=1

V ij,Z(k)
]
≤ C

mih
,(C.21)

where C is a positive constant which is independent of k. By (C.20), (C.21),
Assumptions 2(ii), 5 and the Bernstein inequality for i.i.d. random variables,
we have, for C∗ > 0 sufficiently large,

P
(

Πn4,1 > C∗εn

)
≤ Nn exp

{ −C2
∗n

2ε2n

2CNn(h) + 2CC∗nεnT
1

2+δ
n

3h

}
≤ Nn exp

{
− C1/2

∗ log(n)
}

= O(Nnn−
√
C∗) = o(1).(C.22)

Hence, we have

(C.23) Πn4,1 = OP (εn) .

By (C.16)–(C.19) and (C.23), we know that (C.14) holds, which, together
with (C.15), implies that (C.13) holds. In view of (C.12) and (C.13) as well
as the definition of si(u|θ), (C.11) is readily seen.

Lemma 3. Let

η̃(Xi,θ) =
(
η̇(X>i1θ)Xi1, . . . , η̇(X>imiθ)Ximi

)>
,

and suppose that the conditions in Lemma 2 are satisfied. Then we have

(C.24) sup
(u,θ>)>∈U(Θ)

∣∣∣ n∑
i=1

si(u|θ)η̃(Xi,θ)− η̇(u)ρX(u|θ)
∣∣∣ = OP

(
h2 + εn

)
,

where ρX(u|θ) = E
[
Xij |X>ijθ = u

]
.

Proof. The proof is similar to those of Lemmas 1 and 2 given above.
We thus omit the details.

We next give the proof of Theorem 3, whose main idea is analogous to that
of the proof of Theorem 1 in Chen et al. (2009) in the time series context.
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SINGLE-INDEX LONGITUDINAL DATA MODELS 7

C.2. Proof of Theorem 3. Note that

σ̂2(t)− σ2(t) =
exp{σ̂2

�(t)}
τ̂

− exp{σ2
�(t)}
τ

=
[exp{σ̂2

�(t)}
τ̂

− exp{σ̂2
�(t)}
τ

]
+
[exp{σ̂2

�(t)}
τ

− exp{σ2
�(t)}
τ

]
≡ Ξn1 + Ξn2.(C.25)

We first consider Ξn2. By a first-order Taylor expansion and some stan-
dard techniques in local linear estimation, we can show that

Ξn2
P∼ exp{σ2

�(t)}
τ

[
σ̂2
�(t)− σ2

�(t)
] P∼ exp{σ2

�(t)}
τfT (t)h1

×
{ n∑

i=1

wi

mi∑
j=1

[
log(r̂ij + ζn)− σ2

�(t)− σ̇2
�(t)(tij − t)

]
K1

( tij − t
h1

)}
=

exp{σ2
�(t)}

τfT (t)h1

{ n∑
i=1

wi

mi∑
j=1

[
σ2
�(tij)− σ2

�(t)− σ̇2
�(t)(tij − t)

]
K1

( tij − t
h1

)}
+

exp{σ2
�(t)}

τfT (t)h1

{ n∑
i=1

wi

mi∑
j=1

[
log(r̂ij + ζn)− log(rij)

]
K1

( tij − t
h1

)}
+

exp{σ2
�(t)}

τfT (t)h1

{ n∑
i=1

wi

mi∑
j=1

ξ�(tij)K1

( tij − t
h1

)}
≡ Ξn2,1 + Ξn2,2 + Ξn2,3,(C.26)

where an
P∼ bn denotes an = bn(1 + oP (1)).

Noting that E[ξ�(tij)] = 0, by (4.7) and the central limit theorem, it is
readily proven that

(C.27) ϕ
1/2
n� (h1) · Ξn2,3

d−→ N

(
0,

exp{2σ2
�(t)}

τ2fT (t)
σ2
�

)
,

where exp{2σ2
�(t)}

τ2
= σ4(t) by the relevant definition in (4.2).

By Assumption 8 and a second-order Taylor expansion of σ2
�(·), we can

show that
(C.28)

Ξn2,1 =
exp{σ2

�(t)}
2τ

σ̈2
�(t)h

2
1

∫
v2K1(v)dv + oP (h2

1) = h2
1bσ1(t) + oP (h2

1).

We next prove that Ξn2,2 is asymptotically negligible (compared with

Ξn2,3). Let χn = log−2(Tn)ϕ
−1/2
n� (h1) and ξ(tij) be defined as in Section 4
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such that r(tij) = σ2(tij)ξ
2(tij) and E[ξ2(tij)|tij ] = 1 with probability 1.

Note that

Ξn2,2 =
exp{σ2

�(t)}
τfT (t)h1

{ n∑
i=1

wi

mi∑
j=1

[
log(r̂ij + ζn)− log(rij)

]
×K1

( tij − t
h1

)
I{ξ2(tij) ≤ χn}

}
+

exp{σ2
�(t)}

τfT (t)h1

{ n∑
i=1

wi

mi∑
j=1

[
log(r̂ij + ζn)− log(rij)

]
×K1

( tij − t
h1

)
I{ξ2(tij) > χn}

}
≡ Ξn2,21 + Ξn2,22.(C.29)

Recalling that ζn = 1/Tn, by Assumption 7 and the definitions of r̂ij and
rij , we have

|Ξn2,21| ≤
exp{σ2

�(t)}
τfT (t)h1

{ n∑
i=1

wi

mi∑
j=1

∣∣ log(σ2(tij)ξ
2(tij))

∣∣K1

( tij − t
h1

)
I(ξ2(tij) ≤ χn)

}
+

exp{σ2
�(t)}

τfT (t)h1

{
log(Tn)

n∑
i=1

wi

mi∑
j=1

K1

( tij − t
h1

)
I(ξ2(tij) ≤ χn)

}
≤ exp{σ2

�(t)}
τfT (t)h1

{∣∣ logχn
∣∣ n∑
i=1

wi

mi∑
j=1

K1

( tij − t
h1

)
I(ξ2(tij) ≤ χn)

}
+OP (χn log Tn)

= OP (χn| logχn|+ χn log Tn) = oP (ϕ−1/2
n (h1)).(C.30)

In a way similar to Fan and Yao (1998) and Chen et al. (2009), we can show

that Ξn2,22 = oP (ϕ
−1/2
n (h1)), which, in combination with (C.30), implies

(C.31) Ξn2,2 = oP (ϕ−1/2
n (h1)).

We next consider Ξn1. Following the proofs of Lemmas 2 and 3 above,
we can similarly prove the uniform convergence rate for the local linear
estimator of the link function. Then following the proof of Theorem 1 and
(4.5), we can show that

1

τ̂
− 1

τ

P∼
[ 1

Tn

n∑
i=1

mi∑
j=1

rij
(

exp{−σ̂2
�(tij)} − exp{−σ2

�(tij)}
)]

+
[ 1

Tn

n∑
i=1

mi∑
j=1

(r̂ij − rij) exp{−σ̂2
�(tij)}

]
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=
1

Tn

n∑
i=1

mi∑
j=1

rij exp{−σ2
�(tij)}

(
exp{−σ̂2

�(tij) + σ2
�(tij)} − 1

)
+ oP (ϕ−1/2(h1) + h2

1)

=− 1

Tn

n∑
i=1

mi∑
j=1

ξ2(tij)

2τ
σ̈2
�(tij)h

2
1

∫
v2K1(v)dv + oP (ϕ−1/2(h1) + h2

1)

=− h2
1

2τ
E
[
σ̈2
�(tij)

]
µ2 + oP (ϕ−1/2(h1) + h2

1),

which implies that

Ξn1 =− exp{σ2
�(t)}h2

1

2τ
E
[
σ̈2
�(tij)

]
µ2 + oP (ϕ−1/2(h1) + h2

1)

=− h2
1bσ2(t) + oP (ϕ−1/2(h1) + h2

1).(C.32)

In view of (C.25)–(C.32), we have completed the proof of Theorem 3. �

APPENDIX D: SOME ADDITIONAL SIMULATION RESULTS

We present below the average angles between the true single-index param-
eter vector and its estimates over additional 100 replications for the simu-
lated examples in Section 5. Case 1 represents the scenario where an AR(1)
within-subject error correlation is correctly specified in the error variance-
covariance matrix estimation, Case 2 the scenario where an ARMA(1,1)
correlation structure is correctly specified, Case 3 the scenario where an
ARMA(1,1) correlation structure is misspecified as an AR(1) structure, and
Case 4 the scenario where the covariates Z have a discrete distribution and
the AR(1) error correlation structure is correctly specified. The numbers
in the parentheses are the standard errors of the angles over the 100 repli-
cations. These results indicate that SGEE has smaller average angles than
PULS in all the cases considered.
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Table 1
Average angles between true and estimated single-index parameter vectors

m
n

30 50

PULS SGEE PULS SGEE

Case 1
10 0.0470(0.0254) 0.0268(0.0350) 0.0335(0.0168) 0.0162(0.0150)

30 0.0325(0.0164) 0.0196(0.0108) 0.0462(0.0097) 0.0238(0.0111)

Case 2
10 0.0445(0.0256) 0.0291(0.0163) 0.0325(0.0164) 0.0196(0.0108)

30 0.0529(0.0256) 0.0299(0.0167) 0.0376(0.0199) 0.0202(0.0099)

Case 3
10 0.0418(0.0248) 0.0337(0.0448) 0.0322(0.0187) 0.0184(0.0125)

30 0.0423(0.0235) 0.0329(0.0146) 0.0376(0.0227) 0.0293(0.0118)

Case 4
10 0.0434(0.0287) 0.0213(0.0246) 0.0315(0.0174) 0.0149(0.0209)

30 0.0589(0.0332) 0.0307(0.0430) 0.0275(0.0127) 0.0117(0.0054)
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