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This online supplement complements the main paper by provid-
ing additional simulation results as well as some technical details.
In Section 1, we compare the empirical Bayes and the hierarchical
Bayes approaches to unfolding. Section 2 contains technical material
on the convergence and mixing of the single-component Metropolis–
Hastings sampler and on the Gaussian approximation used in the
coverage studies, while Section 3 provides convergence studies for
empirical Bayes estimation as well as a detailed comparison of the
various types of confidence intervals considered in this work.

1. Comparison of empirical Bayes and hierarchical Bayes.

1.1. Hierarchical Bayes as an alternative to empirical Bayes. The fully
Bayesian alternative to empirical Bayes for handling the unknown hyperpa-
rameter δ is to consider a Bayesian hierarchical model where δ is given a
hyperprior p(δ). This allows one to form the joint posterior of β and δ,

(1) p(β, δ|y) =
p(y|β)p(β|δ)p(δ)

p(y)
,

after which β can be estimated using the mean of the marginal posterior

(2) p(β|y) =

∫
R+

p(β, δ|y) dδ.

We consider prior distributions of the form

(3) p(δ) ∝ 1[L,∞)(δ) δ
a−1e−bδ,

with the parameters a, b and L chosen in such a way that the density can be
normalized. This family of priors includes as special cases the Pareto(−a, L)
distribution, which is obtained by taking a < 0, b = 0 and L > 0; and the
Gamma(a, b) distribution obtained with a > 0, b > 0 and L = 0. The full
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posterior conditional for δ is given by

p(δ|β,y) = p(δ|β) ∝ p(β|δ)p(δ)(4)

∝ 1[L,∞)(δ) δ
p/2+a−1 exp

(
−(βTΩAβ + b)δ

)
,(5)

which shows that the prior family (3) is conditionally conjugate. In partic-
ular, p(δ|β,y) is the Gamma(p/2 + a,βTΩAβ + b) distribution truncated
to the interval [L,∞) provided that p/2 + a > 0 and βTΩAβ + b > 0. As
a result, sampling from the full posterior p(β, δ|y) can be implemented as
a simple extension of the Gibbs sampler underlying the single-component
Metropolis–Hastings algorithm described in Section 4.3.1 of the main pa-
per: we loop over all the unknowns and for each βk we sample from the
corresponding approximate full posterior conditional using a Metropolis–
Hastings acceptance step to correct for the approximation, while for δ we
simply sample from (5) without a Metropolis–Hastings correction.

Although the hierarchical Bayes model is attractive from the purely Bayes-
ian perspective, it suffers from the problem of requiring the specification
of the hyperprior p(δ). Following purely Bayesian thinking, the hyperprior
should be chosen based on the analyst’s subjective degree of belief regarding
the value of δ. But, in a typical high energy physics experiment involving
thousands of scientists, a consensus on a specific hyperprior is unlikely, espe-
cially for such an abstract quantity as the regularization parameter δ. Hence
the only reasonable choice would be an uninformative flat prior, but this re-
quires the specification of the metric in which p(δ) is flat. Unfortunately,
hierarchical Bayes estimation is known to be sensitive to this non-trivial
choice (Gelman, 2006), which is also what we observe in our simulations in
Sections 1.2 and 3.2 below. In these simulations, empirical Bayes on the other
hand achieves performance which is comparable with uninformative hierar-
chical Bayes without the need to make any extra distributional assumptions
on δ. By construction, the method is invariant to transformations of δ and
free of tuning parameters once the family of regularizing priors has been
selected. As empirical Bayes allows the data analyst to achieve good perfor-
mance without the need for hyperprior elicitation and sensitivity analysis,
we feel that it provides a more appealing solution to the HEP unfolding
problem than hierarchical Bayes.

1.2. Simulation study. In this section, we compare the point estimation
performance of empirical Bayes and hierarchical Bayes using the simula-
tion setup of Section 5 of the main paper. The performance of the methods
is compared using the integrated squared error ISE =

∫
E(f̂(s)− f(s))2 ds.

We consider the following uninformative, yet proper hyperpriors for δ:
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(a) Pareto(1, 10−10), (b) Pareto(1/2, 10−10), (c) Gamma(0.001, 0.001) and
(d) Gamma(1, 0.001). The reasoning behind these choices is that each of
these hyperpriors is nearly uniform for some transformation of δ. More
specifically, prior (a) is nearly flat for 1/δ, (b) for 1/

√
δ, (c) for log(δ) and

(d) for δ. Out of these, hyperprior (c) is extensively used in the literature
(see, e.g., Browne and Draper (2006); Ruppert, Wand and Carroll (2003),
Section 16.3; or Young and Smith (2005), Section 3.8), but Gelman (2006)
argues that (b) should provide better estimates. Hyperprior (a) is consid-
ered by, e.g., Browne and Draper (2006), while hyperprior (d) is flat for the
untransformed hyperparameter δ itself. The starting point of the MCMC
sampler was (βinit, δ

(0)) and the rest of the parameters were set to the same
values as in the empirical Bayes simulations reported in Section 5 of the main
paper. The performance of the methods is compared using 1 000 repeated
observations from the smeared process N .

Figure 1 shows boxplots of the relative pairwise ISE differences,
(ISEHB,i − ISEEB,i)/ISEEB,i, between empirical Bayes (EB) and the alter-
native hierarchical Bayes (HB) models. All the differences between EB and
HB are statistically significant at any reasonable significance level, except
for the case of hyperprior (c) at λtot = 10 000, which is only significant
at the 1 % level (two-sided Wilcoxon signed-rank test p-value 0.0052), and
the same comparison at λtot = 20 000, which is not statistically significant
(two-sided Wilcoxon signed-rank test p-value 0.95).

Two important conclusions emerge from these results. Firstly, there are
marked differences in the performance of hierarchical Bayes between the dif-
ferent hyperpriors, especially when there is only a limited amount of data.
For example, in the case of the small sample size, the median performance
of hierarchical Bayes ranges from 17 % better to 30 % worse than that of
empirical Bayes. These differences can be explained in terms of how strongly
each hyperprior tends to regularize, with priors that favor small values of
δ generally performing better, and vice versa. In particular, hyperprior (d)
places too much importance on large hyperparameter values and hence reg-
ularizes too strongly. This shows that in the present problem the choice of
the hyperprior has an undesirably large influence on the performance of the
hierarchical Bayes estimates, unless there is a large amount of data avail-
able. Secondly, the superiority of empirical Bayes and hierarchical Bayes
depends on which hyperprior is used. Generally, the performance of empir-
ical Bayes is very similar to that of hyperprior (c), with priors (a) and (b)
yielding better and prior (d) worse point estimation performance. Unfortu-
nately, there are no guarantees that hyperprior (a) would always perform
the best for all types of true intensities. What we can conclude, however, is
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Fig 1. Boxplots of relative pairwise integrated squared error differences between
empirical Bayes and hierarchical Bayes for the following uninformative hyper-
priors: (a) Pareto(1, 10−10), (b) Pareto(1/2, 10−10), (c) Gamma(0.001, 0.001) and
(d) Gamma(1, 0.001). The numbers below the plots show the medians of the relative differ-
ences. A positive difference indicates that hierarchical Bayes incurred a larger error than
empirical Bayes.
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that the performance of empirical Bayes is by all means comparable to that
of hierarchical Bayes and it achieves this without making any extra assump-
tions about the distribution of δ. In other words, empirical Bayes achieves
comparable performance while making only the bare minimum number of
assumptions about the unknown intensity.

2. Technical details.

2.1. Convergence and mixing of the MCMC sampler. During each iter-
ation of the Monte Carlo expectation-maximization algorithm used in the
empirical Bayes estimation of δ, we verify the convergence and mixing of
the MCMC sampler by monitoring the acceptance rates of the Metropolis–
Hastings proposals and the autocorrelation times κj , j = 1, . . . , p, of the
Markov chain. The latter measure how often the sampler on average pro-
duces an independent observation from the posterior and is estimated using
Geyer’s initial convex sequence estimator (ICSE) (Geyer, 1992) computed
using the R package mcmc (Geyer and Johnson, 2013). The autocorrelation
times κj enable us to define the effective sample sizes ESSj = S/κj , j =
1, . . . , p, where S is the size of the MCMC sample. ESSj measures the effec-
tive number of independent observations obtained for the jth component of
the Markov chain (Kass et al., 1998, p. 99). For the MCMC run producing
the final point estimate β̂, we also monitor the trace plots, histograms, esti-
mated autocorrelation functions and cumulative means of each component
βj , j = 1, . . . , p, of the Markov chain. In the case of the hierarchical Bayes
model, similar diagnostics were also produced for the hyperparameter δ.

Let us first consider the performance of the MCMC sampler in empirical
Bayes estimation in the Gaussian mixture model experiments of Section 5
of the main paper. In the case of the large sample size, the autocorrelation
time of the MCMC sampler averaged over the components of β varied be-
tween 4.0 and 9.3 during the convergence of the MCEM iteration. A typical
proposal acceptance rate1 was 98 %. For the final MCMC run producing the
point estimate β̂, a more careful performance analysis was carried out for
each component of the sampler using the diagnostic plots described above.
These plots indicated no major issues with the convergence and mixing of
the sampler. Figure 2 shows these diagnostic plots for the components β5

and β21 after the removal of burn-in. These plots indicate that the chain has
converged and mixes reasonably well, although the performance of the chain
is typically slightly better in the interior of the space (β21) than closer to

1As opposed to the standard multivariate Metropolis–Hastings algorithm, the single-
component version of the algorithm tries to imitate the Gibbs sampler and hence the ideal
acceptance rate would be 100 %.
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Fig 2. Convergence and mixing diagnostics for the single-component Metropolis–Hastings
sampler for variables β5 and β21: from left to right, the trace plots, histograms, estimated
autocorrelation functions and cumulative means of the samples. For variable β5, the ac-
ceptance rate was 97.6 %, the lag 1 autocorrelation 0.90 and the autocorrelation time 12.2.
Hence the effective sample size for β5 was 81.7. For β21, the corresponding values were
99.5 %, 0.60 and 5.3 with effective sample size of 187.3.

the boundaries (β5). Similar, and occasionally even better, sampling perfor-
mance was also observed in the medium and small sample size experiments
and no major issues were identified with the MCMC sampler in these cases
either.

Similar checks were also performed for the hierarchical Bayes model stud-
ied in Section 1. With the large and medium sample sizes, the MCMC sam-
pler performed just as well as in the case of empirical Bayes estimation in
sampling β. Depending on the sample size and the hyperprior used, the
autocorrelation times for the hyperparameter δ varied in the range 5.8–8.8
corresponding to effective sample sizes 113.9–172.2, and the diagnostic plots
revealed no problems with the convergence and mixing of δ. But the mixing
of the chain for the hierarchical Bayes model with the small sample size
leaves some room for improvement. For hyperpriors (a)–(d), the autocorre-
lation times were 28.1, 18.8, 54.1 and 34.2, respectively. In particular, in the
case of hyperprior (c), this corresponds to an effective sample size of only
18.5. Also from the diagnostic plots, it was evident that all these chains
were more autocorrelated for δ than desired, although the traceplots still
exhibited fairly good exploration of the hyperparameter space. The slow
mixing of the hyperparameter also affected to some degree the mixing of the
spline coefficients β, although their autocorrelation times were not as badly
inflated as for the hyperparameter.
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With such a relatively slowly mixing sampler, one might wonder whether
any of our results would change if the chain was let to run for a larger number
of time steps. To make sure that this is not the case, we repeated the small
sample size simulations in Figure 1 using 5 000 post-burn-in observations
from the hierarchical Bayes posterior. As expected, the distributions of the
relative ISE differences were more concentrated than previously, but the
medians barely changed. Similarly, no major differences were observed in
the coverage performance of the corresponding credible intervals studied in
Section 3.2.

In the case of the Z boson demonstration, a slight overparameterization
of the unfolded space was helpful in facilitating the convergence and mix-
ing of the MCMC sampler, see Section 6.2 of the main paper. With this
overparameterization, the sampler performed almost as well as in the Gaus-
sian mixture model experiments and no obvious problems were identified in
any of the checks mentioned above. The mixing of the sampler was particu-
larly good around the mode of the Z mass peak, with slightly slower mixing
observed in the tails of the intensity.

2.2. Gaussian approximation for coverage studies. Estimating the cov-
erage probability of the confidence intervals described in Section 4.4 of the
main paper requires running the procedure for many repeated observations
which is impractical due to the high computational cost of the MCMC sam-
pler needed for computing the means of the empirical Bayes posterior. We
describe in this section a Gaussian approximation to the Poisson likelihood
that enables us to compute an approximation to the actual posterior mean
in a fraction of the time required for the full MCMC. We then use this Gaus-
sian approximated point estimate β̂G in place of the actual posterior mean
β̂ in the procedure of Section 4.4 to form Gaussian approximated confidence
bands for which a coverage study can be carried out. These Gaussian ap-
proximated intervals look similar to the full Poisson intervals and we expect
the coverage of the full intervals to be similar to or better than what is
observed for the Gaussian intervals.

Our data is generated by the model

(6) y ∼ Poisson(Kβ), β ∈ Rp+.

For large enough Poisson intensities, this can be approximated as

(7) y
a∼ N(Kβ,diag(Kβ)),

where the covariance can be estimated as Ĉ = diag(y+), where y+ denotes
the observed data y with the potential zero counts replaced by ones in order
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to make Ĉ positive definite. The approximate model becomes

(8) y
a∼ N(Kβ, Ĉ),

and therefore the empirical Bayes posterior satisfies

(9) p(β|y, δ̂) a∝ exp

(
−1

2
(y −Kβ)TĈ−1(y −Kβ)− δ̂βTΩAβ

)
,

where
a∝ denotes ‘approximately proportional to’. Ignoring the positivity

constraint, this is a multivariate Gaussian posterior whose mean and mode
coincide. Therefore the original posterior mean approximately satisfies:

β̂ = E(β|y, δ̂) ≈ arg max
β∈Rp

−1

2
(y −Kβ)TĈ−1(y −Kβ)− δ̂βTΩAβ(10)

= arg min
β∈Rp

(y −Kβ)TĈ−1(y −Kβ) + 2δ̂βTΩAβ(11)

= (KTĈ−1K + 2δ̂ΩA)−1KTĈ−1y := β̂′G,(12)

where we have used the positive definiteness of ΩA and the hyperparameter
estimate δ̂ is given by the MCEM iteration. As the final step of this proce-
dure, we enforce the positivity constraint of β by setting any negative values
in β̂′G to zero, that is,

(13) β̂G = 1
{
β̂′G ≥ 0

}
◦ β̂′G,

where ◦ denotes the elementwise product of two vectors. With these approx-
imations, the main computational cost in forming the estimate β̂G comes
from the matrix operations in Equation (12) which are many orders of mag-
nitude faster than running the MCMC sampler.

3. Additional simulation results. In this section, we provide further
simulation results to complement those presented in Section 5 of the main
paper. Unless otherwise stated, all these results concern the Gaussian mix-
ture model setup described in Section 5.1 of the main paper.

3.1. Convergence studies. We verified that 30 iterations were sufficient
for the convergence of the MCEM algorithm using Figure 3(a). We see that in
the small sample size case, the MCEM iteration increased the regularization
strength from the initial value δ(0) = 1 · 10−5, while in the medium and
large sample size cases the regularization strength was decreased from its
initial value. The algorithm converged the faster the larger the sample size.
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Fig 3. Convergence studies for empirical Bayes unfolding. Figure (a) illustrates the con-
vergence of the Monte Carlo EM algorithm and shows that the algorithm converges faster
for larger sample sizes. Figure (b) shows the convergence of the mean integrated squared
error (MISE) as the expected sample size λtot grows. Note that convergence is only ob-
tained for MISE/λ2

tot. The error bars indicate approximate 95 % confidence intervals, and
the dotted straight line is a least-squares fit to the convergence curve.

With the small sample size, the algorithm took approximately 23 iterations
to converge, while in the medium sample size case this was reduced to 15
iterations and further down to 10 iterations with the large sample size. In
each case, there was little Monte Carlo variation in the hyperparameter
estimates. A similar plot was used to verify the convergence of the MCEM
algorithm in the Z boson experiments of Section 6 of the main paper in
which case the algorithm converged in roughly 10 iterations.

To further study how empirical Bayes point estimation behaves as a func-
tion of the sample size, we repeated the Gaussian mixture model experiment
on a logarithmic grid of expected sample sizes ranging from λtot = 5 000 up
to λtot = 100 000. For each sample size, we unfolded 100 independent real-
izations of the smeared data y and estimated the mean integrated squared
error (MISE) of f̂ as the sample mean of the integrated squared errors
ISE =

∫
E(f̂(s)− f(s))2 ds. As λtot → ∞, we expect the MISE to diverge,

but MISE/λ2
tot should converge towards zero, and this is indeed what we

observe in Figure 3(b).
In the classical problem of deconvolving a density function smeared by

Gaussian noise, the optimal convergence rate of the MISE is known to be of
the order (log n)−k (Meister, 2009), where n is the number of i.i.d. smeared
observations and k depends on the smoothness of the true density. Our setup
differs slightly from the classical density deconvolution problem in the sense
that we observe a realization of a smeared Poisson point process and try to
estimate the intensity function of the corresponding true process. We have
also performed all the computations on a compact interval, which introduces
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boundary effects near the end points of the interval. Nevertheless, one might
conjecture that MISE/λ2

tot converges at the rate (log λtot)
−k in which case

one would expect the values in Figure 3(b) to fall on a straight line with
slope −k. This indeed seems to approximately be the case: the MISE/λ2

tot

values seem to follow fairly well the line with slope −k = −6.25, which is also
shown in the figure. However, in a more careful inspection, the convergence
curve appears to have a slightly convex shape which possibly indicates that
the actual convergence rate is somewhat slower than (log λtot)

−k. This might
be due to the fact that we kept the number of basis functions fixed while
increasing λtot. As a result, the discretization error from the spline fit should
eventually slow down the convergence rate.

3.2. Detailed comparison of confidence intervals. The aim of this section
is to provide a comprehensive comparison of the various types of confidence
intervals considered in the simulation experiments of Section 5 in the main
paper. Additionally, we also consider the performance of the credible inter-
vals of the hierarchical Bayes model of Section 1 in this supplement. On the
following pages, we provide for each sample size the following figures:

(a) The iteratively bias-corrected confidence intervals for the full Poisson
likelihood

(b) The same intervals, but for a Gaussian approximation of the Poisson
likelihood

(c) Empirical coverage for the different intervals
(d) Empirical coverage for the iteratively bias-corrected intervals with

varying amounts of bias correction
(e) Observed intervals for the methods considered in plot (c)
(f) Observed intervals for the varying amounts of bias correction consid-

ered in plot (d)

The figures are presented first for the small sample size, followed by the
medium and large sample size cases.

Figure 4 shows a comparison of the iteratively bias-corrected intervals
obtained with the full Poisson likelihood and with the Gaussian approxima-
tion of Section 2.2 for λtot = 1 000 and NBC = 15. The corresponding point
estimates are also shown in the figure. We observe that the Gaussian ap-
proximated intervals are very similar to the full intervals so it is reasonable
to expect that their coverage properties would also be similar.

Figure 5(a) compares the empirical coverage of the 95 % iteratively bias-
corrected intervals with various forms of Bayesian intervals and standard
bootstrap intervals, see Section 5.2.2 of the main paper for a description of
the empirical Bayes and the bootstrap intervals. The hierarchical Bayes in-



STATISTICAL UNFOLDING OF ELEMENTARY PARTICLE SPECTRA 11

tervals are the 95 % equal-tailed credible intervals induced by the marginal
posterior (2). The bias-corrected intervals and the bootstrap intervals are
formed using the Gaussian approximation to the likelihood, while the Bayes-
ian intervals are for the full Poisson likelihood. We observe that both the
Bayesian intervals and the standard bootstrap intervals suffer from major
undercoverage in areas of sizable bias. On the other hand, the iteratively
bias-corrected intervals perform considerably better and achieve close-to-
nominal coverage on most parts of the spectrum, except for the peak at
s = 2 where the empirical coverage drops to 85.0 %.

Figure 5(b) shows the empirical coverage of the Gaussian approximated
iteratively bias-corrected intervals for varying amounts of bias correction.
The graph for NBC = 0 corresponds to the standard bootstrap percentile
intervals. We observe that by increasing the number of bias-correction itera-
tions, we can consistently improve the coverage. In particular, for NBC = 50,
the coverage is close to the nominal value across the whole spectrum.

To gain further insight into the coverage results in Figure 5(a), we plot in
Figure 6 a single realization of each of the various intervals (for hierarchical
Bayes, only the extremal cases corresponding to hyperpriors (a) and (d) are
shown). From this figure, it is clear that only the iteratively bias-corrected
intervals adequately account for the bias at high curvature regions of the
spectrum. The Bayesian intervals are consistently wider than the standard
bootstrap intervals, which can be understood in terms of these intervals par-
tially accounting for the bias (Ruppert, Wand and Carroll, 2003, Chapter 6),
but evidently some bias still remains unaccounted for. Interestingly, there is
little difference in the lengths of the empirical Bayes and hierarchical Bayes
intervals. The bootstrap basic intervals can also be seen to partially accom-
modate the bias, but these intervals are generally too short and the implicit
bias correction too small to yield satisfactory coverage.

Figure 7 shows a single realization of the bias-corrected intervals studied
in Figure 5(b). We see that as the number of bias correction iterations is
increased, the intervals become better centered around the true intensity
but at the same time their length is increased. As discussed in Section 4.4 of
the main paper, this phenomenon is entirely expected, but the curious part
of these results is the fact that even with a large number of bias-correction
iterations the interval length is only modestly increased while the coverage
performance is significantly improved. It seems that there is a small amount
of residual bias that remains after the bias correction and that this residual
bias is adequate to regularize the interval length while having only a small
effect on the coverage performance.
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Figures 8–11 provide the same plots for the medium sample size case
with λtot = 10 000 and NBC = 5, while the large sample size case with
λtot = 20 000 and NBC = 5 is considered in Figures 12–15. Similar conclu-
sions as above emerge from these figures, although the differences become
less pronounced as the sample size increases. In each case, the coverage per-
formance of the iteratively bias-corrected intervals is better than that of the
competing methods and this difference can be understood in terms of how
the different types of intervals account for the bias of the underlying point
estimate.
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Fig 4. Comparison of unfolding results obtained using (a) the full Poisson likelihood and
(b) a Gaussian approximation to the full likelihood. The sample size was λtot = 1 000
and the confidence intervals are the 95 % iteratively bias-corrected intervals obtained using
NBC = 15 bias correction iterations.
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Fig 5. Coverage studies with λtot = 1 000. Figure (a) compares the empirical coverage of
the iteratively bias-corrected intervals with 15 bias correction iterations to that of empirical
Bayes (EB) and hierarchical Bayes (HB) credible intervals as well as the non-bias-corrected
bootstrap percentile and basic intervals. Figure (b) shows the empirical coverage of the bias-
corrected intervals as the number of bias-correction iterations is varied between 0 and 50.
All intervals are formed for 95 % nominal coverage shown by the horizontal line.
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Fig 6. One realization of the various 95 % confidence intervals with λtot = 1000. The inter-
vals shown are (a) the iteratively bias-corrected intervals with 15 bias correction iterations,
(b)–(d) credible intervals of the empirical Bayes (EB) and the two extremal hierarchical
Bayes (HB) posteriors, (e) bootstrap basic intervals and (f) bootstrap percentile intervals.
Figures (a), (e) and (f) were computed using the Gaussian approximation to the Poisson
likelihood. Also shown are the corresponding unfolded point estimates f̂ (solid lines) and
the true intensity f (dashed lines). In the case of Figure (a), also the bias-corrected point
estimate f̂BC is given (dotted line).
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Fig 7. Comparison of the 95 % iteratively bias-corrected intervals with varying amounts of
bias correction with λtot = 1 000. Also shown are the true intensity f (dashed lines), the
unfolded point estimate f̂ (solid lines) and the various bias-corrected point estimates f̂BC

(dotted lines). All the estimates were computed using the Gaussian approximation to the
Poisson likelihood.
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Fig 8. Comparison of unfolding results obtained using (a) the full Poisson likelihood and
(b) a Gaussian approximation to the full likelihood. The sample size was λtot = 10 000
and the confidence intervals are the 95 % iteratively bias-corrected intervals obtained using
NBC = 5 bias correction iterations.
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(b) Effect of bias correction on UQ performance, λ
tot

 = 10000

 

 

 0

 1

 2

 3

 4

 5

10

15

30

50

Fig 9. Coverage studies with λtot = 10 000. Figure (a) compares the empirical coverage of
the iteratively bias-corrected intervals with 5 bias correction iterations to that of empirical
Bayes (EB) and hierarchical Bayes (HB) credible intervals as well as the non-bias-corrected
bootstrap percentile and basic intervals. Figure (b) shows the empirical coverage of the bias-
corrected intervals as the number of bias-correction iterations is varied between 0 and 50.
All intervals are formed for 95 % nominal coverage shown by the horizontal line.
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Fig 10. One realization of the various 95 % confidence intervals with λtot = 10 000. The
intervals shown are (a) the iteratively bias-corrected intervals with 5 bias correction iter-
ations, (b)–(d) credible intervals of the empirical Bayes (EB) and the two extremal hier-
archical Bayes (HB) posteriors, (e) bootstrap basic intervals and (f) bootstrap percentile
intervals. Figures (a), (e) and (f) were computed using the Gaussian approximation to
the Poisson likelihood. Also shown are the corresponding unfolded point estimates f̂ (solid
lines) and the true intensity f (dashed lines). In the case of Figure (a), also the bias-
corrected point estimate f̂BC is given (dotted line).
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Fig 11. Comparison of the 95 % iteratively bias-corrected intervals with varying amounts
of bias correction with λtot = 10000. Also shown are the true intensity f (dashed lines), the
unfolded point estimate f̂ (solid lines) and the various bias-corrected point estimates f̂BC

(dotted lines). All the estimates were computed using the Gaussian approximation to the
Poisson likelihood.
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Fig 12. Comparison of unfolding results obtained using (a) the full Poisson likelihood and
(b) a Gaussian approximation to the full likelihood. The sample size was λtot = 20 000
and the confidence intervals are the 95 % iteratively bias-corrected intervals obtained using
NBC = 5 bias correction iterations.
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Fig 13. Coverage studies with λtot = 20000. Figure (a) compares the empirical coverage of
the iteratively bias-corrected intervals with 5 bias correction iterations to that of empirical
Bayes (EB) and hierarchical Bayes (HB) credible intervals as well as the non-bias-corrected
bootstrap percentile and basic intervals. Figure (b) shows the empirical coverage of the bias-
corrected intervals as the number of bias-correction iterations is varied between 0 and 50.
All intervals are formed for 95 % nominal coverage shown by the horizontal line.
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Fig 14. One realization of the various 95 % confidence intervals with λtot = 20 000. The
intervals shown are (a) the iteratively bias-corrected intervals with 5 bias correction iter-
ations, (b)–(d) credible intervals of the empirical Bayes (EB) and the two extremal hier-
archical Bayes (HB) posteriors, (e) bootstrap basic intervals and (f) bootstrap percentile
intervals. Figures (a), (e) and (f) were computed using the Gaussian approximation to
the Poisson likelihood. Also shown are the corresponding unfolded point estimates f̂ (solid
lines) and the true intensity f (dashed lines). In the case of Figure (a), also the bias-
corrected point estimate f̂BC is given (dotted line).
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Fig 15. Comparison of the 95 % iteratively bias-corrected intervals with varying amounts
of bias correction with λtot = 20000. Also shown are the true intensity f (dashed lines), the
unfolded point estimate f̂ (solid lines) and the various bias-corrected point estimates f̂BC

(dotted lines). All the estimates were computed using the Gaussian approximation to the
Poisson likelihood.
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