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Supplementary Material : “On the
Marčenko-Pastur law for linear time series”

Haoyang Liu, Alexander Aue and Debashis Paul

S1. Technical lemmas. We state a number of key technical lemmas
before providing the details of the proofs of the main results. The following
two Lemmas are restatements of Corollary A.41 and Theorem A.44 of Bai
and Silverstein [6], respectively.

Lemma S.1. Suppose that A and B are two p× p normal matrices with
ESDs FA and FB, respectively. Then,

L3(FA, FB) ≤ 1

p
tr[(A−B)(A−B)∗],

where L(F,G) denotes the Lévy distance between two probability distribu-
tions F and G defined on the real line.

Lemma S.2. Let A and B be two p×n complex matrices and let C and
D be Hermitian matrices of order p× p and n× n, respectively. Then

sup
σ

|FC+ADA∗
(σ)− FC+BDB∗

(σ)| ≤ 1

p
rank(A−B).

The following result (Theorem 1 of Geronimo and Hill [16]) characterizes
the weak convergence of probability distributions in terms of convergence of
Stieltjes transforms.

Lemma S.3. Suppose that {Pn} is a sequence of Borel probability mea-
sures with corresponding Stieltjes transforms {sn}. If limn→∞ sn(z) = s(z)
for all z ∈ C+, then there exists a Borel probability measure P with Stieltjes
transform sP = s if and only if limv→∞ ivs(iv) = −1, in which case Pn

converges to P in distribution.

An additional lemma is stated and proved. It is essential at various places
in the arguments that follow. The lemma is a generalization of part (a)
of Lemma 2.3 in Bai and Silverstein [4]. There, in addition to being Her-
mitian, the involved matrices are also assumed to be nonnegative definite.
This assumption, however, fails to be true for the symmetrized autocovari-
ance matrices under consideration here and the following extension becomes
crucial in verifying the main results.
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2 LIU, AUE AND PAUL

Lemma S.4. Suppose that sF (·) is the Stieltjes transform of a distribu-
tion function F with total mass M and that B is an n×n Hermitian matrix.
Then, for z = w + iv ∈ C+,

∥∥(sF (z)B+ I)−1
∥∥ ≤ max

{
4M∥B∥

v
, 2

}
.

Proof. Without loss of generality, assume that M = 1. Note that,

sF (z) =

∫ ∞

−∞

1

σ − z
dF (σ)

=

∫ ∞

−∞

σ − w

(σ − w)2 + v2
dF (σ) + i

∫ ∞

−∞

v

(σ − w)2 + v2
dF (σ)

and therefore, applying the Cauchy–Schwarz inequality,

Im(sF (z))

v
=

∫ ∞

−∞

1

(σ − w)2 + v2
dF (σ)

∫ ∞

−∞

(σ − w)2 + v2

(σ − w)2 + v2
dF (σ)

≥
∫ ∞

−∞

1

(σ − w)2 + v2
dF (σ)

∫ ∞

−∞

(σ − w)2

(σ − w)2 + v2
dF (σ)

≥
(∫ ∞

−∞

σ − w

(σ − w)2 + v2
dF (σ)

)2

= |Re(sF (z))|2.

Letting r = Re(sF (z)), it follows that, for any b,

|sF (z)b+ 1|2 = (Re(sF (z))b+ 1)2 + (Im(sF (z)))
2b2 ≥ (rb+ 1)2 +

v2(rb)4

b2
.

If rb > −1/2, then |sF (z)b + 1|2 ≥ 1/4. If rb < −1/2, then |sF (z)b + 1|2 >
v2(16b2)−1. Combining the latter two statements, it follows that∣∣∣∣ 1

1 + sF (z)b

∣∣∣∣ ≤ max

{
4|b|
v
, 2

}
,

which implies the assertion of the lemma.

S1.1. Completing the proof of Theorem 7.1.

Lemma S.5. Let ϵ > 0. If the assumptions of Theorem 7.1 are satisfied,

then P(maxt≤n |d(1)τ,t | > ϵ) tends to zero at a rate faster than n−1.
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Proof. Since the trace is invariant under cyclical permutations, it follows
that

|d(1)τ,t | =
∣∣∣∣ β̃τ,tγτ,tzp

Z̃∗
tψ

∗
t

((
I+H(z)

)−1 −
(
I+Ht(z)

)−1
)
DR̃t(z)ψtZ̃t

∣∣∣∣
≤ λ̄2Aλ̄D

∣∣∣∣ β̃τ,tγτ,tzp

∣∣∣∣∥Z̃t∥2
∥∥∥(I+H(z)

)−1 −
(
I+Ht(z)

)−1
∥∥∥∥R̃t(z)∥,(S.1)

where λ̄A and λ̄D are the bounds for the eigenvalues of A and D specified in
Assumption 2.1 and Theorem 7.1, respectively. In the following, the terms
on the right-hand side of the latter inequality will be bounded.

Step 1: Write∥∥(I+H(z)
)−1 −

(
I+Ht(z)

)−1∥∥(S.2)

=
∥∥(I+Ht(z)

)−1(
Ht(z)−H(z)

)(
I+H(z)

)−1∥∥.
Recall the definition of H(z) in (6.3) and note that n−1tr[R̃(z)Ht], as a
Stieltjes transform, has positive imaginary part. It follows that

−γτ,tβτ,t = −γτ,t
(
1 +

1

n
γτ,ttr[R̃(z)Ht]

)−1

,

where βτ,t is defined in (7.4), has nonnegative imaginary part irrespective of
the sign of γτ,t, and strictly positive imaginary part if γτ,t ̸= 0. Observe next
that Ht is a positive semidefinite matrix with the same set of eigenvectors
as (I+H(z))−1. Arguing for each eigenvalue individually, we need to bound

z

(
z − σ

n

n∑
t=1

γτ,tβτ,t

)−1

,

where σ denotes an eigenvalue ofHt. Since the term (. . .)−1 has an imaginary
part not larger than v, with z = u + iv, it follows that ∥(I + H(z))−1∥ ≤
|z|v−1. In the same way, one verifies also that ∥(I + Ht(z))

−1∥ ≤ |z|v−1.
Next, write

Ht(z)−H(z) =
1

zn

n∑
t=1

γτ,t(βτ,t − β̄τ,t)Ht

=
1

zn2

n∑
t=1

γ2τ,tβτ,tβ̄τ,ttr
[
(R̃t(z)− R̃(z))Ht

]
Ht,
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where β̄τ,t is as in (7.5). First, suppose that V is a unitary matrix such
that V∗C̃τV = Σ, the diagonal matrix of eigenvalues of C̃τ . Define Y =
n−1/2V∗X̃t and observe that∣∣∣tr[(R̃t(z)− R̃(z))Ht

]∣∣∣(S.3)

=

∣∣∣∣γτ,tn−1X̃∗
t R̃t(z)HtR̃t(z)X̃t

1 + γτ,tn−1X̃∗
t R̃t(z)X̃t

∣∣∣∣
=

∣∣∣∣γτ,tY ∗(Σ− zI)−1V∗HtV(Σ− zI)−1Y

1 + γτ,tY ∗(Σ− zI)−1Y

∣∣∣∣
≤ ∥Ht∥

∑p
j=1(|yj |/|σj − z|)2

Im(1/γτ,t + Y ∗(Σ− zI)−1Y )
I(γτ,t ̸= 0)

≤ λ̄2A

∑p
j=1(|yj |/|σj − z|)2

v
∑p

j=1(|yj |/|σj − z|)2
I(γτ,t ̸= 0) ≤ λ̄2A

1

v
.

The terms βτ,t and β̄τ,t can be bounded in the same fashion. Observe next
that n−1tr[R̃(z)Ht] and n

−1tr[R̃t(z)Ht] are Stieltjes transforms on R+, the
positive real numbers, with mass not bigger than cnλ̄

2
A, since ∥Ht∥ ≤ λ̄2A.

Without loss of generality, assume that cn < c̄ for all n. Since |γτ,t| ≤ 1,
by Lemma S.4, it follows that max{|βτ,t|, |β̄τ,t|} ≤ C1(z), where C1(z) =
max{4c̄λ̄2Av−1, 2}. It follows that ∥Ht(z) − H(z)∥ ≤ Cn−1 with an appro-
priate constant C > 0 which may depend on z. In the remainder of this
proof, C denotes a generic positive constant that may vary from line to
line. Combining the previous estimates and going back to (S.2), it has been
established that ∥∥(I+H(z)

)−1 −
(
I+Ht(z)

)−1∥∥ ≤ C

n
.

Step 2: In the following, bounds for the remaining terms in (S.1) will be
given. First, notice that Lemma S.4 implies |β̃τ,t| ≤ max{4λ̄2A∥Z̃t∥2(nv)−1, 2}.
Note also that ∥R̃t(z)∥ ≤ v−1. Combining these estimates with the ones ob-
tained in Step 1 of the proof implies then that

|d(1)τ,t | ≤
C1

pn2
∥Z̃t∥4 +

C2

pn
∥Z̃t∥2,

with appropriately chosen positive constants C1 and C2. Then, using the
formula for moments of Gaussian random variables, we have E[∥Z̃t∥2m] ≤
C ′
mn

m for some constant C ′
m > 0. Therefore, for any ϵ > 0,

P
(
max
t≤n

|d(1)τ,t | > ϵ
)
≤

n∑
t=1

P
(
|d(1)τ,t | > ϵ

)
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= nP
(
∥Z̃t∥4 >

pn2ϵ

C1

)
+ nP

(
∥Z̃t∥2 >

pnϵ

C2

)

≤ n

(
C1

pn2ϵ

)m

E
[
∥Z̃t∥4m

]
+ n

(
C2

pnϵ

)m

E
[
∥Z̃t∥2m

]
≤ Cn1−m.

Taking m > 2, it can be seen that the assertion of the lemma follows.

Lemma S.6. Let ϵ > 0. If the assumptions of Theorem 7.1 are satisfied,

then P(maxt≤n |d(2)τ,t | > ϵ) tends to zero at a rate faster than 1
n .

Proof. Let ϵ > 0 and define Gt = ψ
∗
t (I+Ht(z))

−1DR̃t(z)ψt. Using the
invariance of the trace under cyclic permutations, it follows that

P
(
|d(2)τ,t | > ϵ

)
≤ P

(
|β̃τ,t| >

√
ϵvp1/3

)
+ P

(
1

p2/3

∣∣Z̃∗
t GtZ̃t − tr[Gt]

∣∣ ≥ √
ϵ

)
.

Using the bounds on β̃τ,t and E[∥Z̃t∥2m] in the proof of Lemma S.5, for
large enough p, the first term on the right-hand side of the latter display is
bounded by

P
(
∥Z̃t∥2 > C1

√
ϵnp1/3

)
≤
(

1

C1
√
ϵnp1/3

)2m

E
[
∥Z̃t∥4m

]
≤ C2n

−2m/3,

which tends to zero faster than n−2 if m > 3. For the second term, no-
tice that, using arguments from the proof of the previous lemma, ∥Gt∥ ≤
|z|v−2λ̄2Aλ̄D and that therefore tr[GG∗] ≤ p∥Gt∥2 ≤ Cn−1. Now, an appli-
cation of Lemma B.26 in [6] implies that

P
(

1

p2/3

∣∣Z̃∗
t GtZ̃t − tr[Gt]

∣∣ ≥ √
ϵ

)
≤ 1

ϵmp4m/3
E
[∣∣Z̃∗

t GtZ̃t − tr[Gt]
∣∣]

≤ Cn−m/3,

which converges to zero faster than n−2 if m > 6.

Lemma S.7. Let ϵ > 0. If the assumptions of Theorem 7.1 are satisfied,

then P(maxt≤n |d(3)τ,t | > ϵ) tends to zero at a rate faster than 1
n .

Proof. Note first that, for some positive constant C,

tr
[
R̃t(z)Ht

(
(I+Ht(z))

−1 − (I+H(z))−1
)
D
]
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≤ p
∥∥R̃t(z)Ht

(
(I+Ht(z))

−1 − (I+H(z))−1
)
D
∥∥ ≤ C,

using estimates obtained in the proofs of Lemmas S.5 and S.6. Therefore,

|d(3)τ,t | ≤ C|β̃τ,t|n−1. To show the assertion of this lemma, it suffices then to

show that n−2P(|β̃τ,t| > nϵ) → 0. The arguments are similar to the ones
already established in Lemma S.6, where it was shown that n−2P(|β̃τ,t| >
n1/3ϵ) → 0. Details are hence omitted.

Lemma S.8. Let ϵ > 0. If the assumptions of Theorem 7.1 are satisfied,

then P(maxt≤n |d(4)τ,t | > ϵ) tends to zero at a rate faster than 1
n .

Proof. Recognizing that tr
[(
R̃t(z) − R̃(z)

)
Ht(I + H(z))−1D] ≤ C for

some C > 0, depending on z, the proof is similar to the one of Lemma
S.7.

Lemma S.9. Let ϵ > 0. If the assumptions of Theorem 7.1 are satisfied,

then P(maxt≤n |d(5)τ,t | > ϵ) tends to zero at a rate faster than 1
n .

Proof. Recall that β̄τ,t = (1 + n−1γτ,ttr[R̃t(z)Ht])
−1. Write

d
(5)
τ,t =

1

zp
γτ,t
(
[β̃τ,t − β̄τ,t] + [β̄τ,t − βτ,t]

)
tr
[
R̃(z)Ht(I+H(z))−1D

]
.

Observe first that p−1tr[R̃(z)Ht(I+H(z))−1D] ≤ ∥R̃(z)Ht(I+H(z))−1D∥ ≤
C for some C > 0. Let Gt = ψ

∗
t R̃t(z)ψt. Then,

|β̃τ,t − β̄τ,t| =
∣∣∣β̃τ,tβ̄τ,tγτ,t 1

n

(
tr[Gt]− Z̃∗

t GtZ̃t

)∣∣∣
≤ C|β̃τ,t|

1

n

∣∣Z̃∗
t GtZ̃t − tr[Gt]

∣∣,
where the right-hand side can now be estimated along the lines of the ar-
guments used in the proof of Lemma S.6, noting that ∥Gt∥ is uniformly
bounded. The term involving |β̄τ,t − βτ,t| can be handled similarly.

S1.2. Completing the proofs of Theorems 7.2 and 7.3.

Lemma S.10. Let the assumptions of Theorem 7.2 be satisfied. Then,
for any ν1, ν2 ∈ [0, 2π],

∥H(A, ν1)−H(A, ν2)∥ ≤ 2
√
2λ̄Aλ̄

′
A|ν1 − ν2|.

For a fixed z ∈ C+, the two function families K̃τ (z, ν, ω) and d̄(z, ν, ω) are
uniformly equicontinuous in ν (viewing p and ω as parameters).
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Proof. LetHi = H(A, νi) andψi = ψ(A, νi), i = 1, 2. SinceHi = ψiψ
∗
i ,

it follows that

∥H1 −H2∥ ≤ ∥ψ1(ψ1 −ψ2)
∗∥+ ∥(ψ1 −ψ2)ψ

∗
2∥.

Therein, ∥ψi∥ ≤ λ̄A and

∥ψ1 −ψ2∥ =

∥∥∥∥ q∑
ℓ=0

(eiℓν1 − eiℓν2)Aℓ

∥∥∥∥ ≤
√
2|ν1 − ν2|

q∑
ℓ=0

ℓ∥Aℓ∥

≤
√
2|ν1 − ν2|

q∑
ℓ=0

ℓλ̄A ≤
√
2|ν1 − ν2|λ̄′A.

It follows that ∥H1 −H2∥ ≤ 2
√
2λ̄Aλ̄

′
A|ν1 − ν2|, which is the first assertion

of the lemma. For the second, note that∣∣K̃τ (z, ν1, ω)− K̃τ (z, ν2, ω)
∣∣ = 1

p

∣∣∣tr[R̃(z, ω)(H1 −H2)
]∣∣∣

≤ ∥R̃(z, ω)(H1 −H2)∥
≤ C(v)∥ν1 − ν2∥,

where C(v) = 2
√
2λ̄Aλ̄

′
Av

−1. The third assertion of the lemma follows in
the same fashion using the bound ∥(I+H(z))−1∥ ≤ |z|v−1.

Lemma S.11. Let the assumptions of Theorem 7.2 be satisfied. The fol-
lowing statements hold true.

(a) For any ω ∈ Ω0 and z ∈ C+
Q, d̄(z, ν, ω) → 0 uniformly in ν.

(b) For any ω ∈ Ω0 and z ∈ C+, there is a subsequence {pℓ} such that

K̃
(pℓ)
τ (z, ν, ω) converges uniformly to a continuous function of ν. Moreover,

the limit of every uniformly convergent subsequence of K̃τ (z, ν, ω) satisfies
(2.5).

Proof. (a) Observe that d̄(z, ν, ω) → 0 pointwise as a function of ν ∈
[0, 2π]Q holding ω ∈ Ω0 and z ∈ C+

Q fixed. Further, Lemma S.10 implies

that d̄(z, ν, ω) are uniformly equicontinuous in ν. Therefore, d̄(z, ν, ω) → 0
uniformly on [0, 2π].

(b) Fix ω ∈ Ω0 and z ∈ C+. Then |K̃τ (z, ν, ω)| ≤ λ̄2Av
−1. Lemma S.10

and the Arzela–Ascoli theorem imply that there is a subsequence {pℓ} along
which K̃τ (z, ν, ω) converges uniformly to a function continuous in ν. This is
the first part of the assertion. For the second, let {pℓ} be a subsequence along
which K̃τ (z, ν, ω) converges to a limit, say, Kτ (z, ν, ω) uniformly on [0, 2π].
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Note that the dependence of Kτ (z, ν, ω) on the subsequence is implicit to
keep the notation simpler. In what follows, it will be shown that Kτ (z, ν, ω)
satisfies (2.5), that is,

(S.4) Kτ (z, ν, ω) =

∫
[Uτ (z, λ, ω)− z]−1h(λ, ω)dFA(λ),

where Uτ (z, λ, ω) = (2π)−1
∫ 2π
0 βτ (z, ν)γτ (ν)h(λ, ν)dν. To this end, d̄(z, ν, ω)

along the subsequence {pℓ} is utilized (with dependence on {pℓ} again im-
plicit). Let νtℓ = 2πtn−1

ℓ , with nℓ such that pℓ = p(nℓ), and write

d̄(z, ν, ω) = K̃(pℓ)
τ (z, ν, ω)−

∫
[U (pℓ)

τ (z, λ, ω)− z]−1h(λ, ν)dFA
pℓ
(λ),

with U
(pℓ)
τ (z, λ, ω)=n−1

ℓ

∑nℓ
t=1 βτ,ℓ(z, νtℓ)γτ (νtℓ)h(λ, νtℓ) and βτ,ℓ(z, ν)=(1+

cpℓγτ (ν)K̃
(pℓ)
τ (z, ν, ω))−1. Since d̄(z, ν, ω) → 0 uniformly on [0, 2π] it can be

seen that the latter equation is a finite-sample analog of (S.4).

It will be shown next that U
(pℓ)
τ (z, λ, ω) → Uτ (z, λ, ω) uniformly in λ as

pℓ → ∞. Write

U (pℓ)
τ (z, λ, ω)− Uτ (z, λ, ω)(S.5)

=
1

nℓ

nℓ∑
t=1

(
βτ,ℓ(z, νtℓ)− βτ (z, νtℓ)

)
γτ (νtℓ)h(λ, νtℓ)

+
1

nℓ

nℓ∑
t=1

βτ (z, νtℓ)γτ (νtℓ)h(λ, νtℓ)

− 1

2π

∫ 2π

0
βτ (z, ν)γτ (ν)h(λ, ν)dν

=
1

nℓ

nℓ∑
t=1

βτ,ℓ(z, νtℓ)βτ (z, νtℓ)γ
2
τ (νtℓ)

×
(
cKτ (z, νtℓ, ω)− cpℓK̃

(pℓ)
τ (z, νtℓ, ω)

)
h(λ, νtℓ)

+
1

nℓ

nℓ∑
t=1

βτ (z, νtℓ)γτ (νtℓ)h(λ, νtℓ)

− 1

2π

∫ 2π

0
βτ (z, ν)γτ (ν)h(λ, ν)dν.

As in the proof of Lemma S.5, it can be verified that |βτ,ℓ(z, νtℓ)βτ (z, νtℓ)| ≤
C for some C > 0 depending on z. Further,∣∣cKτ (z, νtℓ, ω)− cpℓK̃

(pℓ)
τ (z, νtℓ, ω)

∣∣
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≤
∣∣(c− cpℓ)Kτ (z, νtℓ, ω)

∣∣+ cpℓ
∣∣Kτ (z, νtℓ, ω)− K̃(pℓ)

τ (z, νtℓ, ω)
∣∣,

where the right-hand side converges to zero uniformly in λ. Using |h(λ, ν)| ≤
λ̄2A, the first difference on the right-hand side of (S.5) goes to zero uniformly
in λ. Fix ν1, ν2 ∈ [0, 2π]. Then,

βτ (z, ν1)γτ (ν1)h(λ, ν1)− βτ (z, ν2)γτ (ν2)h(λ, ν2)

= βτ (z, ν1)βτ (z, ν2)
(
γτ (ν1)h(λ, ν1)− γτ (ν2)h(λ, ν2)

)
+ cβτ (z, ν1)βτ (z, ν2)γτ (ν1)γτ (ν2)

×
(
Kτ (z, ν2, ω)h(λ, ν1)− Kτ (z, ν1, ω)h(λ, ν2)

)
.

Note again that |βτ,ℓ(z, νtℓ)βτ (z, νtℓ)| ≤ C. Since both h(λ, ν) and K̃τ (z, ν, ω)
are uniformly bounded and equicontinuous in ν (with λ, p and ω as parame-
ters), the right-hand side of the latter equation can be bounded by C̃|ν1−ν2|
for some suitable C̃ > 0. It follows that the second difference of the right-
hand side in (S.5) also converges to zero uniformly in λ.

Utilizing that |(U (pℓ)
τ (z, λ, ω) − z)−1|, |(Uτ (z, λ, ω) − z)−1| < v−1, that

h(λ, ν) is a bounded continuous function, and the weak convergence of FA
pℓ
(λ)

to FA(λ), it follows that∫
[U (pℓ)

τ (z, λ, ω)− z]−1h(λ, ν)dFA
pℓ

→
∫

[Uτ (z, λ, ω)− z]−1h(λ, ν)dFA

under (2.2) and Kτ (z, ν, ω) satisfies (2.5). The proof is complete.

Lemma S.12. Let the assumptions of Theorem 7.2 be satisfied. Then,
the ESDs of C̃τ is tight on Ω0 as sequences in p.

Proof. This is proved by showing that as n→ ∞, ∥C̃τ∥ is almost surely
bounded. Let Dτ = (L̃τ + L̃∗

τ )/2. Then,

∥C̃τ∥ =
1

n

∥∥∥∥(Z+

q∑
ℓ=1

AℓZL̃
ℓ

)
Dτ

(
Z+

q∑
ℓ=1

AℓZL̃
ℓ

)∗∥∥∥∥
≤ 1

n

∥∥∥∥(Z+

q∑
ℓ=1

AℓZL̃
ℓ

)∥∥∥∥2 ≤ ∥∥∥∥ 1nZZ∗
∥∥∥∥( q∑

ℓ=0

λ̄Aℓ

)2

,

which follows from the fact that ∥Lℓ∥ = 1 for each ℓ ≥ 1. Now since the Zjt’s
are i.i.d. random variables with zero mean, unit variance and finite fourth
moment, it follows that, as n, p → ∞, ∥n−1ZZ∗∥ is bounded almost surely
by (1 +

√
c)2 + δ for any given δ > 0.
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Lemma S.13. Suppose that {µp} is a tight sequence of Borel probability
measures and that {sp(z)} is the corresponding sequence of Stieltjes trans-
forms. If sp(z) → s(z) for all z = w + iv ∈ C+, then limv→∞ ivs(iv) = −1.
Therefore s(z) is the Stieltjes transform of a Borel probability measure.

Proof. To verify that ivs(iv) → −1 as v → ∞, it is sufficient to verify
that, for all ϵ > 0, there is v0 such that for all v > v0 and for all p, |ivsp(iv)| ≤
ϵ. To this end, note that, for λ0 > 0,

ivsp(iv) + 1 =

∫
{|λ|≤λ0}

λ

λ− iv
dµp(λ) +

∫
{|λ|>λ0}

λ

λ− iv
dµp(λ)

≤ λ0
λ0 + v

+ µp({|λ| > λ0}).

Since µp is a sequence of Borel measures, λ0 can be chosen so large that
µp({|λ| > λ0}) < ϵ/2. Choosing v0 such that λ0(λ0+v)

−1 < ϵ/2, shows that
ivs(iv) → −1 as v → ∞. That s(z) is a Stieltjes transform is a consequence
of Lemma S.3.

S1.3. Bounds for partial derivatives.

Lemma S.14. If the assumptions of Theorem 2.1 are satisfied, then (9.7)
and (9.8) imply that (9.6) converges to zero under (2.2).

Proof. Elementary computations show that

∂
(3)
j,t,1R(z)

=− 6R(z)
[
∂
(1)
j,t,1Cτ

]
R(z)

[
∂
(1)
j,t,1Cτ

]
R(z)

[
∂
(1)
j,t,1Cτ

]
R(z)

[
∂
(1)
j,t,1Cτ

]
R(z)

+ 3R(z)
[
∂
(2)
j,t,1Cτ

]
R(z)

[
∂
(1)
j,t,1Cτ

]
R(z)

+ 3R(z)
[
∂
(1)
j,t,1Cτ

]
R(z)

[
∂
(2)
j,t,1Cτ

]
R(z),

where

∂
(1)
j,t,1Cτ =

1

2n

∑
ℓ∈I+(t)

(
AℓejXt+τ+ℓ +Xt+τ+ℓe

∗
jAℓ

)
+

1

2n

∑
ℓ∈I−(t)

(
AℓejXt−τ+ℓ +Xt−τ+ℓe

∗
jAℓ

)
,

∂
(2)
j,t,1Cτ =

1

n

∑
ℓ∈G+(t)

(
Aℓeje

∗
jAℓ+τ

)
+

1

n

∑
ℓ∈G−(t)

(
Aℓ−τeje

∗
jAℓ

)
,

imsart-aos ver. 2014/02/20 file: autocovariance_ESD_AOS_combined_version.tex date: November 25, 2014



MARČENKO–PASTUR LAW FOR TIME SERIES 11

with I±(t) defined in Section 9.1 and G±(t) = I±(t) ∩ {ℓ : 0 ≤ ℓ ± τ ≤ q}.
Define C

(k)
τ = ∂

(k)
j,t,1Cτ . Then,∣∣tr[∂(3)j,t,1R(z)

]∣∣ ≤6
∣∣∣tr[R(z)C(1)

τ R(z)C(1)
τ R(z)C(1)

τ R(z)
]∣∣∣

+ 3
∣∣∣tr[R(z)C(2)

τ R(z)C(1)
τ R(z)

]∣∣∣
+ 3
∣∣∣tr[R(z)C(1)

τ R(z)C(2)
τ R(z)

]∣∣∣
=6Tτ,1(z) + 3Tτ,2(z) + 3Tτ,3(z).

Let Qτ,1(z) = R(z)C
(1)
τ R(z) and Qτ,2(z) = C

(1)
τ R(z)C

(1)
τ R(z). Since we

have that rank(C
(k)
τ ) ≤ 4k−1(q + 1) for k = 1, 2, it follows that

Tτ,1 ≤ ∥Qτ,1(z)∥∥Qτ,2(z)∥min{rank(Qτ,1(z)), rank(Qτ,2(z))}

≤ 4(q + 1)

v4
∥C(1)

τ ∥3

≤ 4(q + 1)

v4n3

( ∑
ℓ∈I+(t)

∥Aℓ∥∥Xt+τ+ℓ∥+
∑

ℓ∈I−(t)

∥Aℓ∥∥Xt−τ+ℓ∥
)
.

By similar arguments, for k = 2, 3,

Tτ,k(z) ≤
2(q + 1)

v3n2

( ∑
ℓ∈I+(t)

∥Aℓ∥∥Xt+τ+ℓ∥+
∑

ℓ∈I−(t)

∥Aℓ∥∥Xt−τ+ℓ∥
)

×
( ∑

ℓ∈G+(t)

∥Aℓ∥∥Aℓ+τ∥+
∑

ℓ∈G−(t)

∥Aℓ∥∥Aℓ−τ∥
)
.

From this, the assertion of the lemma follows.

Lemma S.15. If the assumptions of Theorem 2.1 are satisfied, then

q + 1

n2
E
[
|ZR

jt|3λ̄A
( q∑

ℓ=−q,ℓ ̸=∓τ

λ̄remℓ ∥Zt±τ+ℓ∥+ λ̄rem±τ

(
∥V 0

t ∥+ |ZR
jt|
))3]

→ 0,

under (2.2), where λ̄remℓ = (
∑q

ℓ′=|ℓ| λ̄
2
Aℓ′

)1/2. This statement holds even when

q = q(p) → ∞ such that q = O(p1/3).
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Proof. First, observe that λ̄remℓ ≤ 2(1+ |ℓ|)−1(
∑q

ℓ′=|ℓ| ℓ
′λ̄Aℓ′ ) for all |ℓ| ≤

q. Next, since (A+B)3 ≤ 3A3 + 3B3, it holds that

( q∑
ℓ=−q,ℓ ̸=∓τ

λ̄remℓ ∥Zt±τ+ℓ∥+ λ̄rem±τ

(
∥V 0

t ∥+ |ZR
jt|
))3

(S.6)

≤ 3

( q∑
ℓ=−q,ℓ ̸=∓τ

λ̄remℓ ∥Zt±τ+ℓ∥
)3

+ 9
(
λ̄rem±τ ∥V 0

t ∥
)3

+ 9
(
λ̄rem±τ |ZR

jt|
)3
.

Let a = max{E[|Z11|4],E[|WR
11+ iZ

I
11|4]}. Using that E[|ZR

jt|6] grows at most

at the same rate as pE[|ZR
jt|4] ≤ pa, it follows that

q + 1

n2
E
[
|ZR

jt|3
(
λ̄rem±τ |ZR

jt|
)3 ]

= O
( qp
n2

)
→ 0

under (2.2), where the O(· · · ) term is independent of j and t, and the third
term in (S.6) vanishes in the limit. Since E[|ZR

jt|3] ≤ (E[|ZR
jt|4])3/4 ≤ a,

and E[∥V 0
t ∥3] ≤ (E[∥V 0

t ∥4])3/4 ≤ ap3/2, for positive constants a that are
independent of j and t but may differ from one application to another, by
independence, it follows that

q + 1

n2
E
[
|ZR

jt|3
(
λ̄rem±τ ∥V 0

t ∥
)3 ]

= O

(
qp3/2

n2

)
→ 0

under (2.2). Thus the second term in (S.6) is asymptotically negligible. For
the first term, note that( q∑

ℓ=−q,ℓ ̸=∓τ

λ̄remℓ ∥Zt±τ+ℓ∥
)3

=

q∑
ℓ=−q,ℓ̸=∓τ

(
λ̄remℓ

)3 ∥Zt±τ+ℓ∥3

+ 3

q∑
ℓ=−q,ℓ̸=∓τ

q∑
ℓ′=−q,ℓ′ ̸=∓τ,ℓ′ ̸=ℓ

(
λ̄remℓ

)2 ∥Zt±τ+ℓ∥2λ̄remℓ′ ∥Zt±τ+ℓ′∥

+ 3

q∑
ℓ=−q,ℓ̸=∓τ

q∑
ℓ′=−q,ℓ′ ̸=∓τ,ℓ′ ̸=ℓ

λ̄remℓ ∥Zt±τ+ℓ∥
(
λ̄remℓ′

)2 ∥Zt±τ+ℓ′∥2

+ 6

q∑
ℓ=−q,ℓ̸=∓τ

q∑
ℓ′=−q,ℓ′ ̸=∓τℓ′ ̸=ℓ
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×
q∑

ℓ′′=−q,ℓ′′ ̸=∓τ,ℓ′′ ̸=ℓ,ℓ′′ ̸=ℓ′

λ̄remℓ ∥Zt±τ+ℓ∥λ̄remℓ′ ∥Zt±τ+ℓ′∥λ̄remℓ′′ ∥Zt±τ+ℓ′′∥.

Applying the relations E[∥Zt∥3] ≤ (E[∥Zt∥4])3/4 ≤ ap3/2, E[∥Zt∥2] ≤ ap and
E[∥Zt∥] ≤ (E[∥Zt∥2])1/2 ≤ ap1/2 for some constant a > 0, independence of
terms in the summand and the Zjt’s, and λ̄

rem
ℓ ≤ 2(1+|ℓ|)−1(

∑q
ℓ′=|ℓ| ℓ

′λ̄Aℓ′ ) ≤
2(1 + |ℓ|)−1λ̄′A, it follows that

q + 1

n2
E
[
|ZR

jt|3
( q∑

ℓ=−q,ℓ ̸=∓τ

λ̄remℓ ∥Zt±τ+ℓ∥
)3]

= O

(
(log q)3qp3/2

n2

)
→ 0

under (2.2). This completes the proof.
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