1. Proof of Theorem 2.1 in the paper "Classification algorithms

 using adaptive partitioning. For a given collection of sets \mathcal{S} with VCdimension $V=V C(\mathcal{S})$ let $f_{S}(x, y):=y\left(\chi_{S}(x)-\chi_{\Omega_{\mathcal{S}}}(x)\right), S \in \mathcal{S}$, where again $\Omega_{\mathcal{S}}$ is a best approximation to the Bayes set from \mathcal{S}. Since in these terms $\mathbb{E}\left(f_{S}\right)=\eta_{S}-\eta_{\Omega_{\mathcal{S}}}$, and $\frac{1}{n} \sum_{j=1}^{n} f_{S}\left(x_{j}, y_{j}\right)=\bar{\eta}_{S}-\bar{\eta}_{\Omega_{\mathcal{S}}}$, we need to estimate$$
\mathbb{P}\left\{\exists S \in \mathcal{S}:\left|\eta_{S}-\eta_{\Omega_{\mathcal{S}}}-\left(\bar{\eta}_{S}-\bar{\eta}_{\Omega_{\mathcal{S}}}\right)\right|>e_{n}(S)\right\},
$$

where

$$
\begin{equation*}
e_{n}(S):=e_{n}(S, r):=\sqrt{\rho_{S \Delta \Omega_{\mathcal{S}}} \varepsilon_{n}}+\varepsilon_{n}, \quad \varepsilon_{n}:=\varepsilon_{n, r}:=\frac{K \log n}{n}, \tag{1.1}
\end{equation*}
$$

where $K:=A \max \{r+1, V\}$. We want to show that the above probability is small provided A is chosen large enough.

We use the notation $\sigma_{S}^{2}:=\mathbb{E}_{\rho}\left(f_{S}^{2}\right)$, so that

$$
\begin{equation*}
\sigma_{S}^{2} \leq \rho_{S \Delta \Omega_{\mathcal{S}}} \tag{1.2}
\end{equation*}
$$

Rather than estimating the excess probability directly over all of \mathcal{S} we first decompose the collection $\left\{f_{S}: S \in \mathcal{S}\right\}$ into the following slices. For any given $k=1, \ldots, n$, we define

$$
\begin{equation*}
\mathcal{S}_{k}:=\left\{S \in \mathcal{S}: \varepsilon_{n}(k-1) \leq \sigma_{S}^{2} \leq \varepsilon_{n} k\right\}, \tag{1.3}
\end{equation*}
$$

Since $\varepsilon_{n} \geq \frac{1}{n}$, we have $\mathcal{S}=\mathcal{S}_{1} \cup \cdots \cup \mathcal{S}_{n}$. For later bounds (see (1.11) below) to remain well defined we remark that $\mathcal{S}_{k}=\emptyset$ for $k>n /(K \log n)$.

We now fix k and let

$$
\begin{equation*}
\mu:=\varepsilon_{n} \sqrt{k}, \tag{1.4}
\end{equation*}
$$

we observe that, by (1.2),

$$
\begin{align*}
& e_{n}(S)=\sqrt{\rho_{S \Delta \Omega_{\mathcal{S}} \varepsilon_{n}}}+\varepsilon_{n} \geq \sigma_{S} \sqrt{\varepsilon_{n}}+\varepsilon_{n} \\
& \geq(\sqrt{(k-1)}+1) \varepsilon_{n} \geq \mu, \quad S \in \mathcal{S}_{k} \tag{1.5}
\end{align*}
$$

which yields

$$
\begin{equation*}
\mathbb{P}\left\{\exists S \in \mathcal{S}_{k}:\left|\eta_{S}-\eta_{\Omega_{\mathcal{S}}}-\left(\bar{\eta}_{S}-\bar{\eta}_{\Omega_{\mathcal{S}}}\right)\right|>e_{n}(S)\right\} \leq \mathbb{P}\left\{\sup _{S \in \mathcal{S}_{k}}\left|\eta_{S}-\eta_{\Omega_{\mathcal{S}}}-\left(\bar{\eta}_{S}-\bar{\eta}_{\Omega_{\mathcal{S}}}\right)\right|>\mu\right\} . \tag{1.6}
\end{equation*}
$$

We define the random variable

$$
\begin{align*}
Z(\mathbf{x}) & :=\sup _{S \in \mathcal{S}_{k}}\left|\sum_{j=1}^{n}\left(f_{S}\left(x_{j}\right)-\mathbb{E}\left(f_{S}\right)\right)\right| \\
& =n \sup _{S \in \mathcal{S}_{k}}\left|\eta_{S}-\eta_{\Omega_{\mathcal{S}}}-\left(\bar{\eta}_{S}-\bar{\eta}_{\Omega_{\mathcal{S}}}\right)\right|, \quad \mathbf{x} \in X^{n}, \tag{1.7}
\end{align*}
$$

and note that

$$
\begin{equation*}
\sup _{S \in \mathcal{S}_{k}} \sigma_{S} \leq \sqrt{\varepsilon_{n} k}=\sqrt{\frac{k K \log n}{n}}=: \sigma_{k} . \tag{1.8}
\end{equation*}
$$

Since $\left\|f_{S}-\mathbb{E}\left(f_{S}\right)\right\|_{L_{\infty}} \leq 2$, Talagrand's inequality as stated in Theorem 1.3 of [1], adapted to the present situation, asserts that

$$
\begin{equation*}
\mathbb{P}\{|Z-\mathbb{E}(Z)|>t\} \leq C_{0} \exp \left\{-c_{0} t \log \left(1+\frac{2 t}{n k \varepsilon_{n}+\mathbb{E}(Z)}\right)\right\}, \tag{1.9}
\end{equation*}
$$

where c_{0}, C_{0} are absolute constants. We next bound $\mathbb{E}(Z)$ by resorting to known bounds on expected sup-norms of empirical processes. Specifically, noting that

$$
\begin{equation*}
\left\|f_{S}\right\|_{L_{\infty}} \leq 1, \quad\left|f_{S}(x, y)\right| \leq \chi_{\Omega_{\mathcal{S}}}(x) \leq 1, \quad \forall(x, y) \in X \times Y, S \in \mathcal{S} \tag{1.10}
\end{equation*}
$$

the bound from [2, (3.17),p. 46] yields

$$
\begin{equation*}
\mathbb{E}(Z) \leq n C_{1} \max \left\{\sigma_{k} \sqrt{\frac{V \log \left(C_{2} \sigma_{k}^{-1}\right)}{n}}, \frac{V \log \left(C_{2} \sigma_{k}^{-1}\right)}{n}\right\} \tag{1.11}
\end{equation*}
$$

where C_{1}, C_{2} are absolute constants. Observe that by (1.8) and (1.1), the first term on the right hand side of (1.11) exceeds the second one for each provided that $k K \log n / 2 V \geq \log \left(\frac{C_{2}^{2} n}{k K \log n}\right), k=1, \ldots,\lceil n /(K \log n)\rceil$. We now set $K=C_{3} V$ and observe that by choosing A large we can attain any value of c_{3}. So the first term of the max in (1.11) is attained by the first term for all relevant k whenever

$$
\begin{equation*}
C_{3} \geq C_{2}^{2} / V \tag{1.12}
\end{equation*}
$$

Under this condition we infer from (1.11) that

$$
\begin{equation*}
\mathbb{E}(Z) \leq n C_{1} \sqrt{k \varepsilon_{n}} \sqrt{\frac{V}{2 n} \log \left(\frac{C_{2}^{2} n}{k C_{3} V \log n}\right)}=: n B_{k} \tag{1.13}
\end{equation*}
$$

Therefore, returning to (1.9), we have for any $t \geq 2 \mathbb{E}(Z)$

$$
\begin{align*}
\mathbb{P}\{Z>t\} & \leq \mathbb{P}\{|Z-\mathbb{E}(Z)|>t / 2\} \\
& \leq C_{0} \exp \left\{-c_{0} \frac{t}{2} \log \left(1+\frac{t}{n k \varepsilon_{n}+n B_{k} .}\right)\right\} . \tag{1.14}
\end{align*}
$$

Recalling (1.4) and taking $t=n \mu=n \varepsilon_{n} \sqrt{k}$, we observe that $t \geq 2 \mathbb{E}(Z)$ holds, by (1.13), whenever $\varepsilon_{n} \sqrt{k} \geq 2 B_{k}$. In view of (1.13) and the definition of ε_{n}, this is indeed the case for all $k \leq\lceil n /(K \log n)\rceil$ whenever

$$
\begin{equation*}
\varepsilon_{n}=\frac{C_{3} V \log n}{n} \geq \frac{2 C_{1}^{2} V}{n} \log \left(\frac{C_{2}^{2} n}{C_{3} V \log n}\right) \tag{1.15}
\end{equation*}
$$

holds. This is certainly true when in addition to (1.12)

$$
\begin{equation*}
C_{3} \geq 2 C_{1}^{2} \tag{1.16}
\end{equation*}
$$

holds. Thus, (1.14) takes the form

$$
\begin{align*}
\mathbb{P}\{Z>n \mu\} & \leq \mathbb{P}\{|Z-\mathbb{E}(Z)|>n \mu / 2\} \\
7) & \leq C_{0} \exp \left\{-\left(c_{0} n \mu / 2\right) \log \left(1+\frac{\mu}{k \varepsilon_{n}+B_{k}}\right)\right\} . \tag{1.17}
\end{align*}
$$

Since, as noted earlier, $\varepsilon_{n} \sqrt{k} \geq 2 B_{k}$, the second term of the sum appearing in the denominator of the logarithm is smaller than the first one. Therefore, recalling (1.7),

$$
\begin{aligned}
\mathbb{P}\left\{\sup _{S \in \mathcal{S}_{k}}\left|\eta_{S}-\eta_{\Omega_{\mathcal{S}}}-\left(\bar{\eta}_{S}-\bar{\eta}_{\Omega_{\mathcal{S}}}\right)\right|>\mu\right\} & \leq C_{0} \exp \left\{-\left(c_{0} n \mu / 2\right) \log \left(1+\frac{\mu}{2 k \varepsilon_{n}}\right)\right\} \\
& \leq C_{0} \exp \left\{-c_{0} \frac{n \mu^{2}}{4 k \varepsilon_{n}}\right\} \\
& \leq C_{0} \exp \left\{-c_{0} \frac{n \varepsilon_{n}}{4}\right\} \leq C_{0} n^{-r-1}
\end{aligned}
$$

provided that

$$
\begin{equation*}
C_{3} \geq \frac{4(r+1)}{c_{0}} \frac{4(r+1)}{c_{0} V} . \tag{1.19}
\end{equation*}
$$

The second inequality in (1.19) is obviously true since $V \geq 1$ and the first is true if C_{3} (respectively A) is large enough. As we have already noted, every $S \in \mathcal{S}$ is in one of the \mathcal{S}_{k}. Therefore, using (1.6) and a union bound over $1 \leq k \leq\lceil n /(K \log n)\rceil \leq n$, collection the stipulations from (1.12), (1.16), (1.19), we arrive at the statement of the theorem with $\varepsilon_{n}=K \log n / n$ provided that for $K=C_{3} V$

$$
\begin{equation*}
K \geq \max \left\{\frac{4(r+1)}{c_{0}}, 2 C_{1}^{2} V, C_{2}^{2}\right\} \tag{1.20}
\end{equation*}
$$

where c_{0}, C_{1}, C_{2} are the constants from (1.11) and (1.9).

References.

[1] P. Bartlett and S. Mendelson, Empirical minimization, Prob. Theory and Related Fields 135 (2003), 311-334.
[2] V. Kolchinskii, Oracle inequalities in empirical risk minimization and sparse recovery problems, Lecture Notes in Mathematics, 2033, École d'Été de Probabilités de Saint Flour, Springer-Verlag, 2011.

