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APPENDIX A: ABOUT CONDITION (A6)

Let Bm = {B ⊂ {1, . . . , p} : |B| ≤ m,A0 ⊂ B} and Σ̂B = XT
BXB/n.

Proposition A.1. Suppose that x1, · · · ,xn are randomly sampled from
a distribution with mean 0 and covariance matrix Σ. Let Mjl(t) be the mo-
ment generating functions of x1jx1l and let M

(k)
jl be the kth derivatives of

Mjl(t). Assume that there exist δ > 0 and M > 0 such that

(A.1) sup
|t|≤δ

|M (k)
jl (t)| < M

for k = 1, 2, 3 and all (j, l) and n. If q = O(nc1) for 0 ≤ c1 < 1/2 and
log p = O(nc2) for 0 < c2 < 1 = 2c1, then

(A.2) ζmax(uq) ≤ max
|B|≤uq,A0⊂B

‖ΣB‖1 + op(1)

and

(A.3) ζmin(uq) ≤ max
|B|≤uq,A0⊂B

‖Σ−1
B ‖1 + op(1).

Proof. Since lim infn γ > 0 by Lemma 4.1 of Bickel et al. (2009), we have
uq = O(nc1).
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Let σ̂jl be the (j, l) entry of Σ̂. We will first prove that

(A.4) max
(j,l)

|σ̂jl − σjl| = op(n−1/2+c3)

for c2/2 < c3 < 1/2− c1. For any ε > 0, Theorem 9.4. of Billingsley (1995)
with (A.1) implies that

max
(j,l)

Pr
(
|σ̂jl − σjl| > ε

nc3
√

n

)
≤ 2 exp(−cε2n−2c3(1 + o(1))/2)

with some c > 0. Hence, we have

Pr

(
max
(j,l)

|σ̂jl − σjl| > ε
nc3
√

n

)
≤

∑

(j,l)

Pr
(
|σ̂jl − σjl| > ε

nc3
√

n

)

≤ 2p2 exp(−cε2n−2c3(1 + o(1))/2)
→ 0.

Now, (A.4) implies that

(A.5) max
B∈Buq

max
w∈R|B|

‖(Σ̂B − ΣB)w‖1

‖w‖1
≤ uq max

(j,l)
|σ̂jl − σjl| = op(1).

Hence,

ζmax(uq) = max
B∈Buq

max
w∈R|B|

‖Σ̂Bw‖1

‖w‖1

≤ max
B∈Buq

‖ΣB‖1 + max
B∈Buq

max
w∈R|B|

‖(Σ̂B − ΣB)w‖1

‖w‖1

= max
B∈Buq

‖ΣB‖1 + op(1),

and the proof (A.2) is done.
For (A.3), note that for any invertible r × r matrix A,

‖A‖1 =
(

min
w∈Rr

‖Aw‖1

‖w‖1

)−1

.

Since (A4
′
) implies that Σ̂B is invertible for B ∈ Buq, it suffices to show that

(A.6) min
w∈R|B|

‖Σ̂Bw‖1

‖w‖1
≥ min

w∈R|B|

‖ΣBw‖1

‖w‖1
+ op(1).

Since

min
w∈R|B|

‖Σ̂Bw‖1

‖w‖1
≥ min

w∈R|B|

‖ΣBw‖1

‖w‖1
− max

w∈R|B|

‖(Σ̂B − ΣB)w‖1

‖w‖1
,

the proof of (A.6) is done by (A.5). ¤
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APPENDIX B: PROOF OF TWO LEMMAS

Proof of Lemma 3.1. For j ∈ A0,
√

n(β̂(o)
j −β∗j ) =

√
neT

j (XT
A0

XA0)
−1XT

A0
ε =

aT
j ε, where aj =

√
nXA0(X

T
A0

XA0)
−1ej and ej is the unit vector with the

jth entry being one and all the other entries being zero. By condition (A1),
we have ||aj ||2 = neT

j (XT
A0

XA0)
−1ej ≤ [λmin(n−1XT

A0
XA0)]

−1 ≤ C−1
1 , and

P (F c
n1) ≤

∑

j∈A0

P
(|β̂(o)

j − β∗j | > b1λ
)

=
∑

j∈A0

P
(|aT

j ε| > √
nb1λ

)

≤ 2q exp[−C1b
2
1nλ2/(2σ2)],

where the last inequality uses (3.1). For j ∈ Ac
0,

1√
n
xT

(j)(y −Xβ̂
(o)

) =
1√
n
xT

(j)(In −PA0)ε = bT
j ε,

where In denotes the n×n identity matrix, PA0 is the projection matrix onto
the space spanned by the columns of XA0 , and bj = n−1/2(In − PA0)x

T
(j).

Note that In − PA0 is an idempotent matrix and the columns x(j)’s are
standardized to have L2 norm

√
n. We have ||bj ||2 = n−1xT

(j)(In−PA0)x(j) ≤
n−1||x(j)||2λmax(In−PA0) ≤ 1. Applying (3.1), we have the following upper
bound of P (F c

2n):

P (F c
2n) ≤

∑

j∈Ac
0

P
(|bT

j ε| > √
nb2λ

)

≤ 2
∑

j∈Ac
0

exp[−nb2
2λ

2/(2σ2)] ≤ 2(p− q) exp[−nb2
2λ

2/(2σ2)].

Thus P (Fn) ≥ 1−2q exp[−C1n(d∗−b1λ)2/(2σ2)]−2(p−q) exp[−nb2
2λ

2/(2σ2)].
¤

Proof of Lemma 6.1. Let X̃ = (x̃(j), j ∈ A−) be the n × |A−| matrix
whose column vectors are x̃(j), j ∈ A−. We will first show that the smallest
eigenvalue of X̃T X̃/n is greater than or equal to the smallest eigenvalue of
XT

A∪A0
XA∪A0/n, which has a lower bound κmin. For a given nonzero vector

α ∈ R|A−|, there exists γ ∈ R|A0∪A| such that

(B.1) X̃α = XA∪A0γ
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and γA− = α, since ∀ j ∈ A−, x̃(j) ∈ span(XA∪A0) and the x̃(j)’s are
orthogonal to span(XA). From (B.1), we have

αT (n−1X̃T X̃)α = γT (n−1XT
A∪A0

XA∪A0)γ ≥ κminγ
T γ ≥ κminγ

T
A−γA−

= κminα
T α,

and hence the smallest eigenvalue of n−1X̃T X̃ has the lower bound κmin.
We next prove the lemma by contradiction. Suppose n−1|x̃T

(j)ỹ| < κmin|β∗j |
for all j ∈ A−. Then

n−1‖ỹ‖2
2 = n−1|

∑

j∈A−
β∗j x̃

T
(j)ỹ| <

∑

j∈A−
κminβ

∗2
j .(B.2)

On the other, noting that ỹ = X̃β∗A− , we have

n−1‖ỹ‖2
2 = n−1β∗TA−X̃T X̃β∗A− ≥ κmin

∑

j∈A−
β∗2j ,

which contradicts (B.2). Hence, there exists l ∈ A− such that n−1|x̃T
(l)ỹ| ≥

κmin|β∗l |. Since |β∗l | ≥ d∗, the proof is done. ¤

APPENDIX C: ADDITIONAL NUMERICAL RESULTS

Example C1. We consider the simulation example case (1a) in the paper,
with n = 100, p = 8000, the (i, j)th entry of Σ equal to 0.2|i−j|, 1 ≤ i, j ≤ p.
The results are summarized in Table 1 below. The proposed new procedure
has the overall best performance, followed by MCP and HLasso, in terms of
the probability of identifying the true model and slightly larger MSE.

Example C2. We consider the simulation example in Section 3.2 of
Zhang (2010). The results of the procedures considered in the paper are
summarized in Table 2 below. The training error is the sum of squared
residuals; the parameter estimation error is the squared L2 norm of the es-
timated parameter minus the true parameter. We observe that the modified
CCCP estimator has favorable performance comparing with the alternative
estimators.
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Table 1
Example 1. We report TP (the average number of non-zero coefficients correctly

estimated to be nonzero, i.e., true positive), FP (average number of zero coefficients
incorrectly estimated to be nonzero, i.e., false positive), TM (the proportion of the true

model bing exactly identified) and MSE.

method TP FP TM MSE

Oracle 3.00 0.00 1.00 0.113
Lasso 3.00 34.08 0.00 1.637
ALasso 3.00 13.44 0.00 1.489
HLasso 2.99 0.55 0.72 0.421
SCAD 3.00 46.49 0.00 2.534
MCP(a = 1.5) 3.00 0.16 0.85 0.178
MCP(a = 3) 3.00 0.35 0.76 0.711
New 2.98 0.24 0.87 0.272

Table 2
Example 2. We report TP (the average number of non-zero coefficients correctly

estimated to be nonzero, i.e., true positive), FP (average number of zero coefficients
incorrectly estimated to be nonzero, i.e., false positive), TM (the proportion of the true

model being exactly identified), training error and estimation error.

method TP FP TM Training Error Estimation Error

Oracle 5.00 0.00 1.00 0.895 0.105
Lasso 4.83 20.60 0.00 0.577 1.021
ALasso 4.78 5.85 0.05 0.324 0.387
HLasso 4.67 0.15 0.60 0.862 0.192
SCAD 4.81 13.92 0.05 0.929 0.968
MCP(a = 1.5) 4.72 0.10 0.69 0.560 0.134
MCP (a = 3) 4.73 0.10 0.69 0.347 0.146
New 4.63 0.04 0.67 0.905 0.184
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