SUPPLEMENT TO

"A LASSO FOR HIERARCHICAL INTERACTIONS"

By Jacob Bien*, Jonathan Taylor ${ }^{\dagger}$ and Robert Tibshirani ${ }^{\ddagger}$
 Stanford University

1. Effect of constraint.

For notational simplicity, we write $r\left(\beta^{+}, \beta^{-}, \Theta\right) \in \mathbb{R}^{n}$ to denote the residuals, $y-\hat{y}\left(\beta^{+}, \beta^{-}, \Theta\right)$, as a function of the parameters. The strong Hierarchical Lasso problem is the following:

$$
\begin{aligned}
\underset{\beta^{+}, \beta^{-}, \Theta}{\operatorname{Minimize}} & \frac{1}{2}\left\|r\left(\beta^{+}, \beta^{-}, \Theta\right)\right\|^{2}+\lambda_{1} 1^{T}\left(\beta^{+}+\beta^{-}\right)+\lambda_{2} \sum_{j}\left\|\Theta_{j}\right\|_{1} \\
\text { s.t. } & \left\|\Theta_{j}\right\|_{1} \leq \beta_{j}^{+}+\beta_{j}^{-} \text {and } \beta_{j}^{+} \geq 0, \beta_{j}^{-} \geq 0 \text { for each } j, \Theta=\Theta^{T} .
\end{aligned}
$$

The Lagrangian is

$$
\begin{aligned}
L\left(\phi ; \alpha, S, \gamma^{ \pm}, U\right)= & \frac{1}{2}\left\|r\left(\beta^{+}, \beta^{-}, \Theta\right)\right\|^{2}+\lambda_{1} 1^{T}\left(\beta^{+}+\beta^{-}\right)+\lambda_{2}\langle U, \Theta\rangle \\
+ & \sum_{j} \alpha_{j}\left(U_{j}^{T} \Theta_{j}-\beta_{j}^{+}-\beta_{j}^{-}\right)-\gamma_{j}^{+} \beta_{j}^{+}-\gamma_{j}^{-} \beta_{j}^{-}+\left\langle S, \Theta-\Theta^{T}\right\rangle \\
= & \frac{1}{2}\left\|r\left(\beta^{+}, \beta^{-}, \Theta\right)\right\|^{2}+\left(\lambda_{1} 1-\alpha-\gamma^{+}\right)^{T} \beta^{+}+\left(\lambda_{1} 1-\alpha-\gamma^{-}\right)^{T} \beta^{-} \\
& +\left\langle S-S^{T}+\operatorname{diag}\left(\lambda_{2} 1+\alpha\right) U, \Theta\right\rangle
\end{aligned}
$$

where $\alpha, \gamma^{ \pm}, S, U$ are dual variables. According to the KKT conditions, ($\hat{\phi} ; \hat{\alpha}, \widehat{S}, \hat{\gamma}^{ \pm}, \widehat{U}$) is an optimal primal-dual pair if and only if

$$
\begin{aligned}
\pm x_{j}^{T} r\left(\hat{\beta}^{+}, \hat{\beta}^{-}, \widehat{\Theta}\right) & =\lambda_{1}-\hat{\alpha}_{j}-\hat{\gamma}_{j}^{ \pm} \\
\left(x_{j} * x_{k}\right)^{T} r\left(\hat{\beta}^{+}, \hat{\beta}^{-}, \widehat{\Theta}\right) / 2 & =\left(\lambda_{2}+\hat{\alpha}_{j}\right) \widehat{U}_{j k}+\widehat{S}_{j k}-\widehat{S}_{k j} \\
0=\hat{\beta}_{j}^{ \pm} \hat{\gamma}_{j}^{ \pm} & 0
\end{aligned}=\hat{\alpha}_{j}\left(\left\|\widehat{\Theta}_{j}\right\|_{1}-\hat{\beta}_{j}^{+}-\hat{\beta}_{j}^{-}\right) . \quad \begin{array}{ll}
\widehat{\Theta}=\widehat{\Theta}^{T}, \quad \hat{\beta}^{ \pm} & \geq 0, \quad\left\|\widehat{\Theta}_{j}\right\|_{1} \leq \hat{\beta}_{j}^{+}+\hat{\beta}_{j}^{-} \quad \hat{\alpha}, \hat{\gamma}^{ \pm} \geq 0 \\
\widehat{U}_{j k} & = \begin{cases}\operatorname{sign}\left(\widehat{\Theta}_{j k}\right) & \widehat{\Theta}_{j k} \neq 0 \\
\in[-1,1] & \widehat{\Theta}_{j k}=0 .\end{cases}
\end{array}
$$

[^0]Now, letting $r^{(-j)}=r\left(\hat{\beta}^{+}, \hat{\beta}^{-}, \widehat{\Theta}\right)+\left(\hat{\beta}_{j}^{+}-\hat{\beta}_{j}^{-}\right) x_{j}$ and recalling that $\left\|x_{j}\right\|^{2}=$ 1 , there are three cases to consider:

1. $\hat{\beta}_{j}^{+} \geq 0, \hat{\beta}_{j}^{-}=0$:

$$
x_{j}^{T}\left(r^{(-j)}-\hat{\beta}_{j}^{+} x_{j}\right)=\lambda_{1}-\hat{\alpha}_{j}-\hat{\gamma}_{j}^{+} \Longrightarrow \hat{\beta}_{j}^{+}=\left[x_{j}^{T} r^{(-j)}-\left(\lambda_{1}-\hat{\alpha}_{j}\right)\right]_{+}
$$

Note that this case applies when $x_{j}^{T} r^{(-j)} \geq \lambda_{1}-\hat{\alpha}_{j}$. Thus, in this case $\hat{\beta}_{j}^{+}-\hat{\beta}_{j}^{-}=\mathcal{S}\left(x_{j}^{T} r^{(-j)}, \lambda_{1}-\hat{\alpha}_{j}\right)$.
2. $\hat{\beta}_{j}^{+}=0, \hat{\beta}_{j}^{-} \geq 0$:

$$
-x_{j}^{T}\left(r^{(-j)}+\hat{\beta}_{j}^{-} x_{j}\right)=\lambda_{1}-\hat{\alpha}_{j}-\hat{\gamma}_{j}^{-} \Longrightarrow \hat{\beta}_{j}^{-}=\left[-x_{j}^{T} r^{(-j)}-\left(\lambda_{1}-\hat{\alpha}_{j}\right)\right]_{+}
$$

Note that this case applies when $x_{j}^{T} r^{(-j)} \leq-\left(\lambda_{1}-\hat{\alpha}_{j}\right)$. Thus, once again $\hat{\beta}_{j}^{+}-\hat{\beta}_{j}^{-}=\mathcal{S}\left(x_{j}^{T} r^{(-j)}, \lambda_{1}-\hat{\alpha}_{j}\right)$.
3. $\hat{\beta}_{j}^{+}>0, \hat{\beta}_{j}^{-}>0 \quad\left(\Longrightarrow \hat{\gamma}_{j}^{+}=0, \hat{\gamma}_{j}^{-}=0\right)$

$$
\pm x_{j}^{T}\left(r^{(-j)}-\left(\hat{\beta}_{j}^{+}-\hat{\beta}_{j}^{-}\right) x_{j}\right)=\lambda_{1}-\hat{\alpha}_{j} \Longrightarrow \hat{\beta}_{j}^{+}-\hat{\beta}_{j}^{-}=x_{j}^{T} r^{(-j)}
$$

Note that this case applies when $\hat{\alpha}_{j}=\lambda_{1}$, so trivially $\hat{\beta}_{j}^{+}-\hat{\beta}_{j}^{-}=$ $\mathcal{S}\left(x_{j}^{T} r^{(-j)}, \lambda_{1}-\hat{\alpha}_{j}\right)$.
Thus, we have shown that $\hat{\beta}_{j}^{+}-\hat{\beta}_{j}^{-}=\mathcal{S}\left(x_{j}^{T} r^{(-j)}, \lambda_{1}-\hat{\alpha}_{j}\right)$.
We can get rid of \hat{S} by rewriting the subgradient equation involving it as

$$
\left(x_{j} * x_{k}\right)^{T} r\left(\hat{\beta}^{+}, \hat{\beta}^{-}, \widehat{\Theta}\right)=\left(2 \lambda_{2}+\hat{\alpha}_{j}+\hat{\alpha}_{k}\right) \widehat{U}_{j k}
$$

(note that symmetry in $\widehat{\Theta}$ implies that there exists a symmetric \widehat{U}).
Now, letting $r^{(-j k)}=r\left(\hat{\beta}^{+}, \hat{\beta}^{-}, \widehat{\Theta}\right)+\left(x_{j} * x_{k}\right)\left(\widehat{\Theta}_{j k}+\widehat{\Theta}_{k j}\right) / 2$, we get
$\widehat{\Theta}_{j k}\left\|x_{j} * x_{k}\right\|^{2}=\left(x_{j} * x_{k}\right)^{T} r^{(-j k)}-\left(2 \lambda_{2}+\hat{\alpha}_{j}+\hat{\alpha}_{k}\right) \widehat{U}_{j k}=\mathcal{S}\left(\left(x_{j} * x_{k}\right)^{T} r^{(-j k)}, 2 \lambda_{2}+\hat{\alpha}_{j}+\hat{\alpha}_{k}\right)$.
This completes the proof for the Strong Hierarchical Lasso. Note that in the Weak Hierarchical Lasso case, the KKT conditions are identical except we do not have the constraint $\widehat{\Theta}=\widehat{\Theta}^{T}$ and we take $\widehat{S}=0$. Thus, the relevant condition is simply

$$
\left(x_{j} * x_{k}\right)^{T} r\left(\hat{\beta}^{+}, \hat{\beta}^{-}, \widehat{\Theta}\right)=2\left(\lambda_{2}+\hat{\alpha}_{j}\right) \widehat{U}_{j k}=2\left(\lambda_{2}+\hat{\alpha}_{k}\right) \widehat{U}_{k j} .
$$

Note that the second equality implies that $\widehat{U}_{j k} \widehat{U}_{k j} \geq 0$ (since $\hat{\alpha} \geq 0$) and that if $\left|U_{j k}\right|=1$, then $\hat{\alpha}_{j} \leq \hat{\alpha}_{k}$ and vice versa. Rearranging terms, we have

$$
\begin{aligned}
\left(\widehat{\Theta}_{j k}+\widehat{\Theta}_{k j}\right)\left\|x_{j} * x_{k}\right\|^{2} / 2 & =\left(x_{j} * x_{k}\right)^{T} r^{(-j k)}-2\left(\lambda_{2}+\hat{\alpha}_{j}\right) \widehat{U}_{j k} \\
& =\left(x_{j} * x_{k}\right)^{T} r^{(-j k)}-2\left(\lambda_{2}+\hat{\alpha}_{k}\right) \widehat{U}_{k j} .
\end{aligned}
$$

Now, $\widehat{U}_{j k} \widehat{U}_{k j} \geq 0$ implies $\widehat{\Theta}_{j k} \widehat{\Theta}_{k j} \geq 0$ which implies that $\left(\widehat{\Theta}_{j k}+\widehat{\Theta}_{k j}\right) / 2$, if nonzero, has the same sign as whichever of $\widehat{\Theta}_{j k}$ or $\widehat{\Theta}_{k j}$ (or both) is nonzero.

There are four cases:

1. $\widehat{\Theta}_{j k} \neq 0, \widehat{\Theta}_{k j}=0:$

$$
\begin{aligned}
\left(\widehat{\Theta}_{j k}+\widehat{\Theta}_{k j}\right)\left\|x_{j} * x_{k}\right\|^{2} / 2 & =\left(x_{j} * x_{k}\right)^{T} r^{(-j k)}-2\left(\lambda_{2}+\hat{\alpha}_{j}\right) \cdot \operatorname{sign}\left(\widehat{\Theta}_{j k}\right) \\
& =\left(x_{j} * x_{k}\right)^{T} r^{(-j k)}-2\left(\lambda_{2}+\hat{\alpha}_{j}\right) \cdot \operatorname{sign}\left(\widehat{\Theta}_{j k}+\widehat{\Theta}_{k j}\right)
\end{aligned}
$$

and $\hat{\alpha}_{j} \leq \hat{\alpha}_{k}$ since $\left|\widehat{U}_{j k}\right|=1$.
2. $\widehat{\Theta}_{j k}=0, \widehat{\Theta}_{k j} \neq 0$:

$$
\begin{aligned}
\left(\widehat{\Theta}_{j k}+\widehat{\Theta}_{k j}\right)\left\|x_{j} * x_{k}\right\|^{2} / 2 & =\left(x_{j} * x_{k}\right)^{T} r^{(-j k)}-2\left(\lambda_{2}+\hat{\alpha}_{k}\right) \cdot \operatorname{sign}\left(\widehat{\Theta}_{k j}\right) \\
& =\left(x_{j} * x_{k}\right)^{T} r^{(-j k)}-2\left(\lambda_{2}+\hat{\alpha}_{k}\right) \cdot \operatorname{sign}\left(\widehat{\Theta}_{j k}+\widehat{\Theta}_{k j}\right)
\end{aligned}
$$

and $\hat{\alpha}_{k} \leq \hat{\alpha}_{j}$ since $\left|\hat{U}_{k j}\right|=1$.
3. $\widehat{\Theta}_{j k} \neq 0, \widehat{\Theta}_{k j} \neq 0$:

$$
\begin{aligned}
\left(\widehat{\Theta}_{j k}+\widehat{\Theta}_{k j}\right)\left\|x_{j} * x_{k}\right\|^{2} / 2 & =\left(x_{j} * x_{k}\right)^{T} r^{(-j k)}-2\left(\lambda_{2}+\hat{\alpha}_{j}\right) \cdot \operatorname{sign}\left(\widehat{\Theta}_{j k}\right) \\
& =\left(x_{j} * x_{k}\right)^{T} r^{(-j k)}-2\left(\lambda_{2}+\hat{\alpha}_{j}\right) \cdot \operatorname{sign}\left(\widehat{\Theta}_{j k}+\widehat{\Theta}_{k j}\right)
\end{aligned}
$$

and $\hat{\alpha}_{j}=\hat{\alpha}_{k}$ since $\left|\widehat{U}_{j k}\right|=\left|\widehat{U}_{k j}\right|=1$.
4. $\widehat{\Theta}_{j k}=0, \widehat{\Theta}_{k j}=0$:

$$
\begin{aligned}
\left(\widehat{\Theta}_{j k}+\widehat{\Theta}_{k j}\right)\left\|x_{j} * x_{k}\right\|^{2} / 2 & =0 \\
& =\mathcal{S}\left(\left(x_{j} * x_{k}\right)^{T} r^{(-j k)}, 2\left(\lambda_{2}+\hat{\alpha}_{j}\right)\right) \\
& =\mathcal{S}\left(\left(x_{j} * x_{k}\right)^{T} r^{(-j k)}, 2\left(\lambda_{2}+\hat{\alpha}_{k}\right)\right)
\end{aligned}
$$

where the latter two equalities follow since $\left|\left(x_{j} * x_{k}\right)^{T} r^{(-j k)}\right| \leq 2\left(\lambda_{2}+\right.$ $\left.\hat{\alpha}_{j}\right)$ and $\left|\left(x_{j} * x_{k}\right)^{T} r^{(-j k)}\right| \leq 2\left(\lambda_{2}+\hat{\alpha}_{k}\right)$.
We can encapsulate all of this into a single, simple expression:

$$
\left(\widehat{\Theta}_{j k}+\widehat{\Theta}_{k j}\right)\left\|x_{j} * x_{k}\right\|^{2} / 2=\mathcal{S}\left(\left(x_{j} * x_{k}\right)^{T} r^{(-j k)}, 2\left(\lambda_{2}+\min \left\{\hat{\alpha}_{j}, \hat{\alpha}_{k}\right\}\right)\right) .
$$

2. Proof that (5) and (6) are equivalent. We rewrite (5) in terms of $\beta=\beta^{+}-\beta^{-}$rather than β^{-}:
$\underset{\beta_{0} \in \mathbb{R}, \beta, \beta^{+} \in \mathbb{R}^{p}, \Theta \in \mathbb{R}^{p \times p}}{\operatorname{Minimize}} q\left(\beta_{0}, \beta, \Theta\right)+\lambda 1^{T}\left(2 \beta^{+}-\beta\right)+\frac{\lambda}{2}\|\Theta\|_{1}$

$$
\text { s.t. } \Theta=\Theta^{T}, \beta^{+} \geq 0, \beta^{+} \geq \beta,\left\|\Theta_{j}\right\|_{1} \leq 2 \beta_{j}^{+}-\beta_{j}
$$

or

s.t. $\Theta=\Theta^{T}, \max \left\{\left[\beta_{j}\right]_{+},\left(\left\|\Theta_{j}\right\|_{1}+\beta_{j}\right) / 2\right\} \leq \beta_{j}^{+}$,
where $\left[\beta_{j}\right]_{+}=\max \left\{\beta_{j}, 0\right\}$ is the positive part of β_{j}. This problem is the epigraph form of
$\underset{\beta_{0} \in \mathbb{R},}{\operatorname{Minimize}} \underset{\beta, \beta^{+} \in \mathbb{R}^{p}, \Theta \in \mathbb{R}^{p \times p}}{\operatorname{Min}} q\left(\beta_{0}, \beta, \Theta\right)+\lambda \sum_{j=1}^{p}\left(\max \left\{2\left[\beta_{j}\right]_{+},\left\|\Theta_{j}\right\|_{1}+\beta_{j}\right\}-\beta_{j}\right)+\frac{\lambda}{2}\|\Theta\|_{1}$

$$
\text { s.t. } \Theta=\Theta^{T}
$$

which reduces to (6) since $2\left[\beta_{j}\right]_{+}-\beta_{j}=\left|\beta_{j}\right|$.
3. Solving the logistic regression problem. For notational simplicity, in this section we use \widetilde{X} and ϕ to denote the full data matrix and parameter combining both main effects and interactions. The binomial negative loglikelihood is

$$
\ell\left(\beta_{0}, \phi\right)=-\sum_{i=1}^{n}\left[y_{i} \log p_{i}+\left(1-y_{i}\right) \log \left(1-p_{i}\right)\right]
$$

where $p_{i}=p_{i}\left(\beta_{0}, \phi\right)=1 /\left(1+e^{-\beta_{0}-\tilde{x}_{i}^{T} \phi}\right)$. Now,

$$
\frac{\partial \ell\left(\beta_{0}, \phi\right)}{\partial \beta_{0}}=-1^{T}(y-p) \quad \nabla_{\phi} \ell\left(\beta_{0}, \phi\right)=-\widetilde{X}^{T}(y-p)
$$

Thus, to solve $\min _{\beta_{0}, \phi} \ell\left(\beta_{0}, \phi\right)+h(\phi)$, we can use generalized gradient descent, which iteratively solves

$$
\binom{\hat{\beta}_{0}^{(k)}}{\hat{\phi}^{(k)}}=\arg \min _{\beta_{0}, \phi} \frac{1}{2 t}\left\|\binom{\beta_{0}}{\phi}-\left[\binom{\hat{\beta}_{0}^{(k-1)}}{\hat{\phi}^{(k-1)}}+t\binom{1^{T}\left[y-p\left(\hat{\beta}_{0}^{(k-1)}, \hat{\phi}^{(k-1)}\right)\right]}{\widetilde{X}^{T}\left[y-p\left(\hat{\beta}_{0}^{(k-1)}, \hat{\phi}^{(k-1)}\right)\right]}\right]\right\|^{2}+h(\phi)
$$

This separates into two parts:

$$
\begin{aligned}
& \hat{\beta}_{0}^{(k)}=\hat{\beta}_{0}^{(k-1)}+t 1^{T}\left[y-p\left(\hat{\beta}_{0}^{(k-1)}, \hat{\phi}^{(k-1)}\right)\right] \\
& \hat{\phi}^{(k)}=\operatorname{Prox}_{2 t \cdot h}\left(\hat{\phi}^{(k-1)}+t \widetilde{X}^{T}\left[y-p\left(\hat{\beta}_{0}^{(k-1)}, \hat{\phi}^{(k-1)}\right)\right]\right)
\end{aligned}
$$

where $\operatorname{Prox}_{2 t \cdot h}$ refers to the minimizer of (11). Looking at Algorithm 1, we see that this algorithm is identical except that for each k we update the estimate of the intercept and that we compute the residual as $y-p\left(\hat{\beta}_{0}, \hat{\phi}\right)$. The "difficult" part of the computation is identical!
4. ADMM for Strong Hierarchical Lasso. The ADMM algorithm has three parts:

1. Update $\left(\beta_{0}, \beta^{ \pm}, \Theta\right)$ by solving

$$
\begin{aligned}
\beta_{0} \in \mathbb{R}, \operatorname{Min}_{\beta \pm \mathbb{R}^{p}, \Theta \in \in \mathbb{R}^{p \times p}}^{\operatorname{Minimize}} & q\left(\beta_{0}, \beta^{+}-\beta^{-}, \Theta\right)+\lambda 1^{T}\left(\beta^{+}+\beta^{-}\right)+\frac{\lambda}{2}\|\Theta\|_{1} \\
& +\operatorname{tr}[U(\Theta-\widehat{\Omega})]+(\rho / 2)\|\Theta-\widehat{\Omega}\|_{F}^{2} \\
& \text { s.t. } \beta_{j}^{+} \geq 0, \beta_{j}^{-} \geq 0 \text { for } j=1, \ldots, p .
\end{aligned}
$$

As with Algorithm 1, we may apply generalized gradient descent and ONEROW to solve this, but replacing the argument $\widetilde{\Theta}_{j}$ of ONEROW with $\delta \widehat{\Theta}_{j}^{(k-1)}-t Z_{(j, \cdot)}^{T} \hat{r}^{(k-1)}+\rho\left(\widehat{\Theta}_{j}^{(k-1)}-\widehat{\Omega}\right)+U$.
2. Update Ω by solving

$$
\underset{\Omega \in \mathbb{R}^{p \times p}}{\operatorname{Minimize}} \operatorname{tr}[U(\widehat{\Theta}-\Omega)]+(\rho / 2)\|\widehat{\Theta}-\Omega\|_{F}^{2} \quad \text { s.t. } \quad \Omega=\Omega^{T} .
$$

This has the analytic solution $\widehat{\Omega} \leftarrow \frac{1}{2}\left(\widehat{\Theta}+\widehat{\Theta}^{T}\right)+\frac{1}{2 \rho}\left(U+U^{T}\right)$.
3. Update $U \leftarrow U+\rho(\widehat{\Theta}-\widehat{\Omega})$:

Algorithm 2 in the paper gives the full algorithm.

Department of Biological Statistics	Department of Statistics
and Computational Biology	Stanford University
and Department of Statistical Science	Stanford, CA 94305
Cornell University	E-mail: jonathan.taylor@stanford.edu
Ithaca, NY 14853	
E-mail: jbien@cornell.edu	

Department of Health, Research, \& Policy
and Department of Statistics
Stanford University
Stanford, CA 94305
E-mAIL: tibs@stanford.edu

[^0]: *Supported in part by the Gerald J. Lieberman Fellowship
 ${ }^{\dagger}$ Supported by National Science Foundation Grant DMS-0906801 and AFOSR Grant 113039
 ${ }^{\ddagger}$ Supported by National Science Foundation Grant DMS-9971405 and National Institutes of Health Contract N01-HV-28183

