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1. Effect of constraint.
For notational simplicity, we write r(β+, β−,Θ) ∈ Rn to denote the residu-

als, y−ŷ(β+, β−,Θ), as a function of the parameters. The strong Hierarchical
Lasso problem is the following:

Minimize
β+,β−,Θ

1

2
‖r(β+, β−,Θ)‖2 + λ11T (β+ + β−) + λ2

∑
j

‖Θj‖1

s.t. ‖Θj‖1 ≤ β+
j + β−j and β+

j ≥ 0, β−j ≥ 0 for each j, Θ = ΘT .

The Lagrangian is

L(φ;α, S, γ±, U) =
1

2
‖r(β+, β−,Θ)‖2 + λ11T (β+ + β−) + λ2〈U,Θ〉

+
∑
j

αj(U
T
j Θj − β+

j − β
−
j )− γ+

j β
+
j − γ

−
j β
−
j + 〈S,Θ−ΘT 〉

=
1

2
‖r(β+, β−,Θ)‖2 + (λ11− α− γ+)Tβ+ + (λ11− α− γ−)Tβ−

+ 〈S − ST + diag(λ21 + α)U,Θ〉,

where α, γ±, S, U are dual variables. According to the KKT conditions,
(φ̂; α̂, Ŝ, γ̂±, Û) is an optimal primal-dual pair if and only if

±xTj r(β̂+, β̂−, Θ̂) = λ1 − α̂j − γ̂±j
(xj ∗ xk)T r(β̂+, β̂−, Θ̂)/2 = (λ2 + α̂j)Ûjk + Ŝjk − Ŝkj

0 = β̂±j γ̂
±
j 0 = α̂j(‖Θ̂j‖1 − β̂+

j − β̂
−
j )

Θ̂ = Θ̂T , β̂± ≥ 0, ‖Θ̂j‖1 ≤ β̂+
j + β̂−j α̂, γ̂± ≥ 0

Ûjk =

{
sign(Θ̂jk) Θ̂jk 6= 0

∈ [−1, 1] Θ̂jk = 0.
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2 J. BIEN ET AL.

Now, letting r(−j) = r(β̂+, β̂−, Θ̂)+(β̂+
j −β̂

−
j )xj and recalling that ‖xj‖2 =

1, there are three cases to consider:

1. β̂+
j ≥ 0, β̂−j = 0:

xTj (r(−j) − β̂+
j xj) = λ1 − α̂j − γ̂+

j =⇒ β̂+
j = [xTj r

(−j) − (λ1 − α̂j)]+

Note that this case applies when xTj r
(−j) ≥ λ1− α̂j . Thus, in this case

β̂+
j − β̂

−
j = S(xTj r

(−j), λ1 − α̂j).
2. β̂+

j = 0, β̂−j ≥ 0:

−xTj (r(−j) + β̂−j xj) = λ1− α̂j− γ̂−j =⇒ β̂−j = [−xTj r(−j)− (λ1− α̂j)]+

Note that this case applies when xTj r
(−j) ≤ −(λ1 − α̂j). Thus, once

again β̂+
j − β̂

−
j = S(xTj r

(−j), λ1 − α̂j).
3. β̂+

j > 0, β̂−j > 0 ( =⇒ γ̂+
j = 0, γ̂−j = 0)

±xTj (r(−j) − (β̂+
j − β̂

−
j )xj) = λ1 − α̂j =⇒ β̂+

j − β̂
−
j = xTj r

(−j).

Note that this case applies when α̂j = λ1, so trivially β̂+
j − β̂−j =

S(xTj r
(−j), λ1 − α̂j).

Thus, we have shown that β̂+
j − β̂

−
j = S(xTj r

(−j), λ1 − α̂j).
We can get rid of Ŝ by rewriting the subgradient equation involving it as

(xj ∗ xk)T r(β̂+, β̂−, Θ̂) = (2λ2 + α̂j + α̂k)Ûjk

(note that symmetry in Θ̂ implies that there exists a symmetric Û).
Now, letting r(−jk) = r(β̂+, β̂−, Θ̂) + (xj ∗ xk)(Θ̂jk + Θ̂kj)/2, we get

Θ̂jk‖xj∗xk‖2 = (xj∗xk)T r(−jk)−(2λ2+α̂j+α̂k)Ûjk = S((xj∗xk)T r(−jk), 2λ2+α̂j+α̂k).

This completes the proof for the Strong Hierarchical Lasso. Note that in the
Weak Hierarchical Lasso case, the KKT conditions are identical except we
do not have the constraint Θ̂ = Θ̂T and we take Ŝ = 0. Thus, the relevant
condition is simply

(xj ∗ xk)T r(β̂+, β̂−, Θ̂) = 2(λ2 + α̂j)Ûjk = 2(λ2 + α̂k)Ûkj .

Note that the second equality implies that ÛjkÛkj ≥ 0 (since α̂ ≥ 0) and
that if |Ujk| = 1, then α̂j ≤ α̂k and vice versa. Rearranging terms, we have

(Θ̂jk + Θ̂kj)‖xj ∗ xk‖2/2 = (xj ∗ xk)T r(−jk) − 2(λ2 + α̂j)Ûjk

= (xj ∗ xk)T r(−jk) − 2(λ2 + α̂k)Ûkj .
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Now, ÛjkÛkj ≥ 0 implies Θ̂jkΘ̂kj ≥ 0 which implies that (Θ̂jk + Θ̂kj)/2, if

nonzero, has the same sign as whichever of Θ̂jk or Θ̂kj (or both) is nonzero.
There are four cases:

1. Θ̂jk 6= 0, Θ̂kj = 0:

(Θ̂jk + Θ̂kj)‖xj ∗ xk‖2/2 = (xj ∗ xk)T r(−jk) − 2(λ2 + α̂j) · sign(Θ̂jk)

= (xj ∗ xk)T r(−jk) − 2(λ2 + α̂j) · sign(Θ̂jk + Θ̂kj)

and α̂j ≤ α̂k since |Ûjk| = 1.

2. Θ̂jk = 0, Θ̂kj 6= 0:

(Θ̂jk + Θ̂kj)‖xj ∗ xk‖2/2 = (xj ∗ xk)T r(−jk) − 2(λ2 + α̂k) · sign(Θ̂kj)

= (xj ∗ xk)T r(−jk) − 2(λ2 + α̂k) · sign(Θ̂jk + Θ̂kj)

and α̂k ≤ α̂j since |Ûkj | = 1.

3. Θ̂jk 6= 0, Θ̂kj 6= 0:

(Θ̂jk + Θ̂kj)‖xj ∗ xk‖2/2 = (xj ∗ xk)T r(−jk) − 2(λ2 + α̂j) · sign(Θ̂jk)

= (xj ∗ xk)T r(−jk) − 2(λ2 + α̂j) · sign(Θ̂jk + Θ̂kj)

and α̂j = α̂k since |Ûjk| = |Ûkj | = 1.

4. Θ̂jk = 0, Θ̂kj = 0:

(Θ̂jk + Θ̂kj)‖xj ∗ xk‖2/2 = 0

= S((xj ∗ xk)T r(−jk), 2(λ2 + α̂j))

= S((xj ∗ xk)T r(−jk), 2(λ2 + α̂k))

where the latter two equalities follow since |(xj ∗ xk)T r(−jk)| ≤ 2(λ2 +
α̂j) and |(xj ∗ xk)T r(−jk)| ≤ 2(λ2 + α̂k).

We can encapsulate all of this into a single, simple expression:

(Θ̂jk + Θ̂kj)‖xj ∗ xk‖2/2 = S((xj ∗ xk)T r(−jk), 2(λ2 + min{α̂j , α̂k})).

2. Proof that (5) and (6) are equivalent. We rewrite (5) in terms of
β = β+ − β− rather than β−:

Minimize
β0∈R, β,β+∈Rp, Θ∈Rp×p

q(β0, β,Θ) + λ1T (2β+ − β) +
λ

2
‖Θ‖1

s.t. Θ = ΘT , β+ ≥ 0, β+ ≥ β, ‖Θj‖1 ≤ 2β+
j − βj
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or

Minimize
β0∈R, β,β+∈Rp, Θ∈Rp×p

q(β0, β,Θ) + λ1T (2β+ − β) +
λ

2
‖Θ‖1

s.t. Θ = ΘT , max{[βj ]+, (‖Θj‖1 + βj)/2} ≤ β+
j ,

where [βj ]+ = max{βj , 0} is the positive part of βj . This problem is the
epigraph form of

Minimize
β0∈R, β,β+∈Rp, Θ∈Rp×p

q(β0, β,Θ) + λ

p∑
j=1

(max{2[βj ]+, ‖Θj‖1 + βj } − βj) +
λ

2
‖Θ‖1

s.t. Θ = ΘT

which reduces to (6) since 2[βj ]+ − βj = |βj |.
3. Solving the logistic regression problem. For notational simplicity,

in this section we use X̃ and φ to denote the full data matrix and parameter
combining both main effects and interactions. The binomial negative log-
likelihood is

`(β0, φ) = −
n∑
i=1

[yi log pi + (1− yi) log(1− pi)]

where pi = pi(β0, φ) = 1/(1 + e−β0−x̃
T
i φ). Now,

∂`(β0, φ)

∂β0
= −1T (y − p) ∇φ`(β0, φ) = −X̃T (y − p).

Thus, to solve minβ0,φ `(β0, φ) + h(φ), we can use generalized gradient de-
scent, which iteratively solves(
β̂

(k)
0

φ̂(k)

)
= arg min

β0,φ

1

2t

∥∥∥∥∥
(
β0

φ

)
−

[(
β̂

(k−1)
0

φ̂(k−1)

)
+ t

(
1T [y − p(β̂(k−1)

0 , φ̂(k−1))]

X̃T [y − p(β̂(k−1)
0 , φ̂(k−1))]

)]∥∥∥∥∥
2

+ h(φ).

This separates into two parts:

β̂
(k)
0 = β̂

(k−1)
0 + t1T [y − p(β̂(k−1)

0 , φ̂(k−1))]

φ̂(k) = Prox2t·h

(
φ̂(k−1) + tX̃T [y − p(β̂(k−1)

0 , φ̂(k−1))]
)
,

where Prox2t·h refers to the minimizer of (11). Looking at Algorithm 1, we
see that this algorithm is identical except that for each k we update the
estimate of the intercept and that we compute the residual as y − p(β̂0, φ̂).
The “difficult” part of the computation is identical!
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4. ADMM for Strong Hierarchical Lasso. The ADMM algorithm has
three parts:

1. Update (β0, β
±, Θ) by solving

Minimize
β0∈R, β±∈Rp, Θ∈Rp×p

q(β0, β
+ − β−,Θ) + λ1T (β+ + β−) +

λ

2
‖Θ‖1

+ tr[U(Θ− Ω̂)] + (ρ/2)‖Θ− Ω̂‖2F
s.t. β+

j ≥ 0, β−j ≥ 0 for j = 1, . . . , p.

As with Algorithm 1, we may apply generalized gradient descent and
ONEROW to solve this, but replacing the argument Θ̃j of ONEROW with

δΘ̂
(k−1)
j − tZT(j,·)r̂

(k−1) + ρ(Θ̂
(k−1)
j − Ω̂) + U .

2. Update Ω by solving

Minimize
Ω∈Rp×p

tr[U(Θ̂− Ω)] + (ρ/2)‖Θ̂− Ω‖2F s.t. Ω = ΩT .

This has the analytic solution Ω̂← 1
2(Θ̂ + Θ̂T ) + 1

2ρ(U + UT ).

3. Update U ← U + ρ(Θ̂− Ω̂):

Algorithm 2 in the paper gives the full algorithm.
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