Supplement to "Covariance Matrix Estimation for Stationary Time Series"

Han Xiao and Wei Biao Wu
Department of Statistics
5734 S. University Ave
Chicago, IL 60637
e-mail: xiao@galton.uchicago.edu
e-mail: wbwu@galton.uchicago.edu

In this document we give the proofs of Remark 5 and Lemma 9 of the main article, as well as a few remarks on Lemma 9. All the equation, theorem, lemma and remark numbers refer to the main article. The equations and remarks introduced in this document are numbered with an "S"-prefix.

Proof of Remark 5. Set $b_{T}^{\prime}=2 \sum_{k=B_{T}+1}^{T-1} \gamma_{k}$. Define

$$
g_{T, B_{T}}(\theta)=\pi^{-1} \sum_{k=B_{T}+1}^{T-1} \gamma_{k} \cos (k \theta) .
$$

Since $T^{-1} \sum_{k=1}^{B_{T}} k \gamma_{k}=O\left(B_{T} / T\right)$, if we can show that

$$
\begin{gather*}
\lim _{T \rightarrow \infty} P\left\{2 \pi \cdot \min _{\theta}\left[\hat{f}_{T, B_{T}}(\theta)-\mathbb{E} \hat{f}_{T, B_{T}}(\theta)-g_{T, B_{T}}(\theta)\right]\right. \\
\left.\leq-\sqrt{\frac{B_{T} \log B_{T}}{2 T}}-b_{T}^{\prime} / 5\right\}=1 \tag{S.1}
\end{gather*}
$$

then (31) will follow by using (30) and similar arguments as those which have led to the lower bound in Theorem 2.

Let $k_{T} \in \mathbb{N}$ be such that $A^{k_{T}-1} \leq B_{T}<A^{k_{T}}$. Define $\mathcal{D}_{T}=\{\theta \in[0, \pi]$: $\left.\cos \left(A^{k_{T}} \theta\right) \geq 1 / 2\right\}$, then $2 \pi \cdot g_{T, B_{T}}(\theta) \geq b_{T}^{\prime} / 5$ for $\theta \in \mathcal{D}_{T}$. Define $\lambda_{T, j}=$ $2 \pi j\left\lfloor\log \left(B_{T}\right)^{3}\right\rfloor / A^{k_{T}}$, and set $j_{T}=\max \left\{j: \lambda_{T, j} \leq \pi\right\}$. Using the arguments of Liu and Wu (2010), if p is sufficiently large, we have

$$
P\left[\min _{0 \leq j \leq j_{T}} \sqrt{\frac{T}{B_{T}}} \frac{f_{T, B_{T}}\left(\lambda_{T, j}\right)-\mathbb{E} f_{T, B_{T}}\left(\lambda_{T, j}\right)}{\sqrt{2} f\left(\lambda_{T, j}\right)} \leq \frac{x}{w_{T}}-z_{T}\right] \rightarrow 1-e^{-e^{x / 2}}
$$

where $w_{T}=\sqrt{2 \log j_{T}}$ and

$$
z_{T}=\left(2 \log j_{T}\right)^{1 / 2}-\left(8 \log j_{T}\right)^{-1 / 2}\left(\log \log j_{T}+\log (4 \pi)\right)
$$

Since the spectral density is bounded away from zero, i.e.

$$
\underline{f}:=\min _{\theta} f(\theta) \geq \frac{1}{2 \pi}\left(3-2 \sum_{k=0}^{\infty} A^{-\alpha k}\right) \geq \frac{1}{4 \pi}
$$

and $j_{T} \geq B_{T} /\left[2 \log \left(B_{T}\right)^{3}\right]$, it follows that

$$
P\left\{\min _{0 \leq j \leq j_{T}}\left[f_{T, B_{T}}\left(\lambda_{T, j}\right)-\mathbb{E} f_{T, B_{T}}\left(\lambda_{T, j}\right)\right] \leq-\underline{f} \cdot \sqrt{\frac{2 B_{T} \log B_{T}}{T}}\right\} \rightarrow 1
$$

Then S.1 follows by noting that $\lambda_{T, j} \in \mathcal{D}_{T}$ for $0 \leq j \leq j_{T}$.

Proof of Lemma 9. Let $w_{T}=\left\lfloor m_{T} / 2\right\rfloor$, and split Q_{T} into two parts as

$$
Q_{T, 1}=\sum_{t=1}^{T} X_{t} \sum_{s=t-B_{T}}^{t-w_{T}-1} a_{s, t} X_{s} \quad \text { and } \quad Q_{T, 2}=\sum_{t=1}^{T} X_{t} \sum_{s=t-w_{T}}^{t} a_{s, t} X_{s}
$$

where we make the convention that if a term X_{s} in the previous sum has the subscript $s \notin[1, T]$, then that term should be replaced by zero. Define $\tilde{Q}_{T, 1}$ and $\tilde{Q}_{T, 2}$ similarly. We consider $Q_{T, 2}$ first. Write

$$
\begin{aligned}
Q_{T, 2}-\tilde{Q}_{T, 2}= & \sum_{t=1}^{T}\left(X_{t}-\tilde{X}_{t}\right) \sum_{s=t-w_{T}}^{t} a_{s, t} \mathcal{H}_{s-w_{T}} X_{s}+\sum_{s=1}^{T}\left(X_{s}-\tilde{X}_{s}\right) \sum_{t=s+1}^{s+w_{T}} a_{s, t} \tilde{X}_{t} \\
& +\sum_{t=1}^{T}\left(X_{t}-\tilde{X}_{t}\right) \sum_{s=t-w_{T}}^{t} a_{s, t}\left(X_{s}-\mathcal{H}_{s-w_{T}} X_{s}\right)=: I_{T}+I I_{T}+I I I_{T}
\end{aligned}
$$

For the first term, write

$$
I_{T}=\sum_{k=m_{T}+1}^{\infty} \sum_{t=1}^{T} \mathcal{P}_{t-k} X_{t} \sum_{s=t-w_{T}}^{t} a_{s, t} \mathcal{H}_{s-w_{T}} X_{s}
$$

Since $2 w_{T} \leq m_{T}$, we know for each fixed $k>m_{T}+1$,

$$
\left(\mathcal{P}_{t-k} X_{t} \sum_{s=t-w_{T}}^{t} a_{s, t} \mathcal{H}_{s-w_{T}} X_{s}\right)_{1 \leq t \leq T}
$$

is a backward martingale difference sequence with respect to the filtration $\left(\mathcal{F}_{t-k}\right)_{1 \leq t \leq T}$. It follows that by (38)

$$
\left\|I_{T}\right\|_{p / 2} \leq \sum_{k=m_{T}+1}^{\infty} \mathcal{C}_{p / 2} \sqrt{T} \delta_{p}(k) \mathcal{C}_{p} \sqrt{w_{T} \wedge B_{T}} \Theta_{p} \leq \mathcal{C}_{p} \mathcal{C}_{p / 2} \Theta_{p} \sqrt{T B_{T}} \Theta_{p}\left(m_{T}\right)
$$

Similarly we have $\left\|I I_{T}\right\|_{p / 2} \leq C \sqrt{T B_{T}} \Theta_{p}\left(m_{T}\right)$. For the third term, using the arguments of Proposition 1 of Liu and Wu (2010), we have

$$
\left\|I I I_{T}-\mathbb{E} I I I_{T}\right\|_{p / 2} \leq 2 \sqrt{2} \mathcal{C}_{p / 2} \mathcal{C}_{p} \sqrt{T B_{T}}\left[\Theta_{p}\left(w_{T}\right) \Delta_{p}\left(m_{T}\right)+\Theta_{p}\left(m_{T}\right) \Delta_{p}\left(w_{T}\right)\right]
$$

Now we consider $Q_{T, 1}$. Observe that $Q_{T, 1}$ is nonzero only when $B_{T}>w_{T}$. Write

$$
\begin{aligned}
Q_{T, 1}-\tilde{Q}_{T, 1}= & \sum_{t=1}^{T}\left(X_{t}-\tilde{X}_{t}\right) \sum_{s=t-B_{T}}^{t-w_{T}-1} a_{s, t} \tilde{X}_{s}+\sum_{s=1}^{T}\left(X_{s}-\tilde{X}_{s}\right) \sum_{t=s+w_{T}+1}^{s+B_{T}} a_{s, t} \tilde{X}_{t} \\
& +\sum_{t=1}^{T}\left(X_{t}-\tilde{X}_{t}\right) \sum_{s=t-B_{T}}^{t-w_{T}-1} a_{s, t}\left(X_{s}-\tilde{X}_{s}\right)=: I V_{T}+V_{T}+V I_{T}
\end{aligned}
$$

Similarly as $I I_{T}$ and $I I I_{T}$, we have $\left\|V_{T}\right\|_{p / 2} \leq \mathcal{C}_{p / 2} \mathcal{C}_{p} \Theta_{p} \sqrt{T B_{T}} \Theta_{p}\left(m_{T}\right)$ and

$$
\left\|V I_{T}-\mathbb{E}\left(V I_{T}\right)\right\|_{p / 2} \leq 4 \mathcal{C}_{p / 2} \mathcal{C}_{p} \sqrt{T B_{T}} \Theta_{p}\left(m_{T}\right) \Delta_{p}\left(m_{T}\right)
$$

Write the term $I V_{T}$ as

$$
I V_{T}=\sum_{k=m_{T}+1}^{\infty} \sum_{l=0}^{m_{T}} \sum_{t=1}^{T} \mathcal{P}_{t-k} X_{t} \sum_{s=t-B_{T}}^{t-w_{T}-1} a_{s, t} \mathcal{P}_{s-l} X_{s}
$$

For each fixed pair (k, l), if we remove the the pair (s, t) such that $t-k=s-l$ from the sum

$$
\sum_{t=1}^{T} \mathcal{P}_{t-k} X_{t} \sum_{s=t-B_{T}}^{t-w_{T}-1} a_{s, t} \mathcal{P}_{s-l} X_{s}
$$

then by (38)

$$
\left\|\sum_{t=1}^{T} \mathcal{P}_{t-k} X_{t} \sum_{t-B_{T} \leq s<t-w_{T}, s-l \neq t-k} a_{s, t} \mathcal{P}_{s-l} X_{s}\right\|_{p / 2} \leq 2 \mathcal{C}_{p / 2} \mathcal{C}_{p} \sqrt{T B_{T}} \delta_{p}(k) \delta_{p}(l)
$$

Therefore, it remains to deal with the term $\sum_{s=1}^{T} \mathcal{P}_{s-l} X_{s} \sum_{t \in \Lambda_{s}} a_{s, t} \mathcal{P}_{s-l} X_{t}$ for $0 \leq l \leq m_{T}$, where $\Lambda_{s}=\left[s+1+\left(w_{T} \vee\left(m_{T}-l\right)\right),\left(s+B_{T}\right) \wedge T\right]$. Since the sequence $\left(\mathcal{P}_{s-l} X_{s} \sum_{t \in \Lambda_{s}} a_{s, t} \mathcal{P}_{s-l} X_{t}\right)$ indexed by s is $\left(4 B_{T}\right)$-dependent, and

$$
\left\|\mathbb{E}_{0}\left(\sum_{s=1}^{4 B_{T}} \mathcal{P}_{s-l} X_{s} \sum_{t \in \Lambda_{s}} a_{s, t} \mathcal{P}_{s-l} X_{t}\right)\right\|_{p / 2} \leq 2 \cdot 4 B_{T} \cdot \delta_{p}(l) \cdot \Theta_{p}\left(m_{T}\right)
$$

we have by (38)

$$
\left\|\mathbb{E}_{0}\left(\sum_{s=1}^{T} \mathcal{P}_{s-l} X_{s} \sum_{t=s+w_{T}+1}^{s+B_{T}} a_{s, t} \mathcal{P}_{s-l} X_{t}\right)\right\|_{p / 2} \leq 4 \sqrt{2} \mathcal{C}_{p / 2} \sqrt{T B_{T}} \delta_{p}(l) \Theta_{p}\left(m_{T}\right)
$$

Putting these pieces together, the proof is complete.

Remark S.1. If $\Theta_{p}(m) \asymp m^{-\alpha}$ for some $\alpha>0$, then the bound becomes $C_{p} \sqrt{T B_{T}} m_{T}^{-\alpha}$. If $m_{T}=O\left(B_{T}\right)$, then this order of magnitude is optimal here, and cannot be improved in general. For example, consider the linear process $X_{t}=\sum_{s=0}^{\infty} a_{s} \epsilon_{t-s}$ and the quadratic form $Q_{T}=\sum_{1 \leq s<t \leq T} X_{t} X_{s} \mathbf{1}_{0<t-s \leq B_{T}}$, where $a_{s}=s^{-(1+\alpha)}$, and ϵ_{s} 's are iid standard normal random variables. Observe that $Q_{T}-\tilde{Q}_{T}$ is also a quadratic form of ϵ_{S} 's which can be written as

$$
Q_{T}-\tilde{Q}_{T}=\sum_{-\infty<k \leq l \leq T} b_{k, l} \epsilon_{k} \epsilon_{l}
$$

which implies that

$$
\left\|\mathbb{E}_{0} Q_{T}-\mathbb{E}_{0} \tilde{Q}_{T}\right\|^{2}=2 \sum_{-\infty}^{T} b_{k, k}^{2}+\sum_{-\infty<k<l \leq T} b_{k, l}^{2}
$$

Elementary but tedious calculations show that for $B_{T}<t<T-B_{T}$ and $\left\lfloor B_{T} / 3\right\rfloor \leq k \leq\left\lfloor 2 B_{T} / 3\right\rfloor$, we have

$$
b_{t, t-\left(m_{T}+1\right)-k} \geq \sum_{k=0}^{\left\lfloor B_{T} / 3\right\rfloor} a_{k} \cdot \sum_{k=1}^{\left\lfloor B_{T} / 3\right\rfloor} a_{m_{T}+k} \geq C m_{T}^{-\alpha} .
$$

It follows that $\left\|\mathbb{E}_{0} Q_{T}-\mathbb{E}_{0} \tilde{Q}_{T}\right\| \geq C \sqrt{T B_{T}} m_{T}^{-\alpha}$, namely the order of magnitude is achieved.

Remark S.2. A similar bound was obtained by Liu and Wu (2010):

$$
\left\|\mathbb{E}_{0} Q_{T}-\mathbb{E}_{0} \tilde{Q}_{T}\right\|_{p / 2} \leq C_{p} \sqrt{T B_{T}} \Delta_{p}\left(m_{T}\right)
$$

In term of the order of magnitude, our result is better, because $\Theta_{p}(m) \leq \Delta_{p}(m)$. To be more precise, consider the condition $\Theta_{p}(m)=O\left(m^{-\alpha}\right)$ for some $\alpha>0$, which is the assumption we use for Theorem 4. Since $\Psi_{p}(m) \leq \Theta_{p}(m)$, we have $\Psi_{p}(m)=O\left(m^{-\alpha}\right)$. Conversely, if $\Psi_{p}(m)=O\left(m^{-\alpha+1 / 2}\right)$, then $\Theta_{p}(m)=$ $O\left(m^{-\alpha}\right)$. A proof was given by Wu and Zhao 2008). Therefore, when using both $\Theta_{p}(m)=O\left(m^{-\alpha}\right)$ and $\Psi_{p}(m)=O\left(m^{-\beta}\right)$ as assumptions, we necessarily assume $\alpha>0$ and $\alpha \leq \beta \leq \alpha+1 / 2$ to avoid redundancy. Under these two conditions we have

$$
\Delta_{p}(m) \leq \sum_{k=0}^{\left\lfloor m^{\beta /(1+\alpha)}\right\rfloor} \min \left\{\delta_{p}(k), C m^{-\beta}\right\}+\Theta_{m}\left(\left\lfloor m^{\beta /(1+\alpha)}\right\rfloor+1\right) \leq C m^{-\alpha \beta /(1+\alpha)}
$$

which implies that $\Delta_{p}(m)=O\left(m^{-\alpha \beta /(1+\alpha)}\right)$. We shall give an example to show that the order cannot be improved. Define

$$
\delta_{p}(k)= \begin{cases}k^{-(1+\alpha)}+2^{-\beta n} & \text { if } k=2^{n} \text { for some } n \in \mathbb{N} \\ k^{-(1+\alpha)} & \text { otherwise }\end{cases}
$$

It is easily seen that $\Theta_{p}(m) \asymp m^{-\alpha}$ and $\Psi_{p}(m) \asymp m^{-\beta}$. Therefore,

$$
\begin{aligned}
\Delta_{p}\left(2^{n}\right) & \geq \sum_{k=0}^{\infty} \min \left\{k^{-(1+\alpha)}, 2^{-\beta n}\right\} \\
& =\sum_{k=0}^{\left\lfloor 2^{\beta n /(1+\alpha)}\right\rfloor} \min \left\{k^{-(1+\alpha)}, 2^{-\beta n}\right\}+\Theta_{p}\left(\left\lfloor 2^{\beta n /(1+\alpha)}\right\rfloor+1\right) \\
& \geq C\left(2^{n}\right)^{-\alpha \beta /(1+\alpha)}
\end{aligned}
$$

In particular, if we only put the condition on $\Theta_{p}(m)$, then the largest exponent γ such that $\Delta_{p}(m)=O\left(m^{-\gamma}\right)$ for any sequence satisfying $\Theta_{p}(m)=O\left(m^{-\alpha}\right)$ is $\gamma=\alpha^{2} /(1+\alpha)$.

References

Liu, W. and Wu, W. B. (2010). Asymptotics of spectral density estimates. Econometric Theory 26 1218-1245.
Wu, W. B. and Zhao, Z. (2008). Moderate deviations for stationary processes. Statist. Sinica 18 769-782.

