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APPENDIX B: PROOF OF THEOREM 5.3

Proof. First of all, to simplify our notation, we write Ω as a vector in the following way:

divide the indexes of Ω0 = {(ω0ij), i, j = 1, · · · , p} to two parts: A = {(i, j), ω0ij 6= 0 & i ≤ j}

and B = {(i, j), ω0ij = 0 & i ≤ j}. Denoting Ω in a vector format, we write β = (β1,β2), where

β1 = (ωij , (i, j) ∈ A) and β2 = (ωij , (i, j) ∈ B). As a result, β has the length of d = p(p+ 1)/2.

In this way, Ω can be considered as a function of β: Ω = Ω(β). Denote the true value of β as

β0 = (β10,β20) = (β10,0), where the nonzero part β10 has the length of s.

In the adaptive LASSO penalty setting, we define

Q(β) = L(β)− nλn(|β̃|−γ)T |β|,

where L(β) =
∑n
i=1 li(Ω(β)) = n

2 log |Ω|−n
2 log(2π)−

∑n
i=1

1
2x

T
i Ωxi is the log-likelihood function

and β̃ = (β̃1, β̃2, · · · , β̃d) is a an-consistent estimator of β, i.e., an(β̃−β0) = Op(1). In addition,

we denote I(β) = E{[ ∂∂β l(β)][ ∂∂β l(β)]T } be the Fisher information matrix.

Let τn = n−1/2, we want to show that for any given ε > 0, there exists a large constant C

such that

(B.1) P

{
sup
‖u‖=C

Q(β0 + τnu) < Q(β0)

}
≥ 1− ε

This implies that with probability at least 1 − ε that there exists a local maximum in the ball

{β0 + τnu : ‖u‖ ≤ C}. Hence there exists a local maximizer such that ‖β̂ − β0‖ = Op(τn).
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From the fact that only the first s elements of β0 are non-zero, we have

Dn(u) = Q(β0 + τnu)−Q(β0)

≤ L(β0 + τnu)− L(β0)− nλn
s∑
j=1

|β̃j |−γ(|βj0 + τnu| − |βj0|)

= τnL
′(β0)Tu− 1

2
nτ2

nu
T I(β0)u{1 + op(1)} − nλnτn

s∑
j=1

|β̃j |−γsgn(βj0)uj

= n−1/2L′(β0)Tu− 1
2
uT I(β0)u{1 + op(1)} − n1/2λn

s∑
j=1

|β̃j |−γsgn(βj0)uj(B.2)

Note that n−1/2L′(β0) = Op(1). Thus the first term on the right hand side of (B.2) is on the

order Op(1). For the third term of (B.2), we have |β̃j |−γ = Op(1) for j = 1, · · · , s since β̃ is

a consistent estimator of β0 and βj0 6= 0. Thus, the third term is also on the order of Op(1)

from the assumption that n1/2λn = Op(1). By choosing a sufficiently large C, the second term

dominates the first term and the third term uniformly in ‖u‖ = C. Then (B.1) holds.

Now, we want to show that with probability tending to 1 as n → ∞, for any β1 satisfying

β1 − β10 = Op(n−1/2) and any constant C,

(B.3) Q

{(
β1

0

)}
= max
‖β2‖≤Cn−1/2

Q

{(
β1

β2

)}
.

Denote β∗ =
(β1

0

)
, and β =

(β1
β2

)
= β∗+ n−1/2u, where ‖u‖ ≤ C and uj = 0 for all j = 1, · · · , s.

Follow the same reasoning before,

Q(β∗ + n−1/2u)−Q(β∗)

= n−1/2L′(β∗)Tu− 1
2
uT I(β∗)u{1 + op(1)} − n1/2λn

d∑
j=s+1

|β̃j |−γ |uj |(B.4)

Since C is a fixed constant, the second term on the right hand side of (B.4) will be at the

order of Op(1). For j = s + 1, · · · , d, we have βj0 = 0. Again, by an consistency of β̃, we have

an|β̃j | = Op(1) as n → ∞. Thus, the order of the third term of (B.4) is n1/2λna
γ
n → ∞ as

n → ∞ by our assumption. Hence (B.3) holds. This completes the proof of the sparsity part.

The asymptotic normality of the estimator can be derived from Fan and Li (2001).
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