SUPPLEMENTARY MATERIAL FOR "NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES"

By Jianqing Fan, Yang Feng and Yichao Wu

APPENDIX B: PROOF OF THEOREM 5.3

PROOF. First of all, to simplify our notation, we write Ω as a vector in the following way: divide the indexes of $\Omega_0 = \{(\omega_{0ij}), i, j = 1, \dots, p\}$ to two parts: $\mathcal{A} = \{(i, j), \omega_{0ij} \neq 0 \& i \leq j\}$ and $\mathcal{B} = \{(i, j), \omega_{0ij} = 0 \& i \leq j\}$. Denoting Ω in a vector format, we write $\boldsymbol{\beta} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2)$, where $\boldsymbol{\beta}_1 = (\omega_{ij}, (i, j) \in \mathcal{A})$ and $\boldsymbol{\beta}_2 = (\omega_{ij}, (i, j) \in \mathcal{B})$. As a result, $\boldsymbol{\beta}$ has the length of d = p(p+1)/2. In this way, Ω can be considered as a function of $\boldsymbol{\beta}$: $\Omega = \Omega(\boldsymbol{\beta})$. Denote the true value of $\boldsymbol{\beta}$ as $\boldsymbol{\beta}_0 = (\boldsymbol{\beta}_{10}, \boldsymbol{\beta}_{20}) = (\boldsymbol{\beta}_{10}, \mathbf{0})$, where the nonzero part $\boldsymbol{\beta}_{10}$ has the length of s.

In the adaptive LASSO penalty setting, we define

$$Q(\boldsymbol{\beta}) = L(\boldsymbol{\beta}) - n\lambda_n(|\tilde{\boldsymbol{\beta}}|^{-\gamma})^T |\boldsymbol{\beta}|,$$

where $L(\boldsymbol{\beta}) = \sum_{i=1}^{n} l_i(\boldsymbol{\Omega}(\boldsymbol{\beta})) = \frac{n}{2} \log |\boldsymbol{\Omega}| - \frac{n}{2} \log(2\pi) - \sum_{i=1}^{n} \frac{1}{2} \boldsymbol{x}_i^T \boldsymbol{\Omega} \boldsymbol{x}_i$ is the log-likelihood function and $\tilde{\boldsymbol{\beta}} = (\tilde{\beta}_1, \tilde{\beta}_2, \dots, \tilde{\beta}_d)$ is a a_n -consistent estimator of $\boldsymbol{\beta}$, i.e., $a_n(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) = O_p(1)$. In addition, we denote $I(\boldsymbol{\beta}) = E\{[\frac{\partial}{\partial \boldsymbol{\beta}} l(\boldsymbol{\beta})][\frac{\partial}{\partial \boldsymbol{\beta}} l(\boldsymbol{\beta})]^T\}$ be the Fisher information matrix.

Let $\tau_n = n^{-1/2}$, we want to show that for any given $\epsilon > 0$, there exists a large constant C such that

(B.1)
$$P\left\{\sup_{\|\boldsymbol{u}\|=C} Q(\boldsymbol{\beta}_0 + \tau_n \boldsymbol{u}) < Q(\boldsymbol{\beta}_0)\right\} \ge 1 - \epsilon$$

This implies that with probability at least $1 - \epsilon$ that there exists a local maximum in the ball $\{\beta_0 + \tau_n \boldsymbol{u} : \|\boldsymbol{u}\| \leq C\}$. Hence there exists a local maximizer such that $\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0\| = O_p(\tau_n)$.

From the fact that only the first s elements of β_0 are non-zero, we have

$$D_{n}(\boldsymbol{u}) = Q(\boldsymbol{\beta}_{0} + \tau_{n}\boldsymbol{u}) - Q(\boldsymbol{\beta}_{0})$$

$$\leq L(\boldsymbol{\beta}_{0} + \tau_{n}\boldsymbol{u}) - L(\boldsymbol{\beta}_{0}) - n\lambda_{n}\sum_{j=1}^{s} |\tilde{\beta}_{j}|^{-\gamma}(|\beta_{j0} + \tau_{n}\boldsymbol{u}| - |\beta_{j0}|)$$

$$= \tau_{n}L'(\boldsymbol{\beta}_{0})^{T}\boldsymbol{u} - \frac{1}{2}n\tau_{n}^{2}\boldsymbol{u}^{T}\boldsymbol{I}(\boldsymbol{\beta}_{0})\boldsymbol{u}\{1 + o_{p}(1)\} - n\lambda_{n}\tau_{n}\sum_{j=1}^{s} |\tilde{\beta}_{j}|^{-\gamma}\operatorname{sgn}(\beta_{j0})u_{j}$$

$$= n^{-1/2}L'(\boldsymbol{\beta}_{0})^{T}\boldsymbol{u} - \frac{1}{2}\boldsymbol{u}^{T}\boldsymbol{I}(\boldsymbol{\beta}_{0})\boldsymbol{u}\{1 + o_{p}(1)\} - n^{1/2}\lambda_{n}\sum_{j=1}^{s} |\tilde{\beta}_{j}|^{-\gamma}\operatorname{sgn}(\beta_{j0})u_{j}$$
(B.2)

Note that $n^{-1/2}L'(\beta_0) = O_p(1)$. Thus the first term on the right hand side of (B.2) is on the order $O_p(1)$. For the third term of (B.2), we have $|\tilde{\beta}_j|^{-\gamma} = O_p(1)$ for $j = 1, \dots, s$ since $\tilde{\beta}$ is a consistent estimator of β_0 and $\beta_{j0} \neq 0$. Thus, the third term is also on the order of $O_p(1)$ from the assumption that $n^{1/2}\lambda_n = O_p(1)$. By choosing a sufficiently large C, the second term dominates the first term and the third term uniformly in ||u|| = C. Then (B.1) holds.

Now, we want to show that with probability tending to 1 as $n \to \infty$, for any β_1 satisfying $\beta_1 - \beta_{10} = O_p(n^{-1/2})$ and any constant C,

(B.3)
$$Q\left\{ \begin{pmatrix} \boldsymbol{\beta}_1 \\ \mathbf{0} \end{pmatrix} \right\} = \max_{\|\boldsymbol{\beta}_2\| \le Cn^{-1/2}} Q\left\{ \begin{pmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{pmatrix} \right\}.$$

Denote $\boldsymbol{\beta}^* = \begin{pmatrix} \boldsymbol{\beta}_1 \\ \mathbf{0} \end{pmatrix}$, and $\boldsymbol{\beta} = \begin{pmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{pmatrix} = \boldsymbol{\beta}^* + n^{-1/2}\boldsymbol{u}$, where $\|\boldsymbol{u}\| \leq C$ and $u_j = 0$ for all $j = 1, \dots, s$. Follow the same reasoning before,

$$Q(\boldsymbol{\beta}^* + n^{-1/2}\boldsymbol{u}) - Q(\boldsymbol{\beta}^*)$$
(B.4)
$$= n^{-1/2}L'(\boldsymbol{\beta}^*)^T\boldsymbol{u} - \frac{1}{2}\boldsymbol{u}^T\boldsymbol{I}(\boldsymbol{\beta}^*)\boldsymbol{u}\{1 + o_p(1)\} - n^{1/2}\lambda_n \sum_{j=n+1}^{d} |\tilde{\beta}_j|^{-\gamma}|u_j|$$

Since C is a fixed constant, the second term on the right hand side of (B.4) will be at the order of $O_p(1)$. For $j=s+1,\cdots,d$, we have $\beta_{j0}=0$. Again, by a_n consistency of $\tilde{\beta}$, we have $a_n|\tilde{\beta}_j|=O_p(1)$ as $n\to\infty$. Thus, the order of the third term of (B.4) is $n^{1/2}\lambda_n a_n^{\gamma}\to\infty$ as $n\to\infty$ by our assumption. Hence (B.3) holds. This completes the proof of the sparsity part. The asymptotic normality of the estimator can be derived from Fan and Li (2001).

REFERENCES

FAN, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. *Journal* of the American Statistical Association, **96** 1348–1360.