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SUPPLEMENT TO “CONTROLLING THE FALSE DISCOVERY
RATE VIA KNOCKOFFS”

BY RINA FOYGEL BARBER‡,∗ AND EMMANUEL J. CANDÈS§,†

University of Chicago∗ and Stanford University†

APPENDIX A: PROOFS

This section gives a proof of Theorem 3 for both procedures. We work withK =
{1, . . . ,m} as the proof for an arbitrary K ( {1, . . . ,m} is identical. Throughout
this section, we assume the conditions of Theorem 3, namely that the null p-values
are iid, satisfy pj ≥ Unif[0, 1], and are independent from the non-nulls.

A.1. Martingales. In [1], the authors offered a new and elegant proof of the
FDR controlling property of the BHq procedure based on a martingale argument.
While our argument is different, it also uses martingale theory.

LEMMA 1 (Martingale process). For k = m,m − 1, . . . , 1, 0, put V +(k) =
#{null j : 1 ≤ j ≤ k, pj ≤ c} and V −(k) = #{null j : 1 ≤ j ≤ k, pj > c} with
the convention that V ±(0) = 0. Let Fk be the filtration defined by knowing all the
non-null p-values, as well as V ±(k′) for all k′ ≥ k. Then the process

M(k) =
V +(k)

1 + V −(k)

is a super-martingale running backward in time with respect to Fk. For any fixed
q, k̂ defined as in either sequential testing procedure is a stopping time, and as a
consequence

(A.1) E

[
#{null j ≤ k̂ : pj ≤ c}

1 + #{null j ≤ k̂ : pj > c}

]
≤ c

1− c
.

PROOF. Note that the filtration Fk informs us about whether k is null or not,
since the non-null process is known exactly. On the one hand, if k is non-null, then
M(k − 1) =M(k). On the other, if k is null, then

M(k − 1) =
V +(k)− I

1 + V −(k)− (1− I)
=

V +(k)− I
(V −(k) + I) ∨ 1

, where I = 1pk≤c.
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The event Fk gives no further knowledge about I , and it follows from the ex-
changeability property of the nulls—they are i.i.d. and thus exchangeable—that
P {I = 1} = V +(k)/(V +(k) + V −(k)). Thus in the case where k is null,

E [M(k − 1)|Fk] =
1

V +(k) + V −(k)

[
V+(k)

V +(k)− 1

V −(k) + 1
+ V −(k)

V +(k)

V −(k) ∨ 1

]
=

{
V +(k)

1+V −(k) , V −(k) > 0,

V +(k)− 1, V −(k) = 0.

In summary,

E [M(k − 1)|Fk] =


M(k), k non null,
M(k), k null and V −(k) > 0,

M(k)− 1, k null and V −(k) = 0,

which shows that E [M(k − 1)|Fk] ≤M(k). This establishes the super-martingale
property.

Now k̂ is a stopping time with respect to the backward filtration {Fk} since
{k̂ ≥ k} ∈ Fk. The last assertion (A.1) follows from the optimal stopping time
theorem for super-martingales which states that

EM(k̂) ≤ EM(m) = E
[

#{null j : pj ≤ c}
1 + #{null j : pj > c}

]
.

Set X = #{null j : pj ≤ c}. The independence of the nulls together with the

stochastic dominance pj
d
≥Unif[0, 1] valid for all nulls imply thatX

d
≤Binomial(N, c),

where Y ∼ Binomial(N, c), and N is the total number of nulls. Further, since the
function x 7→ x/(1 +N − x) is nondecreasing, we have

E
[

X

1 +N −X

]
≤ E

[
Y

1 +N − Y

]
≤ c

1− c
,
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where the last step is proved as follows:

E
[

Y

1 +N − Y

]
= E

[
Y

1 +N − Y
· 1Y >0

]
=

N∑
i=1

P {Y = i} · i

1 +N − i

=

N∑
i=1

ci(1− c)N−i · N !

i!(N − i)!
· i

1 +N − i

=
c

1− c

N∑
i=1

ci−1(1− c)N−i+1 · N !

(i− 1)!(N − i+ 1)!

=
c

1− c

N∑
i=1

P {Y = i− 1}

≤ c

1− c
.

The proof of Lemma 4 establishes that E [M(k − 1)|Fk] =M(k) unless V −(k) =
0. If V −(k̂) > 0, then we have not yet reached the part of the supermartingale
where the expectation may decrease. In turn, this means that if there are several
false positives in our set of discoveries, then V −(k̂) will probably be nonzero.
Therefore, we can expect to have E

[
M(k̂)

]
≈ E [M(m)] ≈ 1, except perhaps in

cases when there are very few discoveries.

A.2. Proof of Theorem 3 for Selective SeqStep. Recall that V = #{null j ≤
k̂ : pj ≤ c} and R = #{j ≤ k̂ : pj ≤ c}. For Selective SeqStep+, write k̂ = k̂1,
and proceed as in Section 2.4:

E
[

V

R ∨ 1

]
= E

[
V

R ∨ 1
· 1k̂>0

]
= E

[
#{null j ≤ k̂ : pj ≤ c}

1 + #{null j ≤ k̂ : pj > c}
·

(
1 + #{null j ≤ k̂ : pj > c}
#{j ≤ k̂ : pj ≤ c} ∨ 1

· 1k̂>0

)]

≤ E

[
#{null j ≤ k̂ : pj ≤ c}

1 + #{null j ≤ k̂ : pj > c}

]
· 1− c

c
· q

≤ q,

where the first inequality applies the definition of k̂ to bound the quantity in paren-
theses, and the second inequality applies (A.1) from Lemma 1. Similarly, consider
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Selective SeqStep and set k̂ = k̂0. Then

E

[
V

c
1−cq

−1 +R

]
= E

[
#{null j ≤ k̂ : pj ≤ c}

1 + #{null j ≤ k̂ : pj > c}
· 1 + #{null j ≤ k̂ : pj > c}

c
1−cq

−1 +R

]

≤ E

[
#{null j ≤ k̂ : pj ≤ c}

1 + #{null j ≤ k̂ : pj > c}
·
1 + 1−c

c · qR
c

1−c + qR

]
· q

= E

[
#{null j ≤ k̂ : pj ≤ c}

1 + #{null j ≤ k̂ : pj > c}

]
· 1− c

c
· q

≤ q,

where the first inequality applies the definition of k̂, which gives #{null j ≤ k̂ :
pj > c} ≤ 1−c

c · qR, and the last inequality applies Lemma 1. This proves Theo-
rems 1 and 2.

A.3. Proof of Theorem 3 for SeqStep. Consider SeqStep+ first and set k̂ =
k̂1. Then with

E
[

V

R ∨ 1

]
= E

[
V

R ∨ 1
· 1k̂>0

]
= E

[
#{null j ≤ k̂}

k̂ ∨ 1
· 1k̂>0

]
,

FDP+(k̂) =
1 +#{null j ≤ k̂}

1 + k̂
,

we have

E
[

V

R ∨ 1

]
≤ E

[
1 + #{null j ≤ k̂}

1 + k̂
· 1k̂>0

]

= E

[
#{null j ≤ k̂ : pj ≤ c}

1 + k̂
· 1k̂>0

]
+ E

[
1 + #{null j ≤ k̂ : pj > c}

1 + k̂
· 1k̂>0

]

= E

[
#{null j ≤ k̂ : pj ≤ c}

1 + #{null j ≤ k̂ : pj > c}
· FDP+(k̂) · 1k̂>0

]
+ E

[
FDP+(k̂) · 1k̂>0

]
≤ E

[
#{null j ≤ k̂ : pj ≤ c}

1 + #{null j ≤ k̂ : pj > c}

]
· (1− c) · q + (1− c) · q

≤ c

1− c
· (1− c) · q + (1− c) · q = q,
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where again the next-to-last inequality applies the definition of k̂ and the last in-
equality applies Lemma 1. Moving to SeqStep and setting k̂ = k̂0, write

E

[
V

1
1−cq

−1 +R

]
= E

[
#{null j ≤ k̂}

1
1−cq

−1 + k̂

]

= E

[
#{null j ≤ k̂ : pj ≤ c}

1
1−cq

−1 + k̂

]
+ E

[
#{null j ≤ k̂ : pj > c}

1
1−cq

−1 + k̂

]

= E

[
#{null j ≤ k̂ : pj ≤ c}

1 + #{null j ≤ k̂ : pj > c}
· 1 + #{null j ≤ k̂ : pj > c}

1
1−cq

−1 + k̂

]

+ E

[
#{null j ≤ k̂ : pj > c}

1
1−cq

−1 + k̂

]
.

This quantity can be bounded by

E

[
#{null j ≤ k̂ : pj ≤ c}

1 + #{null j ≤ k̂ : pj > c}
· 1 + (1− c) · qk̂

1
1−cq

−1 + k̂

]
+ E

[
(1− c) · qk̂
1

1−cq
−1 + k̂

]

≤ E

[
#{null j ≤ k̂ : pj ≤ c}

1 + #{null j ≤ k̂ : pj > c}

]
· (1− c) · q + (1− c) · q

≤ c

1− c
· (1− c) · q + (1− c) · q = q,

where once more the first inequality applies the definition of k̂ and the last inequal-
ity applies Lemma 1.

APPENDIX B: COMPARING KNOCKOFF WITH BHQ IN THE
ORTHOGONAL DESIGN SETTING

Here we sketch a theoretical explanation for the different behaviors of the knock-
off and BHq methods, to supplement the empirical comparison shown in Sec-
tion 3.4 of the main paper. In order to get independent statistics, we work with a
2p× p orthogonal designX and set the noise level σ = 1 without loss of general-
ity. In this setting,X>y := β+ z ∼ N (β, I) is the maximum likelihood estimate
for the regression coefficients. Recall that the BHq procedure selects variables Xj

with |X>j y| ≥ T and

(B.1) T = min

{
t : t = +∞ or

p · P {|N (0, 1)| ≥ t}
#{j : |X>j y| = |βj + zj | ≥ t}

≤ q

}
,

where the fraction above is of course the estimate of FDP(t). In fact, the number
of null features whose statistic exceeds t will be roughly π0p · P {|N (0, 1)| ≥ t}
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(since π0p is the total number of null features), and so the fraction appearing in
(B.1) above overestimates FDP(t) by a factor of (π0)−1, leading to FDR control at
the level π0q rather than at the nominal level q.

Next we study the behavior of the knockoff+ procedure in the same setting.
By construction, both the equi-correlated and the SDP constructions must obey
X̃>X = 0 and X̃>X̃ = I. It follows that X̃>y := z′ is distributed as N (0, I)
and is independent from X>y. Hence, our method specialized to (1.7) yields test
statistics of the form

Wj = |βj + zj | ∨ |z′j | · sign(|βj + zj | − |z′j |),

and our estimated knockoff+ FDP is equal to

(B.2) F̂DP(t) =
1 +#{j : |z′j | ≥ t and |z′j | > |βj + zj |}
#{j : |βj + zj | ≥ t and |βj + zj | > |z′j |}

.

Now we consider the behavior of this estimated FDP under varying signal magni-
tude levels. Since there are π0p null features, and since |βj | = A for the non-nulls,
the expected value of the numerator in (B.2) is given by

1 + π0p · P
{
|z′| ≥ t and |z′| > |z|

}
+ (1− π0)p · P

{
|z′| ≥ t and |z′| > |A+ z|

}
equal to

(B.3) 1 + π0p · P {|z| ≥ t}
(
1− 1

2
P {|z| ≥ t}

)
︸ ︷︷ ︸

(Term 1)

+ (1− π0)p · P
{
|z′| ≥ t and |z′| > |A+ z|

}︸ ︷︷ ︸
(Term 2)

.

Consider a large value t. When signal amplitude is high, e.g. A = 4, then (Term
1) is the dominant term above, and is roughly equal to π0p · P {|N (0, 1)| ≥ t}. In
this regime, we see that our procedure resembles BHq (B.1) but with a numerator
adjusted to π0p·P {|N (0, 1)| ≥ t} so that it controls the FDR nearly at the nominal
level q, instead of π0q.

In contrast, if we consider a weak signal signal magnitude such as A = 1,
then (Term 2) is no longer vanishing in (B.3) above—that is, the numerator in our
FDP estimate may be inadvertently counting non-null features. (In the notation of
Section 1.2, we may have non-null j where Wj < 0, due to the weakness of the
signal.) In this setting, the resulting FDR of the knockoff+ method is conservative,
i.e. lower than the nominal level q. However, there is no power loss relative to BHq
(see Figure 6); in this low-signal regime, the distribution of the non-null statistics
is very close to the null distribution and one simply cannot get any power while
controlling a type I error.
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