Can the Tajmar effect be explained using a modification of inertia?

Published 5 January 2010 Europhysics Letters Association
, , Citation M. E. McCulloch 2010 EPL 89 19001 DOI 10.1209/0295-5075/89/19001

0295-5075/89/1/19001

Abstract

The Tajmar effect is an unexplained acceleration observed by accelerometers and laser gyroscopes close to rotating supercooled rings. The observed ratio between the gyroscope and ring accelerations was 3±1.2×10−8. Here, a new model for inertia which has been tested quite successfully on the Pioneer and flyby anomalies is applied to this problem. The model assumes that the inertia of the gyroscope is caused by Unruh radiation that appears as the ring and the fixed stars accelerate relative to it, and that this radiation is subject to a Hubble-scale Casimir effect. The model predicts that the sudden acceleration of the nearby ring causes a slight increase in the inertial mass of the gyroscope, and, to conserve momentum in the reference frame of the spinning Earth, the gyroscope rotates clockwise with an acceleration ratio of 1.78±0.25×10−8 in agreement with the observed ratio. However, this model does not explain the parity violation seen in some of the gyroscope data. To test these ideas the Tajmar experiment (setup B) could be exactly reproduced in the Southern Hemisphere, since the model predicts that the anomalous acceleration should then be anticlockwise.

Export citation and abstract BibTeX RIS

10.1209/0295-5075/89/19001