Skip to main content

Advertisement

Log in

Nanofiber-based Delivery of Luliconazole: Fabrication, Characterization, and Therapeutic Performance Assessment

  • Research Article
  • Novel Skin Drug Delivery Technology
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study introduces and assesses the potential of a Luliconazole-loaded nanofiber (LUL-NF) patch, fabricated through electrospinning, for enhancing topical drug delivery. The primary objectives involve evaluating the nanofiber structure, characterizing physical properties, determining drug loading and release kinetics, assessing antifungal efficacy, and establishing the long-term stability of the NF patch. LUL-NF patches were fabricated via electrospinning and observed by SEM at approximately 200 nm dimensions. The comprehensive analysis included physical properties (thickness, folding endurance, swelling ratio, weight, moisture content, and drug loading) and UV analysis for drug quantification. In vitro studies explored sustained drug release kinetics, while microbiological assays evaluated antifungal efficacy against Candida albicans and Aspergillus Niger. Stability studies confirmed long-term viability. Comparative analysis with the pure drug, placebo NF patch, LUL-NF patch, and Lulifod gel was conducted using agar diffusion, revealing enhanced performance of the LUL-NF patch. SEM analysis revealed well-defined LUL-NF patches (0.80 mm thickness) with exceptional folding endurance (> 200 folds) and a favorable swelling ratio (12.66 ± 0.73%). The patches exhibited low moisture uptake (3.4 ± 0.09%) and a moisture content of 11.78 ± 0.54%. Drug loading in 1 cm2 section was 1.904 ± 0.086 mg, showing uniform distribution and sustained release kinetics in vitro. The LUL-NF patch demonstrated potent antifungal activity. Stability studies affirmed long-term stability, and comparative analysis highlighted increased inhibition compared to a pure drug, LUL-NF patch, and a commercial gel. The electrospun LUL-NF patch enhances topical drug delivery, promising extended therapy through single-release, one-time application, and innovative drug delivery strategies, supported by thorough analysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References:

  1. Kainz K, Bauer MA, Madeo F, Carmona-Gutierrez D. Fungal infections in humans: the silent crisis. Microb Cell. 2020;7(6):143–5. https://doi.org/10.15698/mic2020.06.718.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Parums DV. The world health organization (WHO) fungal priority pathogens list in response to emerging fungal pathogens during the COVID-19 pandemic. Med Sci Monit. 2022;28:939088–1. https://doi.org/10.12659/MSM.939088.

    Article  Google Scholar 

  3. Arthur RR, Drew RH, Perfect JR. Novel modes of antifungal drug administration. Expert Opin Investig Drugs. 2004;13(8):903–32. https://doi.org/10.1517/13543784.13.8.903.

    Article  CAS  PubMed  Google Scholar 

  4. Vardanyan R, Hruby V. Synthesis of best-seller drugs. Academic press. 2016;535–547. https://doi.org/10.1016/B978-044452166-8/50035-2.

  5. Jain SK, Gupta Y, Jain A, Rai K. Enhanced Transdermal Delivery of Acyclovir Sodium via Elastic Liposomes. Drug Deliv. 2008;15:141–7. https://doi.org/10.1080/10717540801952407.

    Article  CAS  PubMed  Google Scholar 

  6. Lengert EV, Talnikova EE, Tuchin VV, Svenskaya YI. Prospective Nanotechnology-Based Strategies for Enhanced Intra-and Transdermal Delivery of Antifungal Drugs. Skin Pharmacol Physiol. 2020;33(5):261–9. https://doi.org/10.1159/000511038.

    Article  CAS  PubMed  Google Scholar 

  7. Elsayed SI, El-Dahan MS, Girgis GNS. Pharmacodynamic Studies of Pravastatin Sodium Nanoemulsion Loaded Transdermal Patch for Treatment of Hyperlipidemia, Novel Skin Drug Delivery Technology. AAPS PharmSciTech. 2024;25:34. https://doi.org/10.1208/s12249-024-02746-5.

    Article  CAS  PubMed  Google Scholar 

  8. Alrbyawi H, Annaji M, Fasina O, Palakurthi S, Boddu SHS, Hassan N, Tiwari AK, Suryawanshi A, Babu RJ. Rapidly Dissolving Trans-scleral Microneedles for Intraocular Delivery of Cyclosporine A. AAPS PharmSciTech. 2024;25:28. https://doi.org/10.1208/s12249-024-02738-5.

    Article  CAS  PubMed  Google Scholar 

  9. Kamble RN, Gaikwad S, Maske A, Patil SS. Fabrication of electrospun nanofibres of BCS II drug for enhanced dissolution and permeation across skin. J Adv Res. 2016;7(3):483–9. https://doi.org/10.1016/j.jare.2016.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee OH, Kang JH, Ko YT. Subcutaneous injection sites impact brain uptake of blood-brain barrier impermeable paclitaxel. J Pharm Investig. 2023;53(6):845–55. https://doi.org/10.1007/s40005-023-00634-x.

    Article  CAS  Google Scholar 

  11. Singh P, Singh A, Sonawane P, Singh R, Patil A. Formulation and Evaluation of Luliconazole for dermal use. Int J Pharm Res Appl. 2023;8(2):1208–17. https://doi.org/10.35629/7781-080212081217.

    Article  Google Scholar 

  12. Vidyadhari A, Singh N, Singh AK, Ralli T, Solanki P, Mirza MA, Parvez S, Kohli K. Investigation of Luliconazole-Loaded Mucoadhesive Electrospun Nanofibers for Anticandidal Activity in the Management of Vaginal Candidiasis. ACS Omega. 2023;8(45):42102–13. https://doi.org/10.1021/acsomega.3c02141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kapileshwari GR, Barve AR, Kumar L, Bhide PJ, Joshi M, Shirodkar RK. (2020) Novel drug delivery system of luliconazole-Formulation and characterisation. J Drug Deliv Sci Technol. 2020;55:101302. https://doi.org/10.1016/j.jddst.2019.101302.

    Article  CAS  Google Scholar 

  14. Abdelhakeem E, Monir S, Teaima MHM, Rashwan KO, El-Nabarawi M. State-of-the-Art Review of Advanced Electrospun Nanofber Composites for Enhanced Wound Healing. AAPS PharmSciTech. 2023;24:246. https://doi.org/10.1208/s12249-023-02702-9.

    Article  CAS  PubMed  Google Scholar 

  15. Ahmadi F, Saeedi M, Akbari J, Seyedabadi M, Ebrahimnejad P, Morteza-Semnani K, Ghasemi S, Moalem-Banhangi M, Babaei A, Hashemi SMH, Asare-Addo K, Nokhodchi A. Nanohybrid Based on (Mn, Zn) Ferrite Nanoparticles Functionalized With Chitosan and Sodium Alginate for Loading of Curcumin Against Human Breast Cancer Cells. AAPS PharmSciTech. 2023;24:222 https://doi.org/10.1208/s12249-023-02683-9.

  16. Zargaran M, Taghipour S, Kiasat N, Aboualigalehdari E, Rezaei-Matehkolaei A, Mahmoudabadi AZ, Shamsizadeh F. Luliconazole, an alternative antifungal agent against Aspergillus terreus. J Mycol Med. 2017;27(3):351–6. https://doi.org/10.1016/j.mycmed.2017.04.011.

    Article  CAS  PubMed  Google Scholar 

  17. Koga H, Nanjoh Y, Makimura K, Tsuboi R. In vitro antifungal activities of luliconazole, a new topical imidazole. Med Mycol J. 2009;47(6):640–7. https://doi.org/10.1080/13693780802541518.

    Article  CAS  Google Scholar 

  18. Shehab-ElDin AN, Sobh RA, Rabie AM, Mohamed WS, Nasr HE. Polyamide 6/tallow modified clay nanofibrous mat coupled with hydrogels for potential topical/transdermal delivery of doxycycline hydrochloride. J Pharm Investig. 2023;53(2):307–21. https://doi.org/10.1007/s40005-022-00598-4.

    Article  CAS  Google Scholar 

  19. Mosallam S, Albash R, Abdelbari MA. Advanced Vesicular Systems for Antifungal Drug Delivery. AAPS PharmSciTech. 2022;23:206. https://doi.org/10.1208/s12249-022-02357-y.

    Article  PubMed  Google Scholar 

  20. Akhtar N, Verma A, Pathak K. Topical delivery of drugs for the effective treatment of fungal infections of skin. Curr Pharm Des. 2015;21(20):2892–913. https://doi.org/10.2174/1381612821666150428150456.

    Article  CAS  PubMed  Google Scholar 

  21. Baert B, Roche N, Burvenich C, De Spiegeleer B. Increase of the transdermal penetration of testosterone by miconazole nitrate. Arch Pharm Res. 2012;35(12):2163–70. https://doi.org/10.1007/s12272-012-1214-4.

    Article  CAS  PubMed  Google Scholar 

  22. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev. 2019;119(8):5298–415. https://doi.org/10.1021/acs.chemrev.8b00593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vitore JG, Pagar S, Singh, N, Karunakaran B, Salve S, Hatvate N, Rojekar S, Benival D. A comprehensive review of nanosuspension loaded microneedles: fabrication methods, applications, and recent developments. J. Pharm. Investig. 2023;1–30. https://doi.org/10.1007/s40005-023-00622-1.

  24. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers. J Appl Polym Sci. 2005;96(2):557–69. https://doi.org/10.1002/app.21481.

    Article  CAS  Google Scholar 

  25. Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res. 2017;50(8):1976–87. https://doi.org/10.1021/acs.accounts.7b00218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fang J, Niu H, Lin T, Wang X. Applications of electrospun nanofibers. Sci Bull. 2008;53:2265–86. https://doi.org/10.1007/s11434-008-0319-0.

    Article  CAS  Google Scholar 

  27. Thenmozhi S, Dharmaraj N, Kadirvelu K, Kim HY. Electrospun nanofibers: New generation materials for advanced applications. Mater Sci Eng B. 2017;217:36–48. https://doi.org/10.1016/j.mseb.2017.01.001.

    Article  CAS  Google Scholar 

  28. Asl MA, Karbasi S, Beigi-Boroujeni S, Benisi SZ, Saeed M. Evaluation of the effects of starch on polyhydroxybutyrate electrospun scaffolds for bone tissue engineering applications. Int J Biol Macromol. 2021;191:500–13. https://doi.org/10.1016/j.ijbiomac.2021.09.078.

    Article  CAS  PubMed  Google Scholar 

  29. Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine. 2006;1(1):15–30. https://doi.org/10.2147/nano.2006.1.1.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rao MT, Rao YS, PV KK. Characterization and Ex vivo Studies of Nanoparticle Incorporated Transdermal Patch of Itraconazole. Indian J. Pharm. Sci. 2020;82(5):809–818. https://doi.org/10.36468/pharmaceutical-sciences.708.

  31. Kim E, Choi DH. Quality by design approach to the development of transdermal patch systems and regulatory perspective. J Pharm Investig. 2021;51(6):669–90. https://doi.org/10.1007/s40005-022-00568-w.

    Article  CAS  Google Scholar 

  32. Zhang H, Zhai Y, Yang X, Zhai G. Breaking the skin barrier: achievements and future directions. Curr Pharm Des. 2015;21(20):2713–24. https://doi.org/10.2174/1381612821666150428124406.

    Article  CAS  PubMed  Google Scholar 

  33. Gusliakova O, Verkhovskii R, Abalymov A, Lengert E, Kozlova A, Atkin V, Nechaeva O, Morrison A, Tuchin V, Svenskaya Y. Transdermal platform for the delivery of the antifungal drug naftifine hydrochloride based on porous vaterite particles. Mater Sci Eng C Mater Biol Appl. 2021;119: 111428. https://doi.org/10.1016/j.msec.2020.111428.

    Article  CAS  PubMed  Google Scholar 

  34. Shukla T, Upmanyu N, Agrawal M, Saraf S, Saraf S, Alexander A. Biomedical applications of microemulsion through dermal and transdermal route. Biomed Pharmacother. 2018;108:1477–94. https://doi.org/10.1016/j.biopha.2018.10.021.

    Article  CAS  PubMed  Google Scholar 

  35. Ravikumar R, Ganesh M, Senthil V, Ramesh YV, Jakki SL, Choi EY. Tetrahydro curcumin loaded PCL-PEG electrospun transdermal nanofiber patch: Preparation, characterization, and in vitro diffusion evaluations. J Drug Deliv Sci Technol. 2018;44:342–8. https://doi.org/10.1016/j.jddst.2018.01.016.

    Article  CAS  Google Scholar 

  36. Niranjan R, Kaushik M, Selvi RT, Prakash J, Venkataprasanna KS, Prema D, Pannerselvam B, Venkatasubbu GD. PVA/SA/TiO2-CUR patch for enhanced wound healing application: In vitro and in vivo analysis. Int J Biol Macromol. 2019;138:704–17. https://doi.org/10.1016/j.ijbiomac.2019.07.125.

    Article  CAS  PubMed  Google Scholar 

  37. Monika B, Roy A, Sanjib B, Banafer A, Patel M, Turkane D. Transdermal drug delivery system with formulation and evaluation aspects: Overview. RJPT. 2012; 5(9):1168–1176. https://www.researchgate.net/publication/281749888.

  38. Tiwari C, Choudhary M, Malik P, Jaiswal PK, Chauhan R. Transdermal Patch: A Novel Approach for Transdermal Drug Delivery. JDDT. 2022;12(6):179–88. https://doi.org/10.22270/jddt.v12i6.5779.

    Article  CAS  Google Scholar 

  39. Tanwar H, Sachdeva R. Transdermal drug delivery system: A review. Int J Pharm Sci. 2016;7(6):2274–90. https://doi.org/10.13040/IJPSR.0975-8232.

    Article  CAS  Google Scholar 

  40. Takeuchi Y, Ikeda N, Tahara K, Takeuchi H. Mechanical characteristics of orally disintegrating films: Comparison of folding endurance and tensile properties. Int. J. Pharm. 2020;589:119876. https://doi.org/10.1016/j.ijpharm.2020.119876.

  41. Hasan N, Jiafu C, Mustopa AZ, Himawan A, Umami RN, Ullah M, Wathoni N, Yoo JW. Recent advancements of nitric oxide-releasing hydrogels for wound dressing applications. J. Pharm. Investig. 2023;1–21. https://doi.org/10.1007/s40005-023-00636-9.

  42. Opanasopit P, Sila-On W, Rojanarata T, Ngawhirunpat T. Fabrication and properties of capsicum extract-loaded PVA and CA nanofiber patches. Pharm Dev Technol. 2013;18(5):1140–7. https://doi.org/10.3109/10837450.2012.727004.

    Article  CAS  PubMed  Google Scholar 

  43. Jadon RS, Sharma G, Garg NK, Tandel N, Gajbhiye KR, Salve R, Gajbhiye V, Sharma U, Katare OP, Sharma M, Tyagi RK. Efficient in vitro and in vivo docetaxel delivery mediated by pH-sensitive LPHNPs for effective breast cancer therapy. Colloids Surf. B. 2021;203–111760. https://doi.org/10.1016/j.colsurfb.2021.111760.

  44. Garg T, Malik B, Rath G, Goyal AK. Development and characterization of nano-fiber patch for the treatment of glaucoma. Eur J Pharm Sci. 2014;53:10–6. https://doi.org/10.1016/j.ejps.2013.11.016.

    Article  CAS  PubMed  Google Scholar 

  45. Narwade M, Shaikh A, Gajbhiye KR, Kesharwani P, Gajbhiye V. Advanced cancer targeting using aptamer functionalized nanocarriers for site-specific cargo delivery. Biomater Res. 2023;27:42. https://doi.org/10.1186/s40824-023-00365-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim DH, Nguyen TN, Jin Y, Baek N, Back SY, Sim S, Heo KS, Park JS. Cream formulation improved skin-lightening effect of ginsenoside Rh1, Rg2, and Hydrangea macrophylla flower extract. J. Pharm. Investig. 2023;1–12. https://doi.org/10.1007/s40005-023-00620-3.

  47. Gajbhiye KR, Chaudhari BP, Pokharkar VP, Pawar A, Gajbhiye V. Stimuli-responsive biodegradable polyurethane nano-constructs as a potential triggered drug delivery vehicle for cancer therapy. Int J Pharma. 2020;15:588–119781. https://doi.org/10.1016/j.ijpharm.2020.119781.

    Article  CAS  Google Scholar 

  48. Sultan F, Chopra H, Sharma GK. Formulation and evaluation of luliconazole microsponges loaded gel for topical delivery. Res J Pharm Technol. 2021;14(11):5775–80. https://doi.org/10.52711/0974-360X.2021.01004.

    Article  Google Scholar 

  49. Jansook P, Maw PD, Soe HMSH, Chuangchunsong R, Saiborisuth K, Payonitikarn N, Autthateinchai R, Pruksakorn P. Development of amphotericin B nanosuspensions for fungal keratitis therapy: Effect of self-assembled γ-cyclodextrin. J Pharm Investig. 2020;50:513–25. https://doi.org/10.1007/s40005-020-00474-z.

    Article  CAS  Google Scholar 

  50. Rayens E, Norris KA. January. Prevalence and healthcare burden of fungal infections in the United States, 2018. Open Forum Infect. Dis. 2022;9(1):593. https://doi.org/10.1093/ofid/ofab593.

Download references

Funding

Funding received from Poona College of Pharmacy (Bharati Vidyapeeth University) for M. Pharm Project work.

Author information

Authors and Affiliations

Authors

Contributions

Gauri Nimhan: Planning of work, drafting of manuscript, analysis, and interpretation of data.

Mahaveer Narwade: Analysis and interpretation of data.

Rajesh Singh Jadon: Editing and corrections.

Kavita Gajbhiye: Revising and final corrections, corresponding author.

Corresponding author

Correspondence to Kavita Gajbhiye.

Ethics declarations

Conflict of Interest

The text does not involve any conflicts and competing interests.

Additional information

Communicated by Nisarg Modi, Yousuf Mohammed, and Lakshmi Raghavan

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 120 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimhan, G., Narwade, M., Jadon, R.S. et al. Nanofiber-based Delivery of Luliconazole: Fabrication, Characterization, and Therapeutic Performance Assessment. AAPS PharmSciTech 25, 94 (2024). https://doi.org/10.1208/s12249-024-02815-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02815-9

Keywords

Navigation