Skip to main content
Log in

A Novel Oral Drugs Delivery System for Borneol Based on HiCap®100 and Maltodextrin: Preparation, Characterization, and the Investigation as an Intestinal Absorption Enhancer

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of this study was to create a new method for delivering oral borneol (BN) drug that would improve stability. This was accomplished through microencapsulation using HiCap®100 and maltodextrin (MD), resulting in HiCap®100/MD/BN microcapsules (MCs). The HiCap®100/MD/BN MCs were evaluated in terms of encapsulation efficiency (EE%), drug loading (DL%), morphological observations, particle size distribution, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermal analysis, drug degradation rate studies, and in vitro release behavior. The effect of MCs on intestinal permeability in a rat model was assessed using the model drug “florfenicol” (FF) in single-pass intestinal perfusion (SPIP) study. The relationship between MCs and P-glycoprotein (P-gp) was further investigated in comparison with verapamil (Ver). The irritation of MCs was assessed by histological analysis. The MCs in a spherical structure with micron-scale dimensions were obtained. The EE% and DL% were (86.71 ± 0.96)% and (6.03 ± 0.32)%, respectively. MCs played a significantly protective role in drug degradation rate studies. In vitro release studies indicated that the release behavior of MCs was significantly better than BN at the three-release media, and the cumulative release rate exceeded 90% in 15 min. The SPIP studies showed that MCs significantly enhanced the absorption of FF in rats. Compared with Ver, MCs were not promoted by a single inhibition of P-gp. Hematoxylin-eosin (HE)-stained images showed that MCs had no obvious irritation and toxic effects on the intestines of rats. Thus, the preparation of HiCap®100/MD/BN MCs improves the stability of BN, which has certain scientific value for the development and application of BN, and provides unique perspectives for future BN-related researches.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data is available from the corresponding author upon request.

References

  1. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–70.

    Article  CAS  PubMed  Google Scholar 

  2. Knopp MM, Nguyen JH, Becker C, Francke NM, Jørgensen EB, Holm P, et al. Influence of polymer molecular weight on in vitro dissolution behavior and in vivo performance of celecoxib: PVP amorphous solid dispersions. Eur J Pharm Biopharm. 2016;101:145–51.

    Article  CAS  PubMed  Google Scholar 

  3. Suchaoin W, Bernkop-Schnürch A. Nanocarriers protecting toward an intestinal pre-uptake metabolism. Nanomedicine (Lond). 2017;12(3):255–69.

    Article  CAS  PubMed  Google Scholar 

  4. Thakur S, Riyaz B, Patil A, Kaur A, Kapoor B, Mishra V. Novel drug delivery systems for NSAIDs in management of rheumatoid arthritis: an overview. Biomed Pharmacother. 2018;106:1011–23.

    Article  CAS  PubMed  Google Scholar 

  5. Aungst BJ. Novel formulation strategies for improving oral bioavailability of drugs with poor membrane permeation or presystemic metabolism. J Pharm Sci. 1993;82(10):979–87.

    Article  CAS  PubMed  Google Scholar 

  6. Tomita M, Hayashi M, Awazu S. Absorption-enhancing mechanism of EDTA, caprate, and decanoylcarnitine in Caco-2 cells. J Pharm Sci. 1996;85(6):608–11.

    Article  CAS  PubMed  Google Scholar 

  7. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNVR. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37(3–4):223–30.

    Article  CAS  PubMed  Google Scholar 

  8. Liu R, Zhang L, Lan X, Li L, Zhang TT, Sun JH, et al. Protection by borneol on cortical neurons against oxygen-glucose deprivation/reperfusion: involvement of anti-oxidation and anti-inflammation through nuclear transcription factor κappaB signaling pathway. Neuroscience. 2011;176:408–19.

    Article  CAS  PubMed  Google Scholar 

  9. Su J, Chen J, Li L, Li B, Shi L, Chen L, et al. Formation of β-cyclodextrin inclusion enhances the stability and aqueous solubility of natural borneol. J Food Sci. 2012;77(6):C658–64.

    Article  CAS  PubMed  Google Scholar 

  10. Su J, Chen J, Li L, Li B, Shi L, Chen L, et al. Preparation of natural borneol/2-hydroxypropyl-β-cyclodextrin inclusion complex and its effect on the absorption of tetramethylpyrazine phosphate in mouse. Chem Pharm Bull (Tokyo). 2012;60(6):736–42.

    Article  CAS  PubMed  Google Scholar 

  11. Takaishi M, Uchida K, Fujita F, Tominaga M. Inhibitory effects of monoterpenes on human TRPA1 and the structural basis of their activity. J Physiol Sci. 2014;64(1):47–57.

    Article  CAS  PubMed  Google Scholar 

  12. Wu HY, Tang Y, Gao LY, Sun WX, Hua Y, Yang SB, et al. The synergetic effect of edaravone and borneol in the rat model of ischemic stroke. Eur J Pharmacol. 2014;740:522–31.

    Article  CAS  PubMed  Google Scholar 

  13. Liu C, Chen Z, Wu SLY, et al. Comparative review of effects of Pien Tze Huang and AnGong NiuHuang pill and their potential on treatment of central nervous system diseases [J]. Mini Rev Med Chem. 2022;22(18):2350–60.

    Article  CAS  PubMed  Google Scholar 

  14. Ruan X fen, Ju C wei, Shen Y, et al. Suxiao Jiuxin pill promotes exosome secretion from mouse cardiac mesenchymal stem cells in vitro [J]. Acta Pharmacologica Sinica. 2018;39(4): 569-578.

  15. Zheng D, Chu Y, Li S, et al. Enhancing effect of borneol on pharmacokinetics of ginsenoside Rb1, ginsenoside Rg1, and notoginsenoside R1 in healthy volunteers after oral administration of compound Danshen dropping pills [J]. Biomed Chromatogr. 2022;36(5):e5311.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Han L, Qin J, et al. The use of borneol as an enhancer for targeting aprotinin-conjugated PEG-PLGA nanoparticles to the brain [J]. Pharm Res. 2013;30(10):2560–72.

    Article  CAS  PubMed  Google Scholar 

  17. Kulkarni M, Sawant N, Kolapkar A, et al. Borneol: a promising monoterpenoid in enhancing drug delivery across various physiological barriers [J]. AAPS PharmSciTech. 2021;22(4):145.

    Article  CAS  PubMed  Google Scholar 

  18. Mei Y, Li L, Fan L, et al. The history, stereochemistry, ethnopharmacology and quality assessment of borneol [J]. J Ethnopharmacol. 2023;300:115697.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Y, Li W, Chen L, Ma S, Ping L, Yang Z. Enhancement of intestinal absorption of akebia saponin D by borneol and probenecid in situ and in vitro. Environ Toxicol Pharmacol. 2010;29(3):229–34.

    Article  PubMed  Google Scholar 

  20. Guo Y, Yan S, Xu L, Zhu G, Yu X, Tong X. Use of angong niuhuang in treating central nervous system diseases and related research. Evid Based Complement Alternat Med. 2014;2014:346918.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang L, Wang L, Wang X, Xian CJ, Lu H. A possible role of intestinal microbiota in the pathogenesis of ankylosing spondylitis. Int J Mol Sci. 2016;17(12):2126.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Furrer P, Mayer JM, Plazonnet B, Gurny R. Ocular tolerance of absorption enhancers in ophthalmic preparations. AAPS PharmSci. 2002;4(1):6–10.

    Article  PubMed Central  Google Scholar 

  23. Zhang QL, Fu BM, Zhang ZJ. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood-brain barrier permeability. Drug Deliv. 2017;24(1):1037–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Santana DVS, Trindade IAS, Carvalho YMBG, et al. Analytical techniques to recognize inclusion complexes formation involving monoterpenes and cyclodextrins: a study case with (–) borneol, a food ingredient [J]. Food Chem. 2021;339:127791.

    Article  CAS  PubMed  Google Scholar 

  25. Gao Y, Chen G, Luan X, Zou M, Piao H, Cheng G. Improved oral absorption of poorly soluble curcumin via the concomitant use of borneol. AAPS PharmSciTech. 2019;20(4):150.

    Article  PubMed  Google Scholar 

  26. da Almeida JRGS, Souza GR, Silva JC, de Saraiva SRGL, de Júnior RGO, de Quintans JSS, et al. Borneol, a bicyclic monoterpene alcohol, reduces nociceptive behavior and inflammatory response in mice. Sci World J. 2013;2013:e808460.

    Article  Google Scholar 

  27. Caputi L, Aprea E. Use of terpenoids as natural flavouring compounds in food industry. Recent Pat Food Nutr Agric. 2011;3(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  28. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2004;56(5):603–18.

    Article  CAS  PubMed  Google Scholar 

  29. Hu LM, Fan GW, Gao XM, et al. Comparison of influence of natural borneol and synthetic borneol on gastric mucosal barrier in rats. J Tianjin Coll Tradit Chinese Med. 2005;03:123–5.

    Google Scholar 

  30. Álvarez-Henao MV, Saavedra N, Medina S, Jiménez Cartagena C, Alzate LM, Londoño-Londoño J. Microencapsulation of lutein by spray-drying: characterization and stability analyses to promote its use as a functional ingredient. Food Chem. 2018;256:181–7.

    Article  PubMed  Google Scholar 

  31. Kang YR, Lee YK, Kim YJ, Chang YH. Characterization and storage stability of chlorophylls microencapsulated in different combination of gum Arabic and maltodextrin. Food Chem. 2019;272:337–46.

    Article  CAS  PubMed  Google Scholar 

  32. Nambiar RB, Sellamuthu PS, Perumal AB. Microencapsulation of tender coconut water by spray drying: effect of Moringa oleifera gum, maltodextrin concentrations, and inlet temperature on powder qualities. Food Bioprocess Technol. 2017;10(9):1668–84.

    Article  CAS  Google Scholar 

  33. Karandikar PS, Rajput JD, Bagul SD, Gite VV, Bendre RS. Controlled release study of phenol formaldehyde based microcapsules containing various loading percentage of core cypermethrin at different agitation rates. Polym Bull. 2019;76(5):2519–36.

    Article  CAS  Google Scholar 

  34. Kausadikar S, Gadhave AD, Waghmare J. Microencapsulation of lemon oil by spray drying and its application in flavour tea. Adv Appl Sci Res. 2015;6(4):69–78.

    CAS  Google Scholar 

  35. Soottitantawat A, Bigeard F, Yoshii H, et al. Influence of emulsion and powder size on the stability of encapsulated d-limonene by spray drying [J]. Innov Food Sci Emerg Technol. 2005;6(1):107–14.

    Article  CAS  Google Scholar 

  36. Delfanian M, Razavi SMA, Haddad Khodaparast MH, et al. Influence of main emulsion components on the physicochemical and functional properties of W/O/W nano-emulsion: effect of polyphenols, Hi-Cap, basil seed gum, soy and whey protein isolates [J]. Food Res Int. 2018;108:136–43.

    Article  CAS  PubMed  Google Scholar 

  37. Mahdi AA, Mohammed JK, Al-Ansi W, Ghaleb ADS, Al-Maqtari QA, Ma M, et al. Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying. Int J Biol Macromol. 2020;152:1125–34.

    Article  CAS  PubMed  Google Scholar 

  38. Krishnan S, Bhosale R, Singhal RS. Microencapsulation of cardamom oleoresin: evaluation of blends of gum arabic, maltodextrin and a modified starch as wall materials [J]. Carbohyd Polym. 2005;61(1):95–102.

    Article  CAS  Google Scholar 

  39. Xiao Z, Kang Y, Hou W, Niu Y, Kou X. Microcapsules based on octenyl succinic anhydride (OSA)-modified starch and maltodextrins changing the composition and release property of rose essential oil. Int J Biol Macromol. 2019;137:132–8.

    Article  CAS  PubMed  Google Scholar 

  40. Buffo RA, Probst K, Zehentbauer G, et al. Effects of agglomeration on the properties of spray-dried encapsulated flavours [J]. Flavour Fragr J. 2002;17(4):292–9.

    Article  CAS  Google Scholar 

  41. Bajaj SR, Marathe SJ, Singhal RS. Co-encapsulation of vitamins B12 and D3 using spray drying: wall material optimization, product characterization, and release kinetics [J]. Food Chem. 2021;335:127642.

    Article  CAS  PubMed  Google Scholar 

  42. Ratanasiriwat P, Worawattanamateekul W, Klaypradit W. Properties of encapsulated wasabi flavour and its application in canned food [J]. Int J Food Sci Technol. 2013;48(4):749–57.

    Article  CAS  Google Scholar 

  43. Breternitz NR, de Fidelis CHV, Silva VM, et al. Volatile composition and physicochemical characteristics of mussel (Perna perna) protein hydrolysate microencapsulated with maltodextrin and n-OSA modified starch [J]. Food Bioprod Process. 2017;105:12–25.

    Article  CAS  Google Scholar 

  44. Karaaslan M, Şengün F, Cansu Ü, Başyiğit B, Sağlam H, Karaaslan A. Gum arabic/maltodextrin microencapsulation confers peroxidation stability and antimicrobial ability to pepper seed oil. Food Chem. 2021;337:127748.

    Article  CAS  PubMed  Google Scholar 

  45. Mehran M, Masoum S, Memarzadeh M. Improvement of thermal stability and antioxidant activity of anthocyanins of Echium amoenum petal using maltodextrin/modified starch combination as wall material. Int J Biol Macromol. 2020;148:768–76.

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y, Fang Y, Chen Y, Chen W, Cheng Z, Yi J, Li X, Gao C, Wu F, Guo B. Improving intestinal absorption and antibacterial effect of florfenicol via nanocrystallisation technology. J Microencapsul. 2022;39(7–8):589–600. https://doi.org/10.1080/02652048.2022.2145381.

    Article  CAS  PubMed  Google Scholar 

  47. Italiya KS, Singh AK, Chitkara D, Mittal A. Nanoparticulate tablet dosage form of lisofylline-linoleic acid conjugate for type 1 diabetes: in situ single-pass intestinal perfusion (SPIP) studies and pharmacokinetics in rat. AAPS PharmSciTech. 2021;22(3):114.

    Article  CAS  PubMed  Google Scholar 

  48. Song NN, Li QS, Liu CX. Intestinal permeability of metformin using single-pass intestinal perfusion in rats. World J Gastroenterol. 2006;12(25):4064–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zakeri-Milani P, Valizadeh H, Islambulchilar Z, Damani S, Mehtari M. Investigation of the intestinal permeability of ciclosporin using the in situ technique in rats and the relevance of P-glycoprotein. Arzneimittelforschung. 2011;58(4):188–92.

    Article  Google Scholar 

  50. Kang MJ, Kim HS, Jeon HS, Park JH, Lee BS, Ahn BK, et al. In situ intestinal permeability and in vivo absorption characteristics of olmesartan medoxomil in self-microemulsifying drug delivery system. Drug Dev Ind Pharm. 2012;38(5):587–96.

    Article  CAS  PubMed  Google Scholar 

  51. Hao B, Wang X, Ma X, Jin Y, Fan W, Laba C, et al. Preparation of complex microcapsules of soluble polysaccharide from Glycyrrhiza uralensis and its application in wound repair and scar inhibition. Int J Biol Macromol. 2020;156:906–17.

    Article  CAS  PubMed  Google Scholar 

  52. Liu X, Zhu H. Curcumin improved intestinal epithelial barrier integrity by up-regulating ZO-1/occludin/claudin-1 in septic rats. Evid Based Complement Alternat Med. 2022;2022:e2884522.

    Google Scholar 

  53. Hogan SA, McNamee BF, O’Riordan ED, O’Sullivan M. Emulsification and microencapsulation properties of sodium caseinate/carbohydrate blends. Int Dairy J. 2001;11(3):137–44.

    Article  CAS  Google Scholar 

  54. Polekkad A, Franklin MEE, Pushpadass HA, Battula SN, Rao SBN, Pal DT. Microencapsulation of zinc by spray-drying: characterisation and fortification. Powder Technol. 2021;381:1–16.

    Article  CAS  Google Scholar 

  55. Christoforides E, Mentzafos D, Bethanis K. Structural studies of the inclusion complexes of the (+)- and (-)-borneol enantiomers in alpha- and beta-cyclodextrin. J Incl Phenom Macrocycl Chem. 2015;81(1–2):193–203.

    Article  CAS  Google Scholar 

  56. Paramera EI, Konteles SJ, Karathanos VT. Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, β-cyclodextrin and modified starch. Food Chem. 2011;125(3):913–22.

    Article  CAS  Google Scholar 

  57. Huang L, Liu Y, Sang X, et al. Preparation of alum-borneol-PVP drug-loaded fibers by electrospinning [J]. Chem Res Chin Univ. 2021;37(3):411–8.

    Article  CAS  Google Scholar 

  58. Li L, Luo X, Leung PH, et al. Controlled release of borneol from nano-fibrous poly (L-lactic acid)/cellulose acetate butyrate membrane [J]. Text Res J. 2016;86(11):1202–9.

    Article  CAS  Google Scholar 

  59. Wang GY, Zheng HH, Zhang KY, Yang F, Kong T, Zhou B, et al. The roles of cytochrome P450 and P-glycoprotein in the pharmacokinetics of florfenicol in chickens. Iran J Vet Res. 2018;19(1):9–14.

    PubMed  PubMed Central  Google Scholar 

  60. Ghadiri M, Canney F, Pacciana C, Colombo G, Young PM, Traini D. The use of fatty acids as absorption enhancer for pulmonary drug delivery. Int J Pharm. 2018;541(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  61. Sharma S, Kulkarni J, Pawar AP. Permeation enhancers in the transmucosal delivery of macromolecules. Pharmazie. 2006;61(6):495–504.

    CAS  PubMed  Google Scholar 

  62. Woitiski CB, Carvalho RA, Ribeiro AJ, Neufeld RJ, Veiga F. Strategies toward the improved oral delivery of insulin nanoparticles via gastrointestinal uptake and translocation. BioDrugs. 2008;22(4):223–37.

    Article  CAS  PubMed  Google Scholar 

  63. Martin C, Berridge G, Mistry P, Higgins C, Charlton P, Callaghan R. The molecular interaction of the high affinity reversal agent XR9576 with P-glycoprotein. Br J Pharmacol. 1999;128(2):403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang L, Li Y, Wang Q, Chen Z, Li X, Wu Z, et al. The PI3K subunits, P110α and P110β are potential targets for overcoming P-gp and BCRP-mediated MDR in cancer. Mol Cancer. 2020;19(1):1–18.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Liu ZJ, Jiang Ddo, Tian LL, Yin JJ, Huang JM, Weng WY. Intestinal permeability of forskolin by in situ single pass perfusion in rats. Planta Med. 2012;78(7):698–702.

    Article  CAS  PubMed  Google Scholar 

  66. Stanley LA, Horsburgh BC, Ross J, Scheer N, Wolf CR. Drug transporters: gatekeepers controlling access of xenobiotics to the cellular interior. Drug Metab Rev. 2009;41(1):27–65.

    Article  CAS  PubMed  Google Scholar 

  67. Li X, Li S, Wang B, Zhang M, Yuan D, Li J, et al. Borneol influences the pharmacokinetics of florfenicol through regulation of cytochrome P450 1A2 (CYP1A2), CYP2C11, CYP3A1, and multidrug resistance 1 (MDR1) mRNA expression levels in rats. J Vet Med Sci. 2021;83(8):1338–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Guangzhou Science and Technology Plan Project (number 201904010112) and the “Yang Fan Plan” team project of Guangdong Province (No. 2017YT05S137).

Author information

Authors and Affiliations

Authors

Contributions

YC: conceptualization, investigation, methodology, formal analysis, data curation, writing — original draft. XJ: conceptualization, methodology, investigation, writing — review and editing. YK: investigation, validation. SZ: resources, project administration. CZ: literature search, data acquisition. CL: data acquisition. BG: project administration, supervision, writing — original draft, writing — review and editing, funding acquisition.

Corresponding author

Correspondence to Bohong Guo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Jin, X., Kuang, Y. et al. A Novel Oral Drugs Delivery System for Borneol Based on HiCap®100 and Maltodextrin: Preparation, Characterization, and the Investigation as an Intestinal Absorption Enhancer. AAPS PharmSciTech 24, 197 (2023). https://doi.org/10.1208/s12249-023-02654-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02654-0

Keywords

Navigation