Skip to main content

Advertisement

Log in

Novel Meta-iodobenzylguanidine and Etoposide Complex: Physicochemical Characterization and Mathematical Modeling of Anticancer Activity

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

It is hypothesized that meta-iodobenzylguanidine (MIBG) complexation with etoposide (VP-16) will improve drug solubility and specificity towards BE(2)C neuroblastoma (NB) cells, 90% of which are known to be MIBG avid. After MIBG and VP-16 interaction, the dry complex was analyzed for crystalline structure, surface morphology, solubility, and size distribution by X-ray powder diffraction (P-XRD), scanning electron microscopy (SEM), infrared (FTIR) and UV spectroscopy, and dynamic light scattering. After exposure to the complex, the cell viability and decay rates were assessed by the MTS assay and estimated using exponential decay models (EDM). Multi-factorial ANOVA and an independent t-test were used to assess for cell viability and solubility data, respectively. The resulting (1: 3 w/w) VP-16: MIBG complex had a mean diameter and zeta potential of 458.5 nm and 0.951 mV, respectively. It dramatically increased the drug apparent water solubility (~ 12-folds). This was ascribed to the formation of a VP-16/MIBG nanocrystalline state mainly governed by cation-π interactions, evidenced by FTIR, SEM, and P-XRD data following the complexation. The EDM relating percent cell viability to drug concentration yielded an excellent fit (r2 > 0.95) and enabled to estimate the IC50 values of both native drug and its complex: 6.2 μM and 5.23 μM, respectively (indicating a conservation of drug anticancer activity). The statistical results were consistent with those of the exponential decay models, indicating that MIBG does not inhibit the anticancer activity of VP-16. This study indicates that the VP-16/MIBG complexation improves VP-16 solubility without antagonizing its anticancer activity. Moreover, the efficiency of the EDM for drug IC50 estimation provides alternative mathematical method for such in vitro cytotoxicity studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

EDM:

Exponential decay models

EDTA:

Ethylenediaminetetraacetic acid

FTIR:

Fourier transformed infrared

MIBG:

Meta-iodobenzylguanidine

MTS:

3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium

NAD + :

Nicotinamide adenine dinucleotide

NB:

Neuroblastoma

NE:

Norepinephrine

NET:

Norepinephrine transporter

P-XRD:

Powder X-ray diffraction

SEM:

Scanning electron microscopy

SPSS:

Statistical Product and Service Solutions

VP-16:

Etoposide

References

  1. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-Retinoic Acid. N Engl J Med. 1999;341(16):1165–73.

    Article  CAS  PubMed  Google Scholar 

  2. Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. The Lancet. 2007;369(9579):2106–20.

    Article  CAS  Google Scholar 

  3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics 2021. CA: A Cancer Journal for Clinicians. 2021;71(1):7–33.

    PubMed  Google Scholar 

  4. Perez CA, Matthay KK, Atkinson JB, Seeger RC, Shimada H, Haase GM, et al. Biologic variables in the outcome of stages I and II neuroblastoma treated with surgery as primary therapy: a children’s cancer group study. Journal of Clinical Oncology. 2000;18(1):18.

    Article  CAS  PubMed  Google Scholar 

  5. Matthay KK, Perez C, Seeger RC, Brodeur GM, Shimada H, Atkinson JB, et al. Successful treatment of stage III neuroblastoma based on prospective biologic staging: a Children’s Cancer Group study. J Clin Oncol. 1998;16(4):1256–64.

    Article  CAS  PubMed  Google Scholar 

  6. Montecucco A, Biamonti G. Cellular response to etoposide treatment. Cancer Lett. 2007;252(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  7. Wu C-C, Li T-K, Farh L, Lin L-Y, Lin T-S, Yu Y-J, et al. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science. 2011;333(6041):459–62.

    Article  CAS  PubMed  Google Scholar 

  8. Harvey V, Slevin M, Joel S, Smythe M, Johnston A, Wrigley P. Variable bioavailability following repeated oral doses of etoposide. Eur J Cancer Clin Oncol. 1985;21(11):1315–9.

    Article  CAS  PubMed  Google Scholar 

  9. Li C, Li X, Choi J-S. Enhanced bioavailability of etoposide after oral or intravenous administration of etoposide with kaempferol in rats. Arch Pharmacal Res. 2009;32:133–8.

    Article  CAS  Google Scholar 

  10. Joel SP, Shah R, Slevin ML. Etoposide dosage and pharmacodynamics. Cancer Chemother Pharmacol. 1994;34(1):S69–75.

    Article  PubMed  Google Scholar 

  11. Brown BS, Patanam T, Mobli K, Celia C, Zage PE, Bean AJ, et al. Etoposide-loaded immunoliposomes as active targeting agents for GD2-positive malignancies. Cancer Biol Ther. 2014;15(7):851–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vallabhajosula S, Nikolopoulou A. Radioiodinated Metaiodobenzylguanidine (MIBG): Radiochemistry, Biology, and Pharmacology. Semin Nucl Med. 2011;41(5):324–33.

    Article  PubMed  Google Scholar 

  13. Vik TA, Pfluger T, Kadota R, Castel V, Tulchinsky M, Farto JC, et al. (123)I-mIBG scintigraphy in patients with known or suspected neuroblastoma: results from a prospective multicenter trial. Pediatr Blood Cancer. 2009;52(7):784–90.

    Article  PubMed  Google Scholar 

  14. Sharp SE, Trout AT, Weiss BD, Gelfand MJ. MIBG in neuroblastoma diagnostic imaging and therapy. Radiographics. 2016;36(1):258–78.

    Article  PubMed  Google Scholar 

  15. Liu B, Zhuang H, Servaes S. Comparison of [123I]MIBG and [131I]MIBG for imaging of neuroblastoma and other neural crest tumors. Q J Nucl Med Mol Imaging. 2013;57(1):21–8.

    CAS  PubMed  Google Scholar 

  16. Rubio PM, Galán V, Rodado S, Plaza D, Martínez L. MIBG therapy for neuroblastoma: precision achieved with dosimetry, and concern for false responders. Front Med. 2020;7:173.

    Article  Google Scholar 

  17. Serajuddin AT. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59(7):603–16.

    Article  CAS  PubMed  Google Scholar 

  18. Alsalhi A, Ayon NJ, Coulibaly F, Alshamrani M, Al-Nafisah A, Youan B-BC. Enhancing etoposide aqueous solubility and anticancer activity with L-Arginine. ASSAY and Drug Development Technologies. 2021;19(8):508–25.

    Article  CAS  PubMed  Google Scholar 

  19. Solano AG, de Fátima PA, Pinto FC, Ferreira LG, de Oliveira Barbosa LA, Fialho SL, et al. Development and evaluation of sustained-release etoposide-loaded poly(ε-caprolactone) implants. AAPS PharmSciTech. 2013;14(2):890–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ngo AN, Ezoulin MJ, Murowchick JB, Gounev AD, Youan BB. Sodium acetate coated tenofovir-loaded chitosan nanoparticles for improved physico-chemical properties. Pharm Res. 2016;33(2):367–83.

    Article  CAS  PubMed  Google Scholar 

  21. Coulibaly FS, Ezoulin MJM, Purohit SS, Ayon NJ, Oyler NA, Youan BC. Layer-by-layer engineered microbicide drug delivery system targeting HIV-1 gp120: physicochemical and biological properties. Mol Pharm. 2017;14(10):3512–27.

    Article  CAS  PubMed  Google Scholar 

  22. Sherje A, Desai K. Spectrophotometric determination of poorly water soluble drug rosiglitazone using hydrotropic solubilization technique. Indian J Pharm Sci. 2011;73(5):579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yavuz B, Zeki J, Coburn JM, Ikegaki N, Levitin D, Kaplan DL, et al. In vitro and in vivo evaluation of etoposide - silk wafers for neuroblastoma treatment. J Control Release. 2018;285:162–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Naguib YW, Rodriguez BL, Li X, Hursting SD, Williams RO, Cui Z. Solid lipid nanoparticle formulations of docetaxel prepared with high melting point triglycerides: in vitro and in vivo evaluation. Mol Pharm. 2014;11(4):1239–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garg NK, Singh B, Kushwah V, Tyagi RK, Sharma R, Jain S, et al. The ligand (s) anchored lipobrid nanoconstruct mediated delivery of methotrexate: an effective approach in breast cancer therapeutics. Nanomedicine: Nanotechnology, Biology and Medicine. 2016;12(7):2043–60.

    Article  CAS  PubMed  Google Scholar 

  26. Nikkhah M, Strobl JS, Schmelz EM, Roberts PC, Zhou H, Agah M. MCF10A and MDA-MB-231 human breast basal epithelial cell co-culture in silicon micro-arrays. Biomaterials. 2011;32(30):7625–32.

    Article  CAS  PubMed  Google Scholar 

  27. Gaddis GM, Gaddis ML. Introduction to biostatistics: Part 4, statistical inference techniques in hypothesis testing. Ann Emerg Med. 1990;19(7):820–5.

    Article  CAS  PubMed  Google Scholar 

  28. Saha S, Bhattacharjee A, Rahaman SH, Basu A, Chakraborty J. Synergistic anti-cancer activity of etoposide drug loaded calcium aluminium layered double hydroxide nanoconjugate for possible application in non small cell lung carcinoma. Appl Clay Sci. 2020;188: 105496.

    Article  CAS  Google Scholar 

  29. de Sousa Azevedo RC, Soares DCF, de Sousa RG, de Sousa EMB. Multifunctional nanostructured materials applied in controlled radiopharmaceuticals release. 2012.

  30. Wang Y, Wang S, Xu Y, Wang P, Li S, Liu L, et al. Etoposide amorphous nanopowder for improved oral bioavailability: formulation development, optimization, in vitro and in vivo evaluation. International Journal of Nanomedicine. 2020:7601–13.

  31. Brantley-Finley C, Lyle CS, Du L, Goodwin ME, Hall T, Szwedo D, et al. The JNK, ERK and p53 pathways play distinct roles in apoptosis mediated by the antitumor agents vinblastine, doxorubicin, and etoposide. Biochem Pharmacol. 2003;66(3):459–69.

    Article  CAS  PubMed  Google Scholar 

  32. Grandela C, Pera MF, Grimmond SM, Kolle G, Wolvetang EJ. p53 is required for etoposide-induced apoptosis of human embryonic stem cells. Stem Cell Res. 2007;1(2):116–28.

    Article  CAS  PubMed  Google Scholar 

  33. Agrawal A, Rangarajan V, Shah S, Puranik A, Purandare N. MIBG (metaiodobenzylguanidine) theranostics in pediatric and adult malignancies. Br J Radiol. 2018;91(1091):20180103.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Buck J, Bruchelt G, Girgert R, Treuner J, Niethammer D. Specific uptake of m-[125I]iodobenzylguanidine in the human neuroblastoma cell line SK-N-SH. Cancer Res. 1985;45(12 Pt 1):6366–70.

    CAS  PubMed  Google Scholar 

  35. He H, Xu Q, Yu C. The efficacy and safety of Iodine-131-metaiodobenzylguanidine therapy in patients with neuroblastoma: a meta-analysis. BMC Cancer. 2022;22(1):216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jaques S Jr, Tobes MC, Sisson JC, Baker JA, Wieland DM. Comparison of the sodium dependency of uptake of meta-lodobenzylguanidine and norepinephrine into cultured bovine adrenomedullary cells. Mol Pharmacol. 1984;26(3):539–46.

    CAS  PubMed  Google Scholar 

  37. Kayano D, Kinuya S. Iodine-131 metaiodobenzylguanidine therapy for neuroblastoma: reports so far and future perspective. ScientificWorldJournal. 2015;2015: 189135.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Smets LA, Bout B, Wisse J. Cytotoxic and antitumor effects of the norepinephrine analogue meta-iodo-benzylguanidine (MIBG). Cancer Chemother Pharmacol. 1988;21(1):9–13.

    Article  CAS  PubMed  Google Scholar 

  39. Cassel D, Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci. 1978;75(6):2669–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci. 2010;30(8):2967–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Villaverde G, Baeza A, Melen GJ, Alfranca A, Ramirez M, Vallet-Regí M. A new targeting agent for the selective drug delivery of nanocarriers for treating neuroblastoma. Journal of Materials Chemistry B. 2015;3(24):4831–42.

    Article  CAS  PubMed  Google Scholar 

  42. Tanaka R, Hirayama N. Structure of etoposide. Anal Sci: X-Ray Struct Anal Online. 2007;23:x29–30.

    CAS  Google Scholar 

  43. Zuo B, Sun Y, Li H, Liu X, Zhai Y, Sun J, et al. Preparation and in vitro/in vivo evaluation of fenofibrate nanocrystals. Int J Pharm. 2013;455(1):267–75.

    Article  CAS  PubMed  Google Scholar 

  44. Tian DL, Liang CP, Liang J, Chen H. Synthesis and antitumor activity of novel indole podophyllotoxin derivatives. Zhongguo Zhong Yao Za Zhi. 2019;44(12):2532–7.

    PubMed  Google Scholar 

  45. Chavhan SS, Petkar KC, Sawant KK. Nanosuspensions in drug delivery: recent advances, patent scenarios, and commercialization aspects. Crit Rev Ther Drug Carrier Syst. 2011;28(5):447–88.

    Article  CAS  PubMed  Google Scholar 

  46. Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020;24:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172(3):1126–41.

    Article  CAS  PubMed  Google Scholar 

  48. Shabir A, Alhusban F, Perrie Y, Mohammed AR. Effects of ball-milling on PLGA polymer and its implication on lansoprazole-loaded nanoparticles. J Basic Clin Pharm. 2011;2(2):71–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang H, Xie F, Cheng M, Peng F. Novel meta-iodobenzylguanidine-based copper thiosemicarbazide-1-guanidinomethylbenzyl anticancer compounds targeting norepinephrine transporter in neuroblastoma. J Med Chem. 2019;62(15):6985–91.

    Article  CAS  PubMed  Google Scholar 

  50. Field A. Discovering Statistics Using IBM SPSS Statistics Ed. 5: SAGE publications; 2017.

  51. Xiao L, Zhao W, Li H-M, Wan D-J, Li D-S, Chen T, et al. Design and synthesis of the novel DNA topoisomerase II inhibitors: esterification and amination substituted 4′-demethylepipodophyllotoxin derivates exhibiting anti-tumor activity by activating ATM/ATR signaling pathways. Eur J Med Chem. 2014;80:267–77.

    Article  CAS  PubMed  Google Scholar 

  52. Das CM, Zage PE, Taylor P, Aguilera D, Wolff JE, Lee D, et al. Chromatin remodelling at the topoisomerase II-beta promoter is associated with enhanced sensitivity to etoposide in human neuroblastoma cell lines. Eur J Cancer. 2010;46(15):2771–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu X, Zhang X, Tang J, Meng Y, Zhao L, Shi W, et al. Dual-targeting nanoprobe for early diagnosis of pheochromocytoma though coinstantaneous identification of circulating tumor cells. Anal Chem. 2021;93(26):9036–40.

    Article  CAS  PubMed  Google Scholar 

  54. Alexander N, Marrano P, Thorner P, Naranjo A, Van Ryn C, Martinez D, et al. Prevalence and clinical correlations of somatostatin receptor-2 (SSTR2) expression in neuroblastoma. J Pediatr Hematol Oncol. 2019;41(3):222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Quiñones AJL, Wagner DJ, Wang J. Characterization of meta-iodobenzylguanidine (mIBG) transport by polyspecific organic cation transporters: implication for mIBG therapy. Mol Pharmacol. 2020;98(2):109–19.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. James Murowchick (University of Missouri Kansas City, Department of Geosciences) and Dr. Donggao Zhao, Research Professor & Director of Electron Microscope Laboratory (UMKC School of Dentistry), for supporting and assistance with the XRD and SEM analysis, respectively. The authors would also like to thank Sarah Christian at the University of Missouri-Kansas City Graduate writing initiative, for thorough proof-read and English language editing of the entire manuscript.

Funding

This work was supported by the University of Missouri—Kansas City (UMKC) Collaborative Data Science Grant (March 2020) administered by the UMKC Institute of Data Education, Analytics and Science (IDEAS) Grant Program.

Author information

Authors and Affiliations

Authors

Contributions

Omowumi and Abdullah performed all wet laboratory experiments under Prof. Youan’s guidance at UMKC School of Pharmacy. Kathryn performed all statistical analysis and mathematical modeling under Prof. Bani-Yagoub’s guidance at UMKC.

Corresponding author

Correspondence to Bi-Botti Celestin Youan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinjole, O., Menta, K., Alsalhi, A. et al. Novel Meta-iodobenzylguanidine and Etoposide Complex: Physicochemical Characterization and Mathematical Modeling of Anticancer Activity. AAPS PharmSciTech 24, 174 (2023). https://doi.org/10.1208/s12249-023-02599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02599-4

Keywords

Navigation