Skip to main content

Advertisement

Log in

A Novel Alginate Film Based on Nanocoating Approach for Enteric-Release Tablets

  • Research Article
  • Advancements in Modified-release Oral Drug Delivery - Delivery throughout the Gastro-intestinal Tract
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of this study was to propose a new coating film for biodegradable polymers and environmentally friendly processing. Here, a novel implementation of solid lipid nanoparticles (SLN) into a biodegradable alginate (ALG) film composition created a new gastric-resistant film for an enteric-release tablet. Experiments were performed on a water-soluble substance (thiamine nitrate) to characterize the effects of SLN upon the addition of the ALG coating formulation. The coated tablets or cast films were characterized based on delayed-release properties, surface morphology, moisture resistance, and chemical interactions. The SLN-ALG film displayed gastric-resistant properties (< 10% drug substance dissolved at pH 1.2) and rapid disintegration in the intestinal medium (pH 6.8). Morphological analysis using a microscope and scanning electron microscope confirmed the uniformity and smoothness of the SLN-ALG film, which improved the mechanical properties of the film. Fourier transform infrared spectroscopy and differential scanning calorimetry indicated that SLN contributed to the formation of the film, which maintained free carboxylic groups, making the SLN-ALG film a higher acid resistance, but soluble in pH 6.8 buffer. These promising results suggest a novel nanotechnology-based coating formulation for various enteric-release dosage forms. Because of their biodegradability, the proposed ingredients and processes are safe and environment-friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All the data was provided in the manuscript and the supplement.

References

  1. Seitavuopio P, Heinamaki J, Rantanen J, Yliruusi J. Monitoring tablet surface roughness during the film coating process. AAPS PharmSciTech. 2006;7(2):E31. https://doi.org/10.1208/pt070231.

    Article  PubMed  Google Scholar 

  2. Felton LA. Aqueous polymeric coatings for pharmaceutical dosage forms. Boca Raton: CRC Press; 2016.

    Book  Google Scholar 

  3. Seo KS, Bajracharya R, Lee SH, Han HK. Pharmaceutical application of tablet film coating. Pharmaceutics. 2020;12(9):853. https://doi.org/10.3390/pharmaceutics12090853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maderuelo C, Lanao JM, Zarzuelo A. Enteric coating of oral solid dosage forms as a tool to improve drug bioavailability. Eur J Pharm Sci. 2019;138:105019. https://doi.org/10.1016/j.ejps.2019.105019.

    Article  CAS  PubMed  Google Scholar 

  5. Satturwar PM, Fulzele SV, Panyam J, Mandaogade PM, Mundhada DR, Gogte BB, et al. Evaluation of new rosin derivatives for pharmaceutical coating. Int J Pharm. 2004;270(1–2):27–36. https://doi.org/10.1016/j.ijpharm.2003.10.021.

    Article  CAS  PubMed  Google Scholar 

  6. Rober H, Mouhamad K, Zhang S, Pereira B, Bohus M, Wang JT-W, et al. An innovative wax-based enteric coating for pharmaceutical and nutraceutical oral products. Int J Pharm. 2020;591:119935. https://doi.org/10.1016/j.ijpharm.2020.119935.

    Article  CAS  Google Scholar 

  7. Bodmeier R. Tableting of coated pellets. Eur J Pharm Biopharm. 1997;43(1):1–8. https://doi.org/10.1016/j.ijpharm.2003.07.012.

    Article  CAS  Google Scholar 

  8. Rujivipat S, Bodmeier R. Moisture plasticization for enteric Eudragit® L30D–55-coated pellets prior to compression into tablets. Eur J Pharm Biopharm. 2012;81(1):223–9. https://doi.org/10.1016/j.ejpb.2012.01.003.

    Article  CAS  PubMed  Google Scholar 

  9. Barbosa JA, Conway BR, Merchant HA. Going natural: using polymers from nature for gastroresistant applications. Br J Pharm. 2017;2(1):14–30. https://doi.org/10.5920/bjpharm.2017.01.

    Article  Google Scholar 

  10. Kothale D, Verma U, Dewangan N, Jana P, Jain A, Jain D. Alginate as promising natural polymer for pharmaceutical, food, and biomedical applications. Curr Drug Deliv. 2020;17(9):755–75. https://doi.org/10.2174/1567201817666200810110226.

    Article  CAS  PubMed  Google Scholar 

  11. Tran BN, Van Pham Q, Tran BT, Le GT, Dao AH, Tran TH, et al. Supercritical CO2 impregnation approach for enhancing dissolution of fenofibrate by adsorption onto high-surface area carriers. J Supercritical Fluids. 2022;184:105584. https://doi.org/10.1016/j.supflu.2022.105584.

    Article  CAS  Google Scholar 

  12. Shiv KP, Ankit J, Jain A, Jain S. Biodegradable polymers and constructs: a novel approach in drug delivery. Eur Polym J. 2019;120:109191. https://doi.org/10.1016/j.eurpolymj.2019.08.018.

    Article  CAS  Google Scholar 

  13. Tran BN, Nguyen HT, Kim JO, Yong CS, Nguyen CN. Developing combination of artesunate with paclitaxel loaded into poly-d, l-lactic-co-glycolic acid nanoparticle for systemic delivery to exhibit synergic chemotherapeutic response. Drug Dev Ind Pharm. 2017;43(12):1952–62. https://doi.org/10.1080/03639045.2017.1357729.

    Article  CAS  PubMed  Google Scholar 

  14. Siddhesh NP, Kevin JE. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials. 2012;33(11):3279–305. https://doi.org/10.1016/j.biomaterials.2012.01.007.

    Article  CAS  Google Scholar 

  15. Susanna R, Pirjo R. Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol. 2010;231(1):1–12. https://doi.org/10.1007/s00217-010-1246-2.

    Article  CAS  Google Scholar 

  16. Ishmael J, Suresh V. Indomethacin sustained release from alginate-gelatin or pectin-gelatin coacervates. Int J Pharm. 1995;126(1–2):161–8. https://doi.org/10.1016/0378-5173(95)00173-5.

    Article  Google Scholar 

  17. Ramos OL, Pereira RN, Rodrigues R, Teixeira JA, Vicente AA, Malcata FX. Physical effects upon whey protein aggregation for nano-coating production. Food Res Int. 2014;66:344–55. https://doi.org/10.1016/j.foodres.2014.09.036.

    Article  CAS  Google Scholar 

  18. Luc A, Eric P. Biodegradable polymers. Environmental silicate nano-biocomposites: Springer; 2012. p. 13–39.

  19. Latthe SS, Terashima C, Nakata K, Fujishima A. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules. 2014;19(4):4256–83. https://doi.org/10.3390/molecules19044256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: a novel approach in drug delivery. Eur Polym J. 2019;120:109191. https://doi.org/10.1016/j.eurpolymj.2019.08.018.

    Article  CAS  Google Scholar 

  21. USP. Diclofenac sodium delayed-release tablets USP43-NF38. 2022.

  22. Tran BN, Nguyen HT, Kim JO, Yong CS, Nguyen CN. Combination of a chemopreventive agent and paclitaxel in CD44-targeted hybrid nanoparticles for breast cancer treatment. Arch Pharm Res. 2017;40(12):1420–32. https://doi.org/10.1007/s12272-017-0968-0.

    Article  CAS  PubMed  Google Scholar 

  23. Pham CV, Van MC, Thi HP, Thanh CĐ, Ngoc BT, Van BN, et al. Development of ibuprofen-loaded solid lipid nanoparticle-based hydrogels for enhanced in vitro dermal permeation and in vivo topical anti-inflammatory activity. J Drug Del Sci Technol. 2020;57:101758. https://doi.org/10.1016/j.jddst.2020.101758.

    Article  CAS  Google Scholar 

  24. USP. Disintegration monograph 701. USP43-NF38. 2022.

  25. USP. Dissolution monograph 711. USP43-NF38. 2022.

  26. Rockland LB. Saturated salt solutions for static control of relative humidity between 5° and 40° C. Anal Chem. 1960;32(10):1375–6. https://doi.org/10.1021/ac60166a055.

    Article  CAS  Google Scholar 

  27. Lamour G, Hamraoui A, Buvailo A, Xing Y, Keuleyan S, Prakash V, et al. Contact angle measurements using a simplified experimental setup. J Chem Educ. 2010;87(12):1403–7. https://doi.org/10.1021/ed100468u.

    Article  CAS  Google Scholar 

  28. Beck H, Härter M, Haß B, Schmeck C, Baerfacker L. Small molecules and their impact in drug discovery: a perspective on the occasion of the 125th anniversary of the bayer chemical research laboratory. Drug Discov Today. 2022. https://doi.org/10.1016/j.drudis.2022.02.015.

    Article  PubMed  Google Scholar 

  29. Jain D, Bar-Shalom D. Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm. 2014;40(12):1576–84. https://doi.org/10.3109/03639045.2014.917657.

    Article  CAS  PubMed  Google Scholar 

  30. Chetan R, Shivaji K, Pareek S, inventors; US Patents C09D105/04 assignee. Aqueous film coating composition containing sodium alginate and preparation thereof patent C09D105/04 2012.

  31. Rowbotham JS, Greenwell HC, Dyer PW. Opening the egg box: NMR spectroscopic analysis of the interactions between s-block cations and kelp monosaccharides. Dalton Trans. 2021;50(38):13246–55. https://doi.org/10.1039/D0DT04375C.

    Article  CAS  PubMed  Google Scholar 

  32. Diana MI, Selvin PC, Selvasekarapandian S, Krishna MV. Investigations on Na-ion conducting electrolyte based on sodium alginate biopolymer for all-solid-state sodium-ion batteries. J Solid State Electrochem. 2021;25(7):2009–20. https://doi.org/10.1007/s10008-021-04985-z.

    Article  CAS  Google Scholar 

  33. Karl W, Perla R, Gérard C, Franck C, Luc N-M, Hayat B, et al. Effect of surfactant on structure thermal behavior of cetyl stearyl alcohols: DSC and X-ray scattering studies. J Therm Anal Calorim. 2016;123:1411–7. https://doi.org/10.1007/s10973-015-5074-2.

    Article  CAS  Google Scholar 

  34. Fukushima S, Yamaguchi M, Harusawa F. Effect of cetostearyl alcohol on stabilization of oil-in-water emulsion: II. Relation between crystal form of the alcohol and stability of the emulsion. J Colloid Interface Sci. 1977;59(1):159–65. https://doi.org/10.1016/0021-9797(77)90350-2.

    Article  CAS  Google Scholar 

  35. Saeed RM, Schlegel J, Castano C, Sawafta R. Uncertainty of thermal characterization of phase change material by differential scanning calorimetry analysis. Int J Eng Res Technol. 2016;5(1):405–12.

    Google Scholar 

  36. Bunjes H, Unruh T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv Drug Deliv Rev. 2007;59(6):379–402. https://doi.org/10.1016/j.addr.2007.04.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author team appreciates the support from colleagues and partners for analyzing the results of digital camera, image, and physical-mechanical tests.

Author information

Authors and Affiliations

Authors

Contributions

Bao Tran: conceptualization; investigation; methodology; data curation; writing—original draft. Chien Nguyen: conceptualization, supervision, writing, review and editing, and project administration. Khanh-Ly Tran: investigation and data curation. Phuong Nguyen: investigation and supervision. Thach-Tung Nguyen: investigation.

Corresponding author

Correspondence to Chien Ngoc Nguyen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1090 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, B.N., Tran, KL., Nguyen, TT. et al. A Novel Alginate Film Based on Nanocoating Approach for Enteric-Release Tablets. AAPS PharmSciTech 24, 99 (2023). https://doi.org/10.1208/s12249-023-02557-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02557-0

Keywords

Navigation